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This paper attempts to design an image fusion method that facilitates the extraction of water 

bodies from remote sensing images, namely, the images taken by Enhanced Thematic 

Mapper Plus (ETM+) of Landsat 7 and those taken by Phased Array type L-band Synthetic 

Aperture Radar (PALSAR) of Advanced Land Observation Satellite (ALOS). Firstly, the 

water body information was extracted from ETM+ data and PALSAR data, and combined 

into a benchmark image. Next, several traditional image fusion methods were separately 

adopted to merge the ETM+453 image and the PALSAR HH image, and the water bodies 

extracted from the fused images were compared in details. The selected methods include 

principal component analysis (PCA), Brovey transform (BT), intensity-hue-saturation (IHS) 

transform, discrete wavelet transform (DWT), and high-pass filter (HPF). After that, a new 

image fusion method was designed based on optimal band combination (OBC), and the 

water bodies extracted by the method were compared with the benchmark image and those 

extracted by the traditional methods. The results show that the ALOS HH image alone 

achieved higher accuracy in water body extraction than the ETM+ image alone; the 

traditional image fusion methods, namely, PCA, BT, IHS, HPF and DWT, were more 

accurate than the ETM+ image alone  in water body extraction, and less accurate than the 

ALOS HH image alone. The OBC-based image fusion method greatly outperformed all the 

traditional methods. The research results provide a good reference for image fusion and 

extraction tasks in similar cases. 
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1. INTRODUCTION

Water, as a primary resource, is of great importance to

sustainable development. For the benefits of environment and 

mankind, the status of water resource must be evaluated 

accurately. However, it is very difficult, time-consuming, and 

even impossible to make the evaluation for a large region 

through traditional ground survey [1]. 

Remote sensing has long been used in water body extraction, 

thanks to its convenience, safety, fastness, and cost-

effectiveness [2-12]. In most cases, the water bodies are 

extracted by single-source remote sensing data [13-19]. But 

the single-source data face many limitations in water body 

extraction. The same water body may have different imaging 

features on different remote sensing platforms, which vary in 

geographical location and imaging mechanism. As a result, 

single-source data cannot reflect the information of the water 

bodies in an accurate and complete manner.  

Take Baoan Lake in central China’s Hubei Province for 

example. Figure 1 provides two remote sensing images on the 

lake. The left subgraph was taken by Enhanced Thematic 

Mapper Plus (ETM+) of Landsat 7 on August 19th, 2008, and 

the right subgraph was shot by Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) of Advanced Land 

Observation Satellite (ALOS) on July 3rd, 2008. No water was 

observed in the red circle of Figure 1(a), while water was 

clearly observable in the same part of Figure 1(b).  

(a) Landsat ETM+ image   (b) ALOS PALSAR image

Figure 1. Remote sensing images of Baoan Lake

Comparing the ETM+ image and PALSAR image of the 

same season, it was found that the ETM+ cannot sense the 

water area beneath plants and clouds, while PALSAR can 

penetrate through plants and clouds. But the PALSAR image 

has lots of holes resulted from speckle noise. Visually 

speaking, neither images provide an accurate illustration of the 

water bodies. The lack of accuracy is common in many object 

remote sensing tasks. 

Image fusion is now a hotspot in the field of image 

processing. As its name suggests, image fusion effectively 

combines the salient information of the target from different 

images, providing complete information about the target. In 
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this way, the target could be recognized accurately and reliably 

[20, 21]. Over the years, image fusion has been extended to 

various fields, ranging from computer vision, crop growth 

analysis, to land cover classification.  

The existing studies on image fusion mainly focus on the 

sources, levels, algorithms, effect evaluation, and application 

fields [22-24]. These studies provide theoretical and technical 

supports to image fusion applications. The complementarity of 

different remote sensing images has been proved useful in 

many specific applications, such as seismic damage 

assessment [25], runway and horizon detection [26], built-up 

area identification [27, 28], dryness and evapotranspiration 

estimation [29], as well as urban classification [30].  

On the application of image fusion, the previous research 

mostly tackles the following issues: land use and land cover 

classification [31-37], forest mapping [38-40], crop and 

vegetation identification [41-45], to name but a few. However, 

there is little report on the use of image fusion in water body 

extraction. Besides, most studies on the application of image 

fusion stopped at experimental verification, and integrated 

data from different sources by fusion algorithms like intensity-

hue-saturation (IHS) transform and discrete wavelet transform 

(DWT). Rarely has any fusion algorithm been designed for 

specific goals of application. The fusion methods that are 

theoretically viable might not be suitable for practical 

applications. This calls for an efficient fusion method that 

gives full play to the complementarity of multi-source images 

in specific applications. 

Therefore, this paper attempts to achieve three purposes 

concerning water body extraction: (1) verify whether image 

fusion is beneficial or detrimental to the accuracy of water 

body extraction; (2) examine the efficiency of existing image 

fusion methods in water body extraction; (3) design an image 

fusion method that combines the merits of water body images 

from multiple sources, and accurately extracts the water bodies. 

For the above purposes, datasets with potentially 

complementary information were selected for water body 

extraction. Next, the water body information was extracted 

from each dataset, forming a benchmark for subsequent 

comparison. After that, several image fusion methods were 

separately adopted to merge the selected datasets, and the 

water bodies were extracted from the fused images. Finally, a 

new image fusion method was designed based on optimal band 

combination (OBC), and used to combined two types of 

datasets. The accuracy of our method in water body extraction 

was proved through comparative analysis. 

The remainder of this paper is organized as follows: Section 

2 introduces the study area, data, and method of this research; 

Section 3 extracts water body information from Landsat 7 

ETM+ data and ALOS PALSAR data, respectively, and builds 

a benchmark based on the extracted results; Section 4 

compares the water body extraction results of several image 

fusion methods; Section 5 develops the OBC-based image 

fusion method for Landsat ETM+ data and ALOS PALSAR 

data; Section 6 compares our method with the other methods 

in water body extraction; Section 7 puts forward the 

conclusions. 

 

 

2. METHODOLOGY  

 

2.1 Study area 

 

The 157,380-hectare study area lies in the southeast of 

central China’s Hubei Province. With a monsoon-influenced 

humid subtropical climate, the study area has an annual 

maximum rainfall of 1,600mm. Each year can be clearly 

divided into a dry season (October to next February) and a wet 

season (March to September). This area was selected partially 

due to the abundance of water resource in Hubei Province. 

Figure 2 presents a composite image of bands 4, 5, and 3 of 

Landsat 7 ETM+ images taken on August 19, 2008. The image 

contains various surface objects, including but not limited to 

buildings, farmlands, mountains, and water bodies. The lakes 

and the Yangtze River are quite legible on the composite 

image. However, small water bodies (e.g. ponds and small 

rivers) cannot be distinguished easily from the surroundings. 

Since the images were taken in summer, a large area of water 

bodies are covered by lotus and other plants, and thus not 

observable on the composite image. 

 
 

Figure 2. The study area 

 
Note: BAL- Baoan Lake; CL- Chaohu Lake; HML- Huama Lake; YLL-
Yanlan Lake; SSL-Sanshan Lake; HLR- Huanglong Reservoir; SQR- Shiqiao 

Reservoir; CiL-Cihu Lake; YTR- Yangtze River; R1-River 1; R2-River 2. 

 

2.2 Data 

 

2.2.1 Data selection 

The source data have a great impact on the result of water 

body extraction. Many factors should be considered in data 

selection: imaging mechanism, data availability, previous 

work, regional features, etc. This paper selects the source 

images based on two factors: previous work and imaging 

features. 

 

(1) Previous work 

In previous work on remote sensing, most image fusion 

tools target images captured by multispectral imager (MSI), a 

passive imaging system, and synthetic aperture radar (SAR), 

an active imaging system.  The empirical results show that the 

fusion of the two types of images indeed has advantages in 

applications like resource monitoring, environmental 

protection, and disaster investigation [46-55]. The features not 

observed in the MSI image can be found in the SAR image, 

and the inverse is also true [56-58]. Some scholars have proved 

that the fusion between MSI and SAR images can improve the 

classification accuracy in water body extraction [59, 60]. 
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(2) Imaging features 

The MSI operates similarly to the human eyes. The imaging 

mechanism of the MSI is easy to understand and apply to 

specific problems. There are multiple bands of the MSI. For 

the same object, its appearance and color on the MSI image 

vary with the band combinations. Thus, the MSI images 

provide multiple viewing angles and high recognizability, 

facilitating the classification of features. In addition, the MSI 

is prone to noise disturbance, which ensures the image 

integrity. 

However, every silver lining has a cloud. The MSI 

performance depends heavily on the weather, especially on the 

presence or absence of clouds. In MSI images, the same object 

many have different spectra, and the same spectrum may 

correspond to different objects. In other words, different 

objects with similar spectral features are often 

indistinguishable, such as water bodies, mountain shadows, 

and cloud shadows. Furthermore, the water area covered by 

plants cannot be captured by the MSI. 

By contrast, the SAR is an active imaging system with its 

own energy source. Thus, the SAR images are not affected by 

weather. Compared with the MSI images, the SAR images 

boast a high resolution, as the SAR is sensitive to moisture, 

even if it is covered by plants. The main drawback of the SAR 

is the inability to remove speckle noise [61], which inevitably 

affects the integrity of the extraction result.  

 

2.2.2 Selected data 

Based on the previous work and imaging features, this paper 

chooses Landsat 7 ETM+ images and ALOS PALSAR images 

as the source data, for these two types of images provide 

complementary information in water body extraction. 

 

(1) Landsat 7 ETM+ data 

The ETM+ is a multispectral scanner that passively senses 

the surface reflection of solar radiation and heat radiation of 

the earth. There are eight band sensors in the ETM+, covering 

the wavelengths from infrared to visible light. The ETM+ has 

a better resolution in the infrared band than the thematic 

mappers (TMs) on Landsat 4 and Landsat 5. Therefore, 

Landsat 7 outperforms Landsat 4 and Landsat 5 in the 

accuracy of feature identification. 

As shown in Table 1, the image (Path 122, Row 39) taken 

on August 18, 2008 was collected and processed for this 

research. The image is 170km (106 miles) in the north-south 

direction and 183km (114 miles) in the east-west direction.   

 

Table 1. The Landsat 7 ETM+ image (path/row: 122/39) 

 
Date Sensor Cloud coverage (%) 

20080819 ETM+(SLC-off) 5.35 

 

Table 2. The bands of Landsat 7 ETM+ 

 
No. Band/Frequency (μm) Ground resolution (m) 

1 B: 0.45~0.52 30m 

2 G: 0.52~0.60 30m 

3 R: 0.63~0.69 30m 

4 NIR: 0.76~0.90 30m 

5 SWIR: 1.55~1.75 30m 

6 TIR: 10.4~12.5 60m 

7 SWIR: 2.08~2.35 30m 

8 PAN: 0.52~0.90 15m 

 

As shown in Table 2, different bands of the ETM+ record 

different reflection information. In the light of the actual 

situation, band 4 (NIR), band 5 (SWIR), and band 3 (R) were 

selected to be fused with ALOS PALSAR image. The three 

bands were collectively referred to as EMT+453. 

 

(2) ALOS PALSAR data 

PALSAR is the L-band synthetic aperture radar on the 

ALOS satellite. The radar supports all-weather observation. 

The PALSAR image collected by the HH channel contains 

more layers and information than the HV channel, for the 

former channel is more penetrable than the latter. Therefore, 

the PALSAR HH image taken on July 3, 2018 was selected for 

further fusion (Table 3). 

 

Table 3. The ALOS PALSAR data 

 
Track/Frame Date  Mode Resolution 

454/590 20080703  FBD(HH/HV) 12.5m 

 

(3) Other data 

The data of the Digital Elevation Model (DEM) of Wuhan 

were selected for terrain correction of PALSAR HH data and 

for registration with Landsat 7 ETM+ data. The extraction 

accuracy was registered and evaluated by the ground truth data 

from Crustal Movement Observation Network of China 

(CMONOC) and the GPS points of the study area. 

The topographic maps of the study area were scanned into 

digital files, and the geographic coordinates were referenced 

to a common projection and coordinate system (WGS84, UTM 

50N). These data were used in image classification to identify 

the appropriate calibration and verification sites.  

 

2.3 Methodology 

 

Stripe 
removal

Cloud 
removal

Radiometric 
calibration

Terrain correction

Geocoding

Speckle 
suppression

Image registration

Water body 
extraction

Water body 
extraction

Image fusion

Water body 
extraction

Accuracy assessment

Landsat ETM+ ALOS PALSAR

Preprocessing

Joint processing

 
 

Figure 3. The workflow of this research 
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As shown in Figure 3, this research is carried out in the 

following steps: 

Step 1. Preprocess Landsat 7 ETM+ data, including stripe 

removal and cloud removal. 

Step 2. Preprocess PALSAR HH data, including 

radiometric calibration, terrain correction, geocoding, and 

speckle suppression. 

Step 3. Registrant ETM+453 and PALSAR HH images. 

Step 4. Extract water bodies from ETM+453 and PALSAR 

HH images, respectively, and generate a benchmark based on 

the extraction results. 

Step 5. Compare the water body extraction results of 

traditional image fusion methods, namely, HIS, DWT, 

principal component analysis (PCA), high-pass filter (HPF), 

and Brovey transform (BT). 

Step 6. Design and test a new image fusion method. 

Step 7. Compare the accuracy of different methods in water 

body extraction. 

 

2.3.1 Preprocessing of Landsat ETM+ data 

The Landsat 7 ETM+ image was downloaded from 

Geospatial Data Cloud (http://datamirror.csdb.cn/). The 

stripes of the downloaded image were removed successfully, 

using the multi-image adaptive local regression (MIALR) tool 

provided by the website. Based on various satellite images on 

the same region, the MIALR method fills the gaps in the target 

image through local regression of the region with the 

maximum correlation and the minimum local area. The 

MIALR can effectively remove speckles, despite its high time 

consumption. 

About 5.35% of the original image was covered by clouds, 

which may affect the extraction of water bodies. Hence, both 

clouds and cloud shadows were removed through the local 

index-based method proposed by Xiao et al. [62]. 

 

2.3.2 Preprocessing of ALOS PALSAR data 

The ALOS PALSAR image, provided by the Alaska 

Satellite Facility (ASF), was on the Level 1.5 and could not be 

used directly. Therefore, the image was preprocessed by the 

ASF MapReady 3.0 software. The preprocessing operations 

include radiation correction using Sigma calibration 

coefficients, terrain correction based on Wuhan DEM 

information, terrain normalization, and geocoding to 30m 

pixel resolution (WGS84, UTM 50N).  

The speckles on the ALOS PALSAR image greatly affect 

the image quality and the evaluation of image classification. 

To solve the problem, the original image was speckle 

suppressed by a gamma maximum-a-posteriori (GM) filter 

[63] before image fusion for water body extraction. 

 

2.3.3 Image registration 

Registration is a key step in the fusion of remote sensing 

images [64]. Since Landsat 7 ETM+ image and ALOS 

PALSAR image were taken by imaging systems with different 

sizes and resolutions, image resolution must be performed 

before image fusion.  

If the registration effect is poor, the fused dataset will have 

a nominal spatial resolution, which is worse than any of the 

two input images. Ideally, the registration should be pixel to 

pixel for systems with the same spatial resolution, but pixel-

to-pixel registration is basically impossible. 

Here, 12 ground control points (GCPs) in the study area are 

employed to correct the ALOS PALSAR image to the Landsat 

7 ETM+ coordinate system, using second-order transform and 

the nearest neighbor difference. The final root mean square 

error (RMSE) was 0.5 pixels.  

 

 

3. BENCHMARK CONSTRUCTION 

 

3.1 Water body extraction of EMT+453 

 

The ETM+453 image was taken in August during the rainy 

season. Due to the high precipitation, the water bodies in the 

study area were large, and the tributaries and small rivers were 

clearly visible. However, some water bodies, e.g. Baoan Lake 

and Huama Lake, were partially covered with lotus, and thus 

not observable in the EMT+453 image. Hence, the water 

bodies were extracted by maximum likelihood classification 

(MLC). The extraction result and accuracy are given in Figure 

4 (yellow) and Table 4, respectively. 

 

 

 
 

Figure 4. The water bodies extracted from the ETM+453 

image 

 

Table 4. Accuracy of water body extraction from the 

ETM+453 image 

 

 
Extracted 

points 

Nonextracted 

points 

Total  

points 

Accuracy 

(%) 

water 424 76 500 84.8 

 

3.2 Water body extraction of PALSAR HH image 

 

From the PALSAR HH image, the water bodies were 

extracted directly through single-band thresholding. The 

extraction result and accuracy are given in Figure 5 (yellow) 

and Table 5, respectively.  

 

 
 

Figure 5. The water bodies extracted from the PALSAR HH 

image 

 

Table 5. Accuracy of water body extraction from the 

PALSAR HH image 

 

 
Extracted 

points 

Nonextracted 

points 

Total  

points 

Accuracy 

(%) 

water 467 33 500 93.4% 
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The high resolution (12.5m) of PALSAR HH enables the 

differentiation of complex small objects like ponds and small 

rivers from other features. In addition, the L-band and multi-

polarization modes of PALSAR enhance the distinction 

between surface objects than the ETM+, and penetrate through 

plant covers on water bodies. As shown in Figure 5, the water 

areas covered by lotus in Baoan Lake and Huama Lake were 

successfully extracted. However, the extracted areas had some 

holes, due to the presence of speckles. As shown in Table 5, 

the water bodies extracted from PALSAR HH image were 

more accurate than those extracted from ETM+453. 

 

3.3 Benchmark 

 

Figure 6 combines the water bodies extracted from the 

ETM+453 image and the PALSAR HH image. Since both 

images were taken within a short interval in summer, it is 

assumed that the water bodies did not change, owing to human 

activities or natural disasters. The water bodies only extracted 

from the PALSAR HH image are in red, those only extracted 

from the ETM+453 are in green, and those extracted from both 

images are in black. The extremely small water bodies were 

neglected. Obviously, more water bodies were extracted from 

the PALSAR HH image, such as the ponds in the north of 

Baoan Lake, two small rivers, and the lotus-covered areas in 

Baoan Lake and Huama Lake. The combined image carries the 

information from both source images, and was thus adopted as 

a benchmark for comparative analysis. The water bodies 

extracted from the two source images are compared in Table 

6. 

 

 
 

Figure 6. The benchmark for comparative analysis 

 

Table 6. Comparison between the water bodies extracted 

from the two source images 

 

 Color 
Extracted 

water area (ha) 

Percentage of 

total area (%) 

ETM+453 green 15,710.76 9.98 

PALSAR HH red 19,496.34 12.39 

Overlapping 

area 
black 14,720.22 9.35 

Benchmark  20,486.88 13.02 

Total area 157,380.57 

 

 

4. WATER BODY EXTRACTION BY TRADITIONAL 

IMAGE FUSION METHODS 

 

This section fuses the two source images in turn by several 

traditional image fusion methods, and uses the fused images to 

extract water bodies. The image fusion methods include the 

PCA [65], BT [66], HPF [67], IHS [68], and DWT [69]. For 

comparison, the fuse images were all classified by the MLC. 

4.1 PCA image fusion 

 

The ETM+453 image was taken as the multispectral input 

file, and PALSAR HH image was regarded as the high-

resolution input file. Then, the PCA was performed on the 

ETM+453 image to generate three principal components. The 

first principal component was replaced by the PALSAR HH 

image. After the replacement, the three principal components 

were inversely transformed to create a fused image (Figure 7). 

The water bodies extracted from the fused image are displayed 

in Figure 8. As shown in Figures 7 and 8, more water bodies 

of the PALSAR HH image were retained than those of the 

ETM+453, thanks to the replacement of the first principal 

component with the high-resolution PALSAR HH image. The 

lotus area in Baoan Lake was visible, while the speckles in 

PALSAR image were also kept. 

The main defect of PCA image fusion is that the PCA only 

considers statistical features, but not the features of each band. 

In terms of performance, the PCA works as if it selects 

between the source images, rather than fuse the salient 

information of source images. During the fusion process, the 

PCA measures information saliency by global variance, and 

tends to assign a high weight to the source image with large 

variance. The weighting strategy is not scientific. Besides, the 

PCA is highly sensitive to interference information like dead 

pixels and noises. In the presence of interference information, 

the global variance of the image will surge up. That is why far 

more information from the PALSAR HH image was included 

in the fused image than that from the ETM+453 image. In 

actual fusion, the PCA has better effect if the source images 

are of low contrast. 

 

 
 

Figure 7. The image fused by the PCA 

 

 
 

Figure 8. The water bodies extracted from the PCA fused 

image 

 

4.2 BT image fusion 

 

To enhance image information, the BT first normalizes each 

band in the ETM+453 image, and then multiplies the 

normalized results with the PALSAR HH image. The red (R), 
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green (G), and blue (B) of the fused image can be respectively 

computed by: 

 

HH
TMTMTM

TM
R *

)354(

4

++
=

 
(1) 

 

HH
TMTMTM

TM
G *

)354(

5

++
=

 
(2) 

 

HH
TMTMTM

TM
B *

)354(

3

++
=

 
(3) 

 

where, TMi/(TM4+TM5+TM3) is the spectral information of 

the image; HH is the spatial information of the image. 

The image fused by the BT and the water bodies extracted 

from the BT fused image are presented in Figures 9 and 10, 

respectively. Like the PCA, the BT introduces too much 

information of the PALSAR HH into the fused image. Besides 

the lotus area, both speckles and small water bodies were 

retained. 

 

 
 

Figure 9. The image fused by the BT 

 

 
 

Figure 10. The water bodies extracted from the BT fused 

image 

 

4.3 IHS image fusion 

 

The ETM+453 image was transformed into the IHS space 

to produce I, H, and S components. Then, the I component was 

replaced by the PALSAR HH image. After that, the three 

components were inversely transformed to the RGB space. 

The image fused by the IHS and the water bodies extracted 

from the IHS fused image are presented in Figures 11 and 12, 

respectively. 

As shown in Figures 11 and 12, there was no speckle in the 

fused image, but the lotus-covered areas in Baoan Lake and 

Huama Lake were not extracted. This means the spectral 

information of the ETM+453 image plays a dominant role in 

the classification process.  

 

 

 
 

Figure 11. The image fused by the HIS 

 

 
 

Figure 12. The water bodies extracted from the IHS fused 

image 

 

4.4 HPF image fusion 

 

The HPF image fusion involves the following steps: The 

HPF of the PALSAR HH image to extract the high-frquency 

information (e.g. linear features and edge features); the low-

pass filtering (LPF) of the ETM+453 image to extract low-

frequency information (i.e. spectral information); the weighted 

summation of the extracted high-frequency and low-frequency 

information to create a sharpened fused image. The HPF 

transform can be defined as: 

 

)*()*( iHPbiLPai HHwMSIwHP +=
 (4) 

 

 
 

Figure 13. The image fused by the HPF with high weight 

coefficient 

 

 
 

Figure 14. The water bodies extracted from the HPF fused 

image with high weight coefficient 
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Figure 15. The image fused by the HPF with low weight 

coefficient 

 

 
 

Figure 16. The water bodies extracted from the HPF fused 

image with low weight coefficient 

 

The weight of the ETM+453 in the fused image is defined 

as the weight coefficient. The weight coefficient is positively 

corelated with the sharpness of the fused image, and 

negatively with the smoothness of the fused image. Figures 13 

and 14 are the image fused by the HPF and the water bodies 

extracted from the HPF fused image at a high weight 

coefficient (>0.6), respectively; Figures 15 and 16 are the 

image fused by the HPF and the water bodies extracted from 

HPF fused image at a low weight coefficient (<0.5), 

respectively. 

For the PALSAR HH image, the grayscales of speckles are 

much larger than those of water. Therefore, the speckle 

information was preserved and the water information was not 

well preserved after the HPF. Under a high weight coefficient, 

the speckle information was inevitably enhanced in the fused 

image, bringing more noises. By contrast, the water body 

information was not preserved well, and the plant-covered 

areas in Baoan Lake and Huama Lake were not retained.  

Under a low weight coefficient, the speckles in the 

PALSAR HH image were suppressed and smoothed, but the 

water body information in that image were more severely 

suppressed. Therefore, more water body information of the 

ETM+453 image was retained. The plant-covered areas in 

Baoan Lake and Huama Lake were not retained, and some 

small water bodies were gone.  

 

4.5 DWT image fusion 

 

Using the db4 wavelet function, the ETM+453 and 

PALSAR HH images were decomposed by three-layer DWT. 

For the approximate coefficients, the fusion rule based on 

average wavelet coefficients was adopted; for the detail 

coefficients, the rule of obtaining maximum variance of a local 

moving window (3×3) was employed. The image fused by the 

DWT and the water bodies extracted from the DWT fused 

image are presented in Figures 17 and 18, respectively. It can 

be seen that the water bodies were not satisfactorily extracted: 

the lotus-covered water areas, small rivers, and reservoir were 

all lost. 

 
 

Figure 17. The image fused by the DWT 

 

 
 

Figure 18. The water bodies extracted from the DWT fused 

image 

 

4.6 Comparison of traditional fusion methods 

 

Table 7 compares the water body areas in the images fused 

by the traditional fusion methods, and Table 8 compares the 

extraction accuracies of these methods. 

 

Table 7. The water body areas in the images fused by the 

traditional fusion methods 

 
Fusion 

scheme 

Extracted 

water pixels 

Extracted water 

area (ha) 

Percentage of 

total area (%) 

PCA 199734 17,976.06 11.42 

Brovey 202040 18.183.60 11.55 

IHS 200443 18,039.87 11.46 

HPF_hw 173316 15,598.44 9.91 

HPF_lw 189570 17,061.30 10.84 

DWT 183849 16,546.41 10.51 

Total 

pixels 
1748673 Total area 157,380.57(ha) 

 

Table 8. The accuracies of the traditional fusion methods in 

water body extraction 

 
Fusion 

scheme 

Extracted 

points 

Nonextracted 

points 
Accuracy (%) 

PCA 463 37 92.6 

Brovey 465 35 93.0 

IHS 464 36 92.8 

HPF_hw 421 79 84.2 

HPF_lw 457 43 91.4 

DWT 456 44 91.2 

 

From Tables 7 and 8, it can be seen that the BT achieved the 

best effect in water body area and extraction accuracy, 

followed by the IHS and PCA.  Except HPF image fusion with 

a high weight vector, the other fusion methods all 

outperformed the ETM+453 image alone in water body 

extraction, and all overshadowed by the PALSAR HH image 

alone (accuracy: 93.4%). The results show that most fusion 
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methods can improve the water body extraction of Landsat 7 

ETM+ image, but cannot improve that of ALOS PALSAR 

image. 

Compared with the benchmark, all the traditional fusion 

schemes are not satisfactory in visual effect and accuracy, 

failing to fuse the complementary water information of the two 

source images. Based on the global information of the entire 

image, some of the fusion methods overemphasize on the 

Landsat 7 ETM+ image, and some overemphasize on the 

ALOS PALSAR image. These theoretical methods mainly 

evaluate the fusion result based on the spectral preservation of 

the whole image, the information entropy, the degree of 

distortion, etc. None of them considers the requirement of a 

specific recognition task. For specific applications like water 

body extraction, the image fusion methods completely ignore 

the salient information of water in both source images. As a 

result, the image fusion does little good to water body 

extraction. Therefore, it is necessary to design a fusion method 

that combine the complementary information of multi-source 

images for specific recognition tasks. 

 

 

5. OBC-BASED IMAGE FUSION METHOD FOR 

WATER BODY EXTRACTION 

 

5.1 OBC-based image fusion 

 

Through analysis, it was found that the water pixels in the 

PALSAR HH image were far smaller than those in the 

ETM+453 image, while the values of the speckles in that 

image were very high. The speckles will be introduced to the 

fused image, if the weight vector of the PALSAR HH image 

is increased to highlight the water information; the salient 

water information of small water bodies and lotus-covered 

water areas in the PALSAR HH image will be suppressed, if 

the weight vector of the ETM+453 image is increased. The 

common water areas or large water areas (e.g. large lakes and 

the Yangtze River) will not be affected by the weight vector of 

either image. 

 

 
 

Figure 19. The workflow of the OBC-based image fusion 

Table 9. The grayscale range of the PALSAR HH image 

 
Min Max Mean Median 

0.0010004 22.202 0.107 0.0010004 

 

For water body extraction, the fusion between the Landsat 

ETM+453 and PALSAR HH images should maintain the 

integrity of the ETM+453 image, and highlight the small water 

bodies and the lotus-covered water areas in the PALSAR HH 

image, while suppressing the speckles in the latter image. 

These goals cannot be achieved easily by the traditional image 

fusion methods. Here, the bands of the ETM+453 image and 

the PALSAR HH band are observed to find the OBC. Band6 

of the ETM+ was discarded due to its coarse resolution. The 

workflow of the OBC-based image fusion is explained in 

Figure 19. Specifically, band 1 was superimposed to bands 5 

and 7 of Landsat 7 ETM+ and PALSAR HH, and the spectral 

features were analyzed in details. The analysis shows that the 

grayscales of the PALSAR HH were much smaller than those 

of each band of Landsat 7 ETM+. After the HH was geo-

recoded, its gray values became very small. The grayscale 

range of PALSAR HH image is given in Table 9, where the 

pixel values far below 1 are of water bodies, and those above 

1 are of speckles and buildings. 

In the PALSAR HH image, the pixel values of the water 

bodies are much lower than those of the speckles. In the fusion 

process, if more weight is given to the PALSAR HH image, 

the speckles will be introduced into the fused image. The good 

practice is to find out the pixels with high values (speckles or 

buildings) in the PALSAR HH image, and replace them by 

interpolation, making them consistent with the surroundings. 

Then, the pixel values of the HH is reassigned between 0-255, 

which is the grayscale range of the Landsat 7 ETM+ image.  

After the above treatment, the HH band was superimposed 

with the bands of the ETM+ image to draw a spectral curve. 

To highlight the ponds and the lotus-covered water areas in the 

HH band, the values of the HH band in these places must be 

greater than the values of the selected ETM+ bands, such that 

the information from the HH band has the dominance. To 

suppress the speckles, the values of the ETM+ bands in 

speckled areas should be greater than those of the HH band, 

allowing the speckles to be replaced by the corresponding 

pixels of the ETM+ image. 

Figure 20 shows the spectral curves of the bands of the fused 

image (b123457hh). For ponds, the pixel values of the HH 

band were much higher than those of the ETM+ bands, which 

helps to highlight the ponds. For lotus-covered water areas, the 

pixel values of the ETM+ image were close to those of the HH 

band, failing to highlight the advantage of the HH band in the 

extraction of such areas. Since bands 3 and 7 had the lowest 

pixel values, the pixel values of the HH band should be 

increased properly to surpass those of bands 3 and 7, without 

affecting ponds and speckles. Then, the combination of band 

3, band 7 and modified HH may achieve the desired effects. 

The spectral curves of ETM+ bands and modified HH band 

are displayed in Figure 21. After the modification of the HH 

band, the grayscales of the ponds were much higher than those 

of the other bands; the grayscales of speckles were slightly 

higher than those of band 7 but smaller than those of other 

bands. For lotus-covered water areas, the pixel values of the 

HH bands were higher than those of bands 3 and 7. Therefore, 

the combination of band 3, band 7 and modified HH can 

highlight the ponds and lotus-covered water areas in the 

PALSAR HH image, while suppressing the speckles of the HH. 
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Figure 20. The spectral curves of ETM+ bands and HH band 

 

 
 

Figure 21. The spectral curves of ETM+ bands and modified 

HH band 

 

Figure 22 is the fused image of band 3, band 7 and modified 

HH (B37HH). It can be seen that the complementary 

information of the two source images were effectively 

integrated. All water bodies were highlighted in different 

colors, making them distinctive from other features. 

 

 
 

Figure 22. The fused image of band 3, band 7 and modified 

HH (B37HH) 

 

5.2 Water body extraction by the OBC-based image fusion 

method 

 

Figure 23 shows the water bodies extracted by the B37HH 

combination using the MLC. Figure 24 compares the extracted 

water bodies with the benchmark image. Obviously, the 

B37HH fusion image is almost identical to the benchmark, 

with a slightly higher brightness.  

 

 
 

Figure 23. The water bodies extracted by the B37HH 

combination using the MLC 

 

 
 

Figure 24. The comparison between the extracted water 

bodies with the benchmark image 

 

Table 10 compares the water bodies extracted by B37HH 

with those in the benchmark image. It can be seen that our 

method extracted basically the same percentage (13.02%) of 

water bodies as the benchmark, and achieved an extraction 

accuracy of 97.2%. The accuracy is way higher than that by 

any single source image, or by traditional image fusion 

methods. 

 

Table 10. The comparison between the water bodies 

extracted by B37HH and those in the benchmark image 

 
Image Color Extracted water 

area(ha) 

Percentage of total 

area (%) 

B37HH red 20,491.74 13.02 

benchmark green 20,486.88 13.02 

 

 

6. RESULTS ANALYSIS 

 

Table 11 compares the water body extraction results of 

different methods, and Figure 25 describes the results in line 

charts. From Table 11 and Figure 25, it can be concluded that: 

(1) The extraction accuracy is proportional to the size of 

extracted water bodies: the higher the accuracy, the greater the 

area of the extracted water bodies as a percentage of the total 

area of water bodies in the study area. 

(2) Our method, i.e. the OBC-based image fusion, achieved 

the highest extraction accuracy (97.2%), followed by the 

PALSAR HH and then several traditional methods. The lowest 

accuracy belongs to the water body extraction from Landsat 7 

ETM+ image alone. 

(3) For single-source image methods, the ALOS PALSAR 

image had a higher accuracy than the Landsat ETM+ image. 

The former enjoys great advantages in extracting small water 

bodies and water areas covered by plants. But the water area 

extracted from the ALOS PALSAR image alone had some 

holes, due to the presence of speckles. Meanwhile, the 

extraction from Landsat ETM+ alone cannot detect the lotus-

covered water areas or small water bodies, resulting in a very 

low accuracy. 
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(4) The traditional image fusion methods were lower than 

the PALSAR HH image alone in the extraction accuracy. The 

accuracy of the HPF image fusion with a high weight vector 

was even below that of the Landsat ETM+ image alone. Thus, 

it is very important to choose a proper fusion method for a 

specific task. The complementary information of each source 

image must be considered during the image fusion. Our image 

fusion method fully considers the complementary information 

of the two source images, and thus achieves high accuracy in 

water body extraction. 

 

Table 11. The area and accuracy of water bodies extracted by different methods 

 
Scheme Extracted points Nonextracted points accuracy (%) Extracted area(ha) Percentage of total area (%) 

ETM+(20080819) 424 76 84.8 15710.76 9.98 

ALOS HH(20080703) 467 33 93.4 19,496.34 12.39 

PCA 463 37 92.6 17,976.06 11.42 

BT 465 35 93 18.183.60 11.55 

HIS 464 36 92.8 18,039.87 11.46 

HPF_hw 421 79 84.2 15,598.44 9.91 

HPF_lw 457 43 91.4 17,061.30 10.84 

DWT 456 44 91.2 16,546.41 10.51 

OBC(B37HH) 486 14 97.2 20,491.74 13.02 

Benchmark 484 16 96.8 20,486.88 13.02 

Total area 157,380.57 

 

 
 

Figure 25. The line charts of the area and accuracy of water 

bodies extracted by different methods 

 

 

7. CONCLUSIONS 

 

This paper designs an OBC-based image fusion method for 

the exaction of water bodies from remote sensing images. The 

proposed method was proved better than traditional image 

fusion methods. There are several important findings through 

our research. First, single-source images are not sufficient for 

water body extraction, due to their limitations. Second, 

traditional image fusion methods outshine the ETM+ image 

alone in water body extraction, but are overshadowed by the 

PALSAL image alone. Third, it is very important to choose a 

proper fusion method for a specific task like water body 

extraction. The complementary information of each source 

image must be considered during the image fusion. The 

research results provide a good reference for image fusion and 

extraction tasks in similar cases. 
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