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 This investigation is performed for exploring the steady boundary layer flow of mixed 

convective boundary layer flow of non-Newtonian nanofluid over a stretchable sheet 

with convection heating. Eyring-Powell fluid is considered as working fluid. The impact 

of heat absorption/generation, Brownian motion and thermophoresis are taken into 

consideration. Nonlinear ordinary differential equations are derived from governing 

equations by utilizing the similarity transformations. To get solution SQL method is 

used. Accuracy of the proposed technique is checked by comparing with numerical 

approximations of proposed technique and with results available in literature. The study 

of parametric approach produces the influence of flow, heat and mass transfer processes. 

The outcomes of proposed study revealed that parameter of Eyring-Powell fluid ԑ 

reduces the velocity of the flow and thickness of the momentum buoyancy layer for both 

assisting and opposing flow conditions while it enhances the temperature and 

concentration profiles for both flow conditions. 
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1. INTRODUCTION 

 

The study of mixed convection, the arrangement of natural 

and forced convection stream is one of the best transport 

phenomenon because of outer constraining mechanism and 

inward volumetric forces. These stream examples are found at 

the same time attributable to its significance in numerous 

down to practical applications; in recent years many 

researchers are showing their enthusiasm to study the mixed 

convection with chemical reaction. In this connection, Imtiaz 

et al. [1] examined about the mixed convection flow of 

nanofluid by taking into consideration of Newtonian heating. 

Further, Akram et al. [2] considered study on mixed 

convective heat and mass transfer of non-Newtonian fluid on 

peristaltic flow in presence of a vertical axi-symetric channel. 

Further, Mohammad et al. [3] considered a study in presence 

of vertical porous media about the effect of viscous heating of 

nanofluid and regular fluid on mixed convective flow. 

In the phrase ‘‘Nanofluids’’ is the best use given by the fluid 

have adjournment of the nano-sized metallic or the non-

metallic particles. It is proposed for utilizing nanoparticles is 

to get planned about thermal characteristics of the base fluid. 

The involvement of the nanofluids is upgraded heat different 

can be notable in specifications in further capable cooling 

systems, consequentially extreme manufactured, the energy 

saving. Various eventual petition the nanofluids are the pure 

heat traders, the radiators are in engines, processes the 

refrigerate systems, and microelectronics and so on. Choi [4] 

is initiator he had wrapped up on the investigation on 

nanoparticles in 1995. Further, Xuan and Roetzel [5] had given 

caution that the flow of the nanofluid tube using dispersal 

model. Later, Khanafer et al. [6] examined nanofluid study in 

2D flow to enhance heat transfer. Further, Nadeem et al. [7] 

assumed and conformed that in the study of nanofluid 

Brownian motion and thermophoresis parameters play a 

greater role in enhancement of temperature. In another issue, 

Nadeem and Lee [8] studied nanofluid flow of boundary layer 

in the direction of stretching surface exponentially. 

Analysis of boundary layer flow of non-Newtonian fluids 

over a stretchable surface has a great importance in various 

fields for example, coal-oil slurries, metal augmentation, metal 

turning and so on, the liquids of this sort have a one of a kind 

significance. There are many researchers like Tan and 

Masuokat [9], Fetecau et al. [10], Hayat et al. [11], Ishaketal 

[12] are showing their interest to analyze the studies of various 

types of non-Newtonian fluids from the untold number of 

decades or even more. The connection between the shear stress 

and strain rate in such non-Newtonian liquids will in general 

be complex. To avoid such type of complexity Eyring-Powell 

fluid are very useful because Eyring-Powell liquid model has 

an unequivocal favourable position over the other Newtonian 

liquids its conduct in higher shear stress in like viscous liquid. 

Aim is tried to this field of research the re-presents earlier 

regarding Erying-Powell fluid (Powell and Eyring [13]). 

Satyaban et al. [14] examined about two effects those are Soret 

and Dufour to characterise heat and mass transfer in the mixed 

convective flow of boundary layer of Powell-Erying fluid. 

Further, Malik et al. [15] studied about mixed convection flow 

of MHD Eyring-Powell nanofluid over a stretchable sheet. 

Later on, Javed et al. [16] is investigated about the non-

Newtonian fluid flow of Eyring-Powell over a stretchable 

sheet. Further, Nadeem et al. [17] is investigated about the 

partial slip impacts on a fourth-grade fluid by means of 

variable viscosity. Ishak et al. [18] is investigated about the 
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mixed convection flow of micropolar stagnation point fluid 

flow in the direction of a stretching sheet. Recently, 

Gangadhar et al. [19] considered convective heating in his 

study to present the impact of thermal radiation on engine oil 

nanofluid flow. Futher, Gangadhar et al. [20] used numerical 

technique that is spectral quasi-linearisation method to present 

the features of microstructure and inertial characteristic of a 

magnetite Ferro fluid. Gangadhar et al. [21] studied boundary 

layer flow of viscous dissipation and variable suction/injection 

numerically. Further, Gangadhar et al. [22] conducted a 

numerical study to produce some features about unsteady 

boundary layer flow of nanofluid. Later on, Gangadhar et al. 

[23] explored some of the impacts by studying the MHD 

micropolar nanofluid in presence of Newtonian heating. 

Venkata Subba Rao et al. [24] conducted numerical study on 

MHD boundary layer flow of nanofluid. 

The particular goal of the present work is to investigate the 

effect of heat absorption/generation, Brownian motion and 

thermophoresis in the nanofluid flow of Eyring-Powell liquid 

by considering mixed convection. Different physical 

parameters each one of those is associated with the problem 

are impact the fluid flow and those impacts are inspected by 

means of the proposed convergent numerical strategy. All 

those numerical outcomes are shown in graphs and table. 

 

 

2. MATHEMATICAL FORMULATION 

 

In this study flow is assumed to be two-dimensional, 

viscous, incompressible electrically conducting, non-

Newtonian nanofluid of Eyring-Powell, present study is 

conducted on stretching sheet. Here, 𝑢𝑤 = 𝑎𝑥 is the stretching 

velocity (Figure 1). 

From the above mentioned suppositions governing 

equations of continuity, momentum, energy and species of the 

present study is given by 
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Figure 1. Physical sketch of the problem 

 

The following are the boundary conditions for the 

concentration, velocity and temperatures of the study  
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where, u and v refer to velocity segments in the direction of x 

and y axes in order, 𝑇∞ refer to free stream temperature, α refer 

to thermal diffusivity, T refer to fluid temperature, 𝑇𝑓 refer to 

temperature of the hot fluid,𝜇 refer to dynamic viscosity fluid, 

𝐷𝐵  refer to Brownian diffusion coefficient, 𝐷𝑇  refer to 

thermophoresis diffusion coefficient,𝜐 =  
𝜇

𝜌
 refer to kinematic 

viscosity, 𝜏 refer to ratio of effectual heat capacity of the fluid, 

ρ refer to density, 𝛿  refer to fluid parameter, 𝜎  refer to 

electrically conductivity of the fluid, 𝐵0  refer to thermal 

buoyancy coefficient and β₁ refer to mass buoyancy coefficient, 

ℎ𝑓 refer to coefficient of heat transfer and C refer to coefficient 

of volumetric volume expansion. By applying the boundary 

layer estimations, Eqns. (2)-(6) can be expressed as follow: 
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The following are the similarity transformations 
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here,   be the stream function, u ,v
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With the help of above mentioned assumptions Eqns. (8)-

(12) can be written as 
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Here heat and mass transfer from the surface are denoted 

with 
wq  and 𝑞𝑚  respectively, local shear stress at wall 

denoted with 𝜏𝑤 and all these are follows as below: 
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By means of above defined similarity transformations the 

skin friction coefficient, the local Sherwood number and 

Nusselt number can be expressed as follows:  
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where, Re w

x
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=  is the Reynolds number 

 

 

3. SOLUTION OF THE PROBLEM  

 

Spectral quasi linearization method is used to solve the 

transformed differential Eqns. (14)-(16) subjected to the 

suitable boundary conditions (17)-(18). Actually, this method 

is proposed by Bellman and Kalaba [25]. Thereafter, it follows 

generalization method of Newton Raphson. So that Eqns. (14)-

(16) are followed as:   
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The bunch of equations in (22) is known as coupled linear 

differential equations with variable coefficients. From that 

point one of the realized numerical techniques is utilized to 

illuminate set of equations with the approximation method by 

taking r=1, 2, 3, 4…....   

Thereafter Chebyshev pseudo spectral method is utilized to 

apply the QLM scheme (22) 
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boundary conditions at  . The f , θ, and δ of approximate 

values and the collocation points are written by 
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here, KT is the k th Chebyshev polynomial state 
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The derivative of variable is establishing 
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In bunch of Eq. (30), p refers to order of derivative. 

Differentiation matrix of chebyshev spectral method is dented 

by D and defined as 12D
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=  and its related components are 

clearly finned in Canuto et al. [26]. By substituting the Eqns. 

(27)-(30) in (22), the following matrix form is obtained  
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In the Eq. (31), A refer to square matrix with size

(3 3) (3 3)N N+  + , X and R refer to column vector with size 

( )3 3 1N +   and these are given as below 

 

11 12 13

21 22 23

31 32 33

A A A

A A A A

A A A

 
 

=
 
  

,

1

1

1

r

r

r

f

X 



+

+

+

 
 

=
 
  

,

1

2

3

R

R R

R

 
 

=
 
  

,   (33) 

 

where, 1 0 1 1 1 2 1( ), ( ), ( ) ,........., ( ) ,
T

r r r r N
f f f f f   + + + +=   

1 0 1 1 1 2 1( ), ( ), ( ),........., ( ) ,
T

r r r r N
        + + + +=     

1 0 1 1 1 2 1( ), ( ), ( ),........, ( ) ,
T

r r r r N
        + + + +=   

   
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3

11 2 2

12

13

21

2

22 1

23

31

,

,

,

0 ,

1
,

Pr

0,

0,







= +

= 

= 

=

= + +

=

=

r r

r

A diag a D diag a D

A I

A I

A

A D diag b D I

A

A

 

48



 

 
32

2

33 1

1 1,

2 2,

3 3,

0,

,

,

,

,

=

= +

=

=

=

r

r

r

r

A

A D diag c D

R R

R R

R R

  

 

and here I refer to identity matrix, O refer to column matrix of 

the order ( )1 1,N +  diag[ ] refer to diagonal matrix with the 

order ( ) ( )1 1 .N N+  + Subscript r is used to represent the 

iteration number. After improving the matrix system Eq. (22) 

together with boundary condition (32), then solution can be 

obtained in the form of  

 
1X A R−= . (34) 

 

 

4. RESULTS AND DISCUSSION 

 

In this section all the numerical outcomes are exposed 

graphically from Figure 2 to Figure 21 to talk about different 

resulting parameters encountered in the present study. The 

results which are acquired from the numerical strategy talked 

about in the past segment are contrasted and those of Rashidi 

et al. [27] and wang [28] and showed in Table 1. This 

correlation demonstrates a good understanding between 

present examination and past investigations. Moreover, the 

results show that the Spectral Quasi Linearization Method is 

productive and sufficiently amazing for utilization of taking 

care of solving fluid flow problems. 

 

Table 1. Comparison between present study wall heat 

transfer rate−𝜃′(0) with the existing outcomes in literature 

for various values of 𝑃𝑟 when 𝜀 = 𝛿 = 𝛽 = 𝑄 = 𝑁𝑡 = 𝑁𝑏 =
0 and 𝐵𝑖 → ∞ 

 
−𝜃′(0)  

Pr Present study Rashidi et al. [27] Wang [28] 

2.0 

7.0 

0.91135768 

1.89540327 

0.91135769 

1.89540340 

0.91136 

1.89540 

 
Figure 2, 3 and 4 depict velocity distribution 𝑓′(𝜉)  with 

increasing of Eyring-Powell fluid parameter 𝜀 , thermal 

buoyancy parameter 𝛽, and mass buoyancy parameter 𝛿  for 

both assisting and opposing flows. From Figure 2, is observed 

that the velocity profile and momentum buoyancy layer 

thickness is enhanced as ԑ increasing in both flow conditions. 

This is all only the cause of Powell-Eyring fluids are share 

thinning fluid the velocity gets low at the share rate increases. 

Also, it is mentioned that velocity distribution for assisting 

flow is high compare to opposing flow. Figure 3 present the 

curves of the velocity profile for various values𝛽 and at fixed 

values of other parameters. The gradual is increase in the 

parameter 𝛽  shows stronger thermal buoyancy force which 

leads to high velocity. This is because, positive 𝛽  used as 

flattering pressure gradient for fluid flow near the surface 

attributable to which 𝑓′(𝜉)  is huge. Again, an overshoot in 

contour is can be seen only for huge values of 𝛽. The opposite 

manner is observed for negative 𝛽, In Figure 4, the curves of 

𝑓′(𝜉)  for difference of mass buoyancy parameter 𝛿  are 

presented at specific values of other parameters. We had 

checked that the function 𝑓′(𝜉) increases with the increase in 

δ in that occurrence the aiding flow and the reversal trend is 

observed for opposite flow criteria.  

 
 

Figure 2. Graph for velocity distribution for different values 

of 𝜀 

 
 

Figure 3. Graph for velocity distribution for various values 

of 𝛽 

 

 
 

Figure 4. Graph for velocity distribution for various values 

of 𝛿 
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Figure 5. Graph for temperature distribution for various 

values of 𝜀 

 
 

Figure 6. Graph for temperature distribution for various 

values of 𝛽 

 
 

Figure 7. Graph for temperature distribution for various 

values of 𝛿 

 

Figures 5, 6, 7, 8, 9, 10, 11 and 12 depict temperature 

distribution 𝜃 (𝜉)  with increasing of Eyring-Powell fluid 

parameter 𝜀 , thermal buoyancy 𝛽 , mass buoyancy 𝛿 , 

thermophoresis 𝑁𝑡 , Brownian motion 𝑁𝑏 , heat source/sink 

𝑄,Biot number𝐵𝑖and Prandtl number 𝑃𝑟. The Figure 5, shows 

that the recovered for higher values on Eyring-Powell fluid 

parameter 𝜀, and the heat of fluid rises. Then the cause beyond 

that incremental values of parameter ε assist at increasing with 

heat generation which in turn construct heat with in the fluid 

which in return increases the median kinetic energy of the 

molecules for one and the other assisting and opposing flow 

conditions. The Figure 6, was noticed that the thermal 

buoyancy layer thickness and the temperature transmission 

percentage is decreases with the rise𝑃𝑟the assisting flow and 

reveres trend has noticed thatthe opposing flow case.  

 

 
 

Figure 8. Graph temperature distribution for various values 

of Nt 

 
 

Figure 9. Graph temperature distribution for various values 

of Nb 

 

 
 

Figure 10. Graph for temperature distribution for various 

values of Q 

 

The behavior of 𝛿 on dimensionless heat is presented in the 

Figure 7. Is observed that the thickness by thermal buoyancy 

layer and the heat of the fluid decreases the Figure 8 and 

opposing for negative𝛿. The circumstance of the dispersal of 

piece, in the presences of heat acclivity, is accepted the 

thermophoresis. The validation of temperature 𝜃 (𝜉)  the 

different rate of 𝑁𝑡 is present in the Figure 8, the augmentation 

of the value 𝑁𝑡 causes the temperature gradient of the result in 
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escalating the force (thermophoresis) with nanoparticles. 

These impacts are superintended by a bit additional fluids 

existence the heated and upraise at the temperature. The 

reversible consequence is noticed that occurrence of opposing 

flow, the Brownian motion is the unsystematic act of the 

nanoparticles inner side of foundation fluid attributable to the 

repeated impact of nano particle the particles of paltry fluid. 

This act of the molecules is defined by the parameter𝑁𝑏, is 

also noted as Brownian motion coefficient.  

 

 
 

Figure 11. Graph for temperature distribution for various 

values of Bi 

 

 
 

Figure 12. Graph for temperature distribution for various 

values of Pr 

 

 
 

Figure 13. Graph for concentration distribution for various 

values of 𝜀 

 
 

Figure 14. Graph for concentration distribution for various 

values of 𝛽 

 

Figure 10 shows the enhancement of the temperature 

generation or absorption parameter 𝑄 on the heat distribution. 

It is apparent that the fluid temperature that goes high with 

temperature generation (𝑄 > 0) . And decreases with the 

temperature absorption(𝑄 < 0). The physical reason is that 

the existence of the temperature generation (𝑄 > 0) has been 

effort to increase the thermal state of fluid is the base of its 

heat and thermal buoyancy layer thickness to increase. The 

occurrence of the heat absorption (𝑄 < 0) both the fluid heat 

and its thermal buoyancy layer thickness tends to decrease 

temperature contours, represented by 𝜃 (𝜉) , are plotted at 

different rate of Biot number signifies the power of convective 

heating. Layer Biot number implicit stronger convective 

heating at the plate attributable to which temperature rises 

gradually. The occurrence 𝐵𝑖 = 0 represents iso-fluxhf wall 

state while isothermal wall case is jumped as 𝐵𝑖 → ∞. The 

consequence of Prandtl number is dimensionless temperature 

the Figure 12 for aiding and opposing flow criteria reciprocally. 

Then the Prandtl number explain the rate of the momentum 

diffused to the thermal diffused. HerePr = 1, both momentum 

and thermal diffusivities was equivalent, because the𝑃𝑟 > 1, 

the momentum diffusivity is considerable than the thermal 

diffusivity and thermal buoyancy layer thickness come down 

the increasing Prandtl number. This is to noticed that the both 

occurrences. 

 

 
 

Figure 15. Graph for concentration distribution for various 

values of 𝛿 
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Figure 16. Graph for concentration distribution for various 

values of Nt 

 
 

Figure 17. Graph for concentration distribution for various 

values of Nb 

 

Figure 13, 14, 15, 16, 17 and 18 depicts nanoparticles 

concentration 𝜙(𝜉)  distribution with increasing of Powell- 

Eyring fliud parameter 𝜀, thermal buoyancy 𝛽, mass buoyancy 

𝛿 , thermophoresis parameter 𝑁𝑡 , Brownian motion 𝑁𝑏 

andLewis number 𝐿𝑒 for both opposing and promote flow 

condition. The Figure 13, is clear that the concentration 

contour increases with increase in F for mutual conditions. The 

nanoparticles concentration and solute buoyancy layer 

thickness are decreases for increasing 𝛽 or 𝛿 inreverse trend 

and assisting flow case is noticed for opposing flow is used 

(see Figure 14 and 15). Figures 16 and 17 shows that how the 

concentration contours differ that Brownian motion parameter 

𝑁𝑏 and thermophoresis parameter 𝑁𝑡.  

Figure 16 shows all enlarge by the concentration and the 

solutal buoyancy layer diameter within increasing in the 

thermophoresis parameter, duration of the decrease in the 

concentration and the solutal buoyancy layer diameter is seen 

in Figure 17 says that increasing rates of the Brownian motion 

parameter. This concentration buoyancy layer thickness 

decreases with increase in 𝐿𝑒 for both cases which is observed 

in Figure 18. Figure 19, 20 and 21 show the validations in the 

skin friction coefficient, the Sherwood number and the local 

Nusselt number for various values of the thermophoresis and 

the Brownian motion. From the Figure 19, is noticed that the 

surface shear stress value decreases with increase in 𝑁𝑏  in 

occurrence of opposing flow and opposite for aiding flow case, 

for aiding flow condition the surface shear stress rate decrease 

at increase in 𝑁𝑡 it increases for opposing case.  

 
 

Figure 18. Graph for concentration distribution for Le 

 
 

Figure 19. Graph for skin friction coefficient for Nt and Nb 

for both assisting and opposing flows 

 
 

Figure 20. Graph for local Nusselt number for various values 

of Nt and Nb for both assisting and opposing flows 

 

From Figure 20, shows evident the Nusselt number decrease 

at the Brownian motion and thermophoresis for both cases. 

Physical reason is the pressure of the Brownian motion and 

thermophoresis has been tendency to increase in the thermal 

situation of fluid source its heat and thermal buoyancy layer 

thickness is increase; consequently, the temperature conducts 

the rate is decreases. The mass transfer valueis decreases with 

the increase in Nt while it is increases with increase in 𝑁𝑏, this 

is observed in Figure 21 for both occurrences. The final result 

that all the contours equate the free stream boundary 

conditions (13) asymptotically, the guarantees accuracy of the 

numerical scheme.  
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Figure 21. Graph for local Sherwood number for various 

values of Nt and Nb for both assisting and opposing flows 

 

 

5. CONCLUSIONS 

 

From the present study mixed convection flow of steady 

non-Newtonian Powell-Eyring nanofluid over a stretching 

sheet under the effects of thermophoresis and Brownian 

motion with heat generation/absorption is analyzed. Some of 

the observations are listed below: 

1. Fluid parameter reduce the nanofluid flow velocity and 

momentum buoyancy layer thickness while increase the 

flow temperature and concentration.  

2. The heat generation, thermophoresis and Brownian 

motion are enhancing both the temperature and thermal 

buoyancy layer thickness.  

3. Both heat and mass transfer rates are reduced for the 

increasing augments of the thermophoresis.  

 

All these observations are consistent with earlier findings in 

the literature. Moreover, the results show that the Spectral 

Quasi Linearization Method is productive and sufficiently 

amazing for utilization of taking care of solving fluid flow 

problems. 
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