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 Given the rapid progress of digital technology, systems are increasingly vulnerable to 

cyber-attacks. Intrusion detection systems (IDS), which monitor an industrial control 

system (ICS) network traffic and detect suspicious activities, are a necessity for the 

operation of ICSs. Previous studies argued that packet intervals could ideally be regarded 

as indicators of the cyber-attacks on ICSs and proposed an intrusion detection 

methodology relying on packet intervals using singular spectrum analysis (SSA). SSA is 

a nonparametric spectral estimation method, but it suffers from high computational cost. 

Thus, in this study, a long short-term memory (LSTM) model was developed based on 

the packet intervals during steady-state operation, and an intrusion detection method using 

the LSTM model was proposed. The LSTM model is a recurrent neural network model 

and can be used for time-series prediction problems. Furthermore, we evaluated the 

proposed method on a cybersecurity testbed using penetration tests. The results show that 

the LSTM model performs better than SSA and suggests the possibility of the application 

of the LSTM model to IDS for various types of plants by adjusting its complexity. 
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1. INTRODUCTION 

 

Industrial control systems (ICSs) monitor and control 

complex industrial processes and critical infrastructure (such 

as power plants, manufacturing, and other social services). 

Any damage to an ICS entails severe impacts on a vast number 

of stakeholders. Hence, ICSs were isolated from the internet 

to remove security vulnerabilities. However, the rapid 

progress of digital technology demands that ICSs connect 

directly or indirectly to the Internet because of replacing 

specialized hardware and software with widely available and 

low-cost Internet Protocol (IP) devices. Given the network 

extendibility of such ICS components, the system becomes 

vulnerable to cyber-attacks [1]. In fact, cyber-attacks targeting 

ICSs have been known to interfere with plant/facility 

operations. A cyber-attack in 2010 ruined almost one-fifth of 

Iran's nuclear centrifuges and caused substantial damage to 

Iran's nuclear program [2]. Additionally, Ukraine’s power grid 

was attacked in 2015 and 2016 [3]. Therefore, intrusion 

detection systems (IDSs), which can be used to monitor ICS 

network traffic, are a necessity to protect ICSs against cyber-

attacks. 

IDSs monitor a network traffic for suspicious activity and 

alert system or network administrators when such activity is 

detected. IDSs are classified into two types: anomaly-based 

and signature-based IDSs. Signature-based IDSs detect attacks 

by searching for specific patterns, such as byte sequence in 

networks created by malware. Although signature-based IDSs 

can protect ICSs from known attacks registered in the IDS 

database, they cannot screen out an unregistered attack. On the 

other hand, anomaly-based IDSs detect attacks using machine 

learning to create a model of steady-state activity. They 

monitor network traffic by conducting comparisons against 

the model. Thus, they can detect previously unknown attacks 

[4]. 

Many machine-learning techniques have been used to 

improve the accuracy of detection of anomaly activation for 

IDSs. They include k-nearest neighbor (kNN) methods (e.g., 

[5, 6]), neural networks (NNs) (e.g., [7, 8]), support vector 

machines (SVMs) (e.g., [7-10]), random forests [11], naive 

Bayes methods (e.g., [12, 13]), and time series association data 

mining [14]. There are two types of machine-learning 

techniques: supervised machine-learning and unsupervised 

machine-learning. Supervised machine-learning techniques 

generally require a labelled dataset to discriminate anomaly 

activation from normal one. A previous IDS for ICSs used a 

dataset obtained by penetration tests to create a discriminant 

model [10]. The discriminant criteria of the model reflected 

characteristics of the dataset, but there is a possibility that the 

model may fail to detect new cyber-attacks whose 

characteristics are not easily discernible despite penetration 

tests. Namely, the discriminant model cannot detect new 

cyber-attacks whose characteristics are completely different 

from attacks in the dataset obtained by penetration test. In 

contrast, unsupervised machine-learning techniques infer the 

function of a hidden structure. When an ICS network during 

steady-state exhibits a particular pattern, the techniques can 

infer the hidden structure of the pattern and detect anomalous 

behavior by comparing the pattern during steady-state. Matta 

et al. [15] demonstrated that packet intervals during steady-

state have a particular pattern and cyber-attacks may disturb 

this pattern. Furthermore, a certain type of periodicity was 

observed in time-series packet intervals using a testbed, and an 

IDS was proposed using singular spectrum analysis (SSA) by 

searching for the disturbance [16].  

SSA is a nonparametric spectral estimation method for 
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time-series analysis and decomposes time-series data into a 

sum of components to detect a change point [17]. However, 

SSA suffers from high computational cost because it has to 

decompose every time-series data. Similarly, some supervised 

machine-learning methods are used to forecast time-series data 

and applied to anomaly detection in time series. They include 

autoregressive models [18], recurrent neural networks (RNNs) 

[19], and the long short-term memory (LSTM) model [20]). 

The models are trained using a dataset during steady-state 

operation to infer the function of the hidden structure. Namely, 

they do not require a labeled dataset.  

LSTM overcomes the vanishing gradient problem in 

parameter estimation experienced by RNN and appears to 

perform better than its counterparts [20]. In this study, a LSTM 

model was developed based on packet intervals during steady-

state and an intrusion detection method using the LSTM model 

was proposed for ICSs. Furthermore, we evaluated the 

proposed method using penetration tests on a cybersecurity 

testbed [10, 15, 16] and compared the performance of the 

proposed method to that of a previous method using SSA. 

 

 

2. INTRUSION DETECTION SYSTEMS 
 

2.1 Packet intervals 
 

Typical ICS networks use IP communications between the 

object linking and embedding (OLE) for process control 

(OPC) server and single loop controller (SLC) (programmable 

logic controller (PLC)). ICS communication transfers packets 

specified as industrial control protocols, such as Modbus/TCP 

[21], at specific time intervals. Modbus/TCP packets to the 

target machine are represented as {p0, p1, p2,…, pn} and the 

time stamp of the ith packet pi is represented as ti. The packet 

intervals 𝑑𝑖 are defined as differences between the time stamps 

ti and 𝑡𝑖−1 as 

 

𝑑𝑖 = 𝑡𝑖 − 𝑡𝑖−1. (1) 

 

A previous work [15] suggested that packet intervals {d1, 

d2,…, dn} reflect the characteristics of packets in a typical ICS 

network and exhibit a type of periodicity because they are 

forced by the activities of a plant to produce a specific type of 

periodicity. 

 

2.2 Singular spectrum analysis 

 

A previous work [16] used SSA to detect anomalies in time-

series of packet intervals. The analysis constructs the 

corresponding subspaces for matrices (trajectory and test 

matrices) defined using lagged time-series packet intervals and 

computes the distances between these subspaces as change 

scores to detect the change-point (Figure 1). 

 

2.3 Long short-term memory model for detecting 

structural change 

 

The LSTM model is composed of LSTM units consisting of 

a cell, an input gate, an output gate, and a forget gate [22]. The 

cell in LSTM units remembers values over certain time 

intervals, and the three gates control the flow of information 

into and out of the cell. The models are adequate for 

predictions of time series data because they can learn long-

term dependencies of the data. In this study, we proposed a 

model that predicts the ith time interval 𝑑𝑖  from the 

immediately preceding sliding window ( 𝑑𝑖−1, 𝑑𝑖−2, … ,
𝑑𝑖−𝑀) (Figure 2).  

 

 
 

Figure 1. Estimation change scores using SSA (modified 

after [16]) 

 

 
 

Figure 2. Estimation change scores using LSTM 

 

There are many types of LSTM models: many-to-one, one-

to-many, and many-to-many. To predict a time interval 

immediately after the time interval sequence, the many-to-one 

model was used. In this research, the LSTM model was 

composed of a sequential input layer followed by one LSTM 

layer and dense output layer with the hyperbolic tangent 

function. 

The output in the LSTM layer is computed using the 

following equations:  

 

𝑎𝑡 = 𝜎(𝑊𝑎𝑑𝑡 + 𝑅𝑎ℎ𝑡−1 + 𝑏𝑎), (2) 

 

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑑𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧), (3) 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑑𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓), (4) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑑𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜), (5) 

 

𝑐𝑡 = 𝑎𝑡 ∘ 𝑧𝑡 + 𝑓𝑡 ∘ 𝑐𝑡−1, and (6) 

 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡). (7) 

 

where, 𝑖 − 𝑀 ≤ 𝑡 ≤ 𝑖 − 1 . 𝑡𝑎𝑛ℎ  is the hyperbolic tangent 

function, 𝜎 refers to the sigmoid function, and ∘ indicates the 

element-wise product. ℎ𝑡 ∈ ℝ𝑁  ( ℎ𝑖−𝑀−1 = 0 ) denotes the 
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hidden state vector, which is also regarded as the output vector 

of the LSTM unit, and 𝑁 indicates the number of hidden nodes. 

𝑊∗ ∈ ℝ𝑁×1 , 𝑅∗ ∈ ℝ𝑁×𝑁 , 𝑏∗ ∈ ℝ𝑁  are weight matrices and 

bias vector parameters. 

In the dense output layer, the predicted ith time interval 𝑦𝑖  

is computed using the hyperbolic tangent function as follows: 

 

𝑦𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑑ℎ𝑖−1 + 𝑏𝑑) (8) 

 

where, 𝑊𝑑 ∈ ℝ1×𝑁, 𝑏𝑑 ∈ ℝ1 are the weight matrices and bias 

vector parameters in the dense output layer. 

The parameters of the LSTM model ( 𝑊∗, 𝑅∗, 𝑏∗ ) were 

estimated using a training dataset during steady-state operation 

to minimize the LSTM model’s square error. Because the 

model was trained using the data set during steady-state 

operation, the model estimates time intervals similar to those 

during steady-state operation. Certain anomalous behaviors 

interfere with the interval pattern during steady-state operation 

and it results in significant differences between the estimated 

interval and real interval values. Thus, the squaring difference 

between the estimated and real interval values is defined as a 

change score at the ith packet: 

 

𝑠𝐿𝑆𝑇𝑀(𝑖) = (𝑦𝑖 − 𝑑𝑖)2 (9) 

 

The change score threshold for intrusion detection was set 

based on the change scores for the dataset during steady-state 

operations. In a previous work [16] used SSA, it was 

hypothesized that the change scores during steady-state 

operations would obey a normal distribution, and the top 

0.05% of change scores would indicate suspicious activities. 

The LSTM model is more sensible than SSA. Therefore, the 

maximum was used instead of the average as a reference, and 

the change score threshold was defined as follows: 

 

𝜃𝐿𝑆𝑇𝑀 = max𝐿𝑆𝑇𝑀 +3.29 ∗ 𝑠𝑑𝐿𝑆𝑇𝑀 , (10) 

 

where, 𝑚𝑎𝑥𝐿𝑆𝑇𝑀  and 𝑠𝑑𝐿𝑆𝑇𝑀  indicate the maximum and 

standard deviation of the change scores for the dataset during 

steady-state operations for training. When the 𝑖th change score 

𝑠𝐿𝑆𝑇𝑀(𝑖) exceeds the threshold, the system estimates the 𝑖th 

packet 𝑝𝑖  is an attack packet. 

 

 

3. EVALUATION ENVIRONMENT 

 
The proposed method was evaluated using datasets obtained 

from the testbed prepared for previous studies [10, 15, 16].  

 

3.1 Security testbed 

 

In the cybersecurity testbed, water is heated to be circulated 

between two tanks. Figure 3 shows the piping and 

instrumentation (P&I) diagram of the testbed. The testbed was 

equipped with actual control devices and controlled 

automatically. Yokogawa Digital Indicating Controllers 

(model number: UT35A and UT32A) were installed for 

proportional-integral-derivative (PID) control. The controllers 

are operated using an ICS network. 

The ICS network contains three zones: one supervisory 

zone and two control zones (ICS1/ICS2) (Figure 4). The two 

control zones have the same structure, which consists of a 

gateway server, an OPC server, a supervisory control and data 

acquisition (SCADA) monitor, and SLCs. SLC1 controls the 

level of tank 1 and monitors the temperature of tank 2. SLC2 

controls the inlet from tank 2 and the temperature of tank 1. 

To capture the OPC packets, a network tap was installed in the 

ICS-2 network. This configuration was designed by 

Hashimoto et al. [23].  

 

 
 

Figure 3. P&I diagram of the cybersecurity testbed used in this study [16] 
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Figure 4. ICS network diagram of the cybersecurity testbed 

used in this study [16] 

 

3.2 Evaluation packets 

 

Table 1. Datasets used for steady-state operations and 

penetration test attacks 

 
Dataset No. of packets 

(Modbus/TCP) 

Capture 

period (s) 

No. of attack 

packets 

Steady-state (for 

training LSTM) 

1472 192.6 - 

Steady-state (for 

valid LSTM) 

543 70.9 - 

Steady-state (for 
test) 

628 82.22 - 

Reading registers 708 92.26 3 

Finding unit IDs 1812 834.9 254 
Reading coils 502 65.28 2 

 

We used datasets similar to those used in a previous study 

[16] for evaluation. At steady-state operation, the SCADA 

terminals monitor the OPC server, which collects and 

exchanges the process data to circulate the water in tanks 1 and 

2 at constant levels. The packets to the controllers in the ICS-

2 network were captured using the popular cross-platform 

packet-capturing program, Wireshark 

(https://www.wireshark.org). The purpose of the penetration 

test was to crack the target OPC2 and tamper with the 

configuration file using the Metasploit Framework (Rapid7) 

attack tool (https://www.metasploit.com). The penetration test 

was conducted for three types of cyber-attacks: reading 

registers, finding unit IDs, and reading coils. Table 1 presents 

the details of the datasets used for both steady-state operations 

and penetration test attacks. 

 

 

4. EVALUATION RESULTS  

 

4.1 Estimation of cycle period of packet intervals during 

steady-state operations 

 

To estimate the periodicity of the packet intervals during 

steady-state operations, the autocorrelation coefficient with k 

gap (𝑟𝑘) is computed as follows: 

 

𝐶𝑜𝑣𝑘 =
1

𝑛
∑ (𝑑𝑡 − 𝜇𝑑)(𝑑𝑡−𝑘 − 𝜇𝑑)

𝑘+𝑛

𝑡=𝑘+1

 (11) 

 

𝑟𝑘 =
𝐶𝑜𝑣𝑘

𝐶𝑜𝑣0

 (12) 

 

where, 𝜇𝑑  indicates the average value of time intervals 

𝑑𝑡  (𝑘 + 1 ≤ 𝑡 ≤ 𝑘 + 𝑛) . Autocorrelation coefficient is the 

correlation coefficient between a given time series and a 

lagged version of itself over successive time intervals and 

represents the degree of similarity between them. The 

autocorrelation coefficients for the steady-state operation 

dataset when the k gap is a multiple of 8 exceed 0.8 although 

the other values are less than 0.3. According to the results, the 

cycle period during the packet intervals during steady-state 

operation was estimated as 8 packets.  

 

4.2 Evaluation criteria 

 

We used three types of criteria to evaluate the system: time 

required to detect the first attack packet, maximum time 

difference based on real attack packets, and maximum time 

difference based on estimated attack packets. The two types of 

time differences based on real attack and estimated attack 

packets are shown in Figure 5.  

 

 
 

Figure 5. Two types of time differences between the real attack packet and estimated attack packet. The upper panel shows 

packet intervals, and the lower panel shows change scores 
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Table 2. Detection results for three evaluation criteria 

 

Method Dataset Time required to detect 

first attack packet (s) 

Maximum time 

difference: real attack (s) 

Maximum time difference: 

estimated attack (s) 

SSA Reading registers 3.09 3.09 6.48 

Finding unit IDs 0.79 0.79 7.10 

Reading coils 0.85 0.85 6.80 

LSTM 

(one hidden 

node) 

Reading registers 0 0 1.20 

Finding unit IDs 0 0.08 1.60 

Reading coils 0.07 0.07 0.53 

LSTM 

(two hidden 

nodes) 

Reading registers 0 0.56 1.07 

Finding unit IDs 0 2.76 8.00 

Reading coils 0 0.53 0.53 

LSTM 

(three hidden 

nodes) 

Reading registers 0 0.07 1.07 

Finding unit IDs 0 2.04 1.60 

Reading coils 0.22 0.22 1.16 

 

 
 

Figure 6. Packet intervals and change scores. The upper panels show packet intervals, and the central and lower panels show 

respectively change scores using SSA and LSTM.  (a) steady-state operation, (b)-(d) three types of cyber-attacks: reading 

registers, finding unit IDs, and reading coils 
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The system needs to detect a series of anomaly activations 

as soon as possible. The time required to detect the first attack 

packet is computed as the time difference between the first 

attack packet and the first estimated attack packet by the 

system. Furthermore, the system must detect not only the first 

attack packet but also all attack packets. The maximum time 

difference based on the real attack packet refers to the 

maximum time differences between a real attack packet and 

the closest estimated attack. The criterion indicates the 

maximum time needed to detect every attack packet. In some 

cases, the system incorrectly estimates normal packets as 

attack packets, thus causing false alerts. Therefore, we used 

the maximum time differences between an estimated attack 

and the closest real attack packet (the maximum time 

difference based on the estimated attack). When the system 

estimates a cyber-attack during a period without a real attack 

and produces a false alert, the criterion takes a higher value.  

 

4.3 Parameter settings 

 

The LSTM model was trained using a training dataset 

during steady-state operation with the open-source neural 

network library Keras [24]. The number of hidden nodes 𝑁 

was optimized. A model with more hidden nodes has more 

parameters and is more complex. Thus, the number was 

changed from one to three. The sliding window size was fixed 

at 𝑀 = 8 according to the estimated cycle period. 

 

4.3.1 Detection results of the systems 

The results of the evaluation criteria for the demonstration 

of the systems’ detection ability are presented in Table 2. To 

compare the proposed system to the previous system using 

SSA [16], Table 2 also presents the detection results of the 

previous system.  

The LSTM with one hidden node produces the best 

performance. The system requires less than 1 s to detect the 

first attack packet. Although the previous system using SSA 

requires more than 3 s to detect the first attack packets for 

reading registers, the proposed system using LSTM with one 

hidden node could detect it within less than 1 s. Furthermore, 

for all types of attacks, both the maximum time differences of 

the system using LSTM with one hidden node are shorter than 

2 s, although the maximum time differences based on the 

estimated attack for the system using SSA are longer than 6 s. 

Interestingly, the system using LSTM with two/three nodes 

could not show a better performance than the simpler system 

using LSTM with one node. The number of parameters in the 

LSTM models with one/two/three hidden nodes, which are 

estimated using the training dataset, are respectively 14, 35, 

and 64. The LSTM models with two/three hidden nodes are 

too sensitive because the models contain too many parameters, 

causing over-fitting.  

Furthermore, both the time series for the packet intervals 

and the change scores of the systems using SSA and LSTM 

with one hidden node are shown in Figure 6. These figures 

show that a cyber-attack interferes with periodic patterns 

during steady-state operations and indicate that the systems 

can use the change score to correctly detect this interference. 

Once the change scores estimated by the system using SSA 

exceed the threshold, a longer time period is required for the 

system to revert to below the threshold state in spite of the 

absence of attack packets. Similarly, the maximum time 

differences for the estimated attack packets of the previous 

system are longer than 6 s. On the other hand, the system using 

LSTM could estimate the attack packet more satisfactorily, 

that is, reflecting the timing of the real attack packets. These 

results suggest that there is less possibility that the proposed 

system using LSTM makes false alerts. 

 

 

5. CONCLUSION 

 

In this paper, we proposed an intrusion detection method 

using LSTM. Additionally, the proposed method was 

evaluated using pseudo-attacks on the cybersecurity testbed. 

The previous method using SSA required almost 3 s to detect 

the first attack packet. On the other hand, the proposed method 

using LSTM could detect the same in less than 1 s. The 

maximum time differences of the system using SSA were 

longer than those of the system using LSTM. In SSA, the 

trajectory and test matrices need to be defined using time-

series packet intervals. Therefore, the method using SSA 

requires packet intervals during more than two cycles to 

provide adequate alerts. On the other hand, the method using 

LSTM estimates the next packet timing from the preceding 

packets and detects change points based on the difference 

between the estimated and real timings. Namely, time-series 

packet intervals during more than one cycle are necessary to 

provide adequate alerts. Therefore, the proposed method 

required a shorter time to detect the first attack packet than the 

previous approach. 

According to the evaluation results, the simplest LSTM 

model with one hidden node showed the best performance. 

The cybersecurity testbed, which heats water to circulate it 

between two tanks, automates the simple process. Moreover, 

the packet intervals in the ICS network show a simple 

periodicity. The LSTM models with plural hidden nodes did 

not provide better performance for the datasets obtained from 

the ICS network of the testbed because of their over-fitting. It 

is possible that the proposed method can adapt to many types 

of industrial plants by adjusting the number of hidden nodes.  

Typically, the system detects all behaviors that result in 

changes to the steady-state operation. When ICS operators 

make intentional changes to steady-state operations, the 

system flags such changes as anomalous. Therefore, an alert 

filtering system must be developed for the proposed IDS to 

ignore changes made by operators. We plan to assess and study 

both the above-mentioned aspects in a future study. 
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