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In this paper, a simple flatness condition for the two degree of freedom underactuated 

mechanical system has been derived. Differential geometry was used as a 

mathematical tool in the derivation of the flatness condition. The flatness condition 

has been found as a direct inner product between the covariant derivative of a vector 

field which annihilate the codistribution, that spanned by the force matrix and the 

force matrix itself. Several examples of underactuated mechanical systems are 2DOF 

systems, or mechanical systems underactuated by one control which can be reduced to 

2DOF system. Systems that are classified as differentially flat have many useful 

features, which can be used in designing an effective controller for the nonlinear 

systems. The Translational Oscillator with Rotational Actuator (TORA) system 

is considered here as an example of a typical flat 2DOF underactuated mechanical 

system. The flat output is derived based on the obtained result here, and then a 

nonlinear controller is designed for a TORA system based on the flatness property, 

and using a Backstepping method to overcome the under actuation problem. The 

simulation results demonstrate the effectiveness of the proposed controller. 

Keywords: 

flatness condition, 2DOF mechanical systems, 

underactuated mechanical system, TORA 

system 

1. INTRODUCTION

The nonlinear behavior of mechanical system has 

motivated the engineers and the mathematicians to develop 

theoretical tools that deal with this type of system. The 

differential geometry is one of the main mathematical topics 

tool used in the analysis and design for the controller of the 

nonlinear system [1, 2]. Recently a branch of mechanical 

system named as underactuated mechanical system is 

distinguished for its important application and wide 

appearance in real-life system. The underactuated mechanical 

system is a mechanical system with number of controllers is 

less than the number of the configuration variables that 

describes the mechanical system when using Euler-Lagrange 

equation to develop the system model. Underactuated system 

appears in a broad range of applications including Robotics, 

Aerospace Systems, Flexible Systems, Mobile Systems, and 

Locomotive Systems. 

Differential flatness or shortly flatness was introduced 

about twenty years ago by Fliess et al. [3]. An intuitive idea 

of differential flatness can be given as follows; the integral 

curves of a flat system (these curves satisfy the system 

equations) can be mapped in a one-to-one way to ordinary 

curves (which need not satisfy any differential equation) in a 

space, which may have a different dimension than that of the 

original system state space [4]. 

Flatness is a property that characterizes the dynamical 

system behavior. If a system is flat then it is equivalent to a 

system without dynamics (trivial system) described by a 

collection of independent variables, the flat outputs, having 

the same number (number of outputs) as the number of 

controllers [3]. The main benefit of flatness property is that 

all states and inputs can be determined from the flat outputs 

(flat output and its derivative) without integration (one-to-one 

relations). The great feature of flat system is the trajectory 

generation. The trajectory is first designed in flat space and 

then reflected to system states and inputs through a one-to-

one relation. 

In underactuated mechanical system, the flatness property 

is very important where flat output is function only to 

configuration variables. The number of flat outputs is equal 

to number of controllers, which completely describe the 

mechanical system state [5]. Accordingly, the control system 

can be designed in the flat space easily since we have 

controller for each flat output; and by using the one-to-one 

relations, the system states is controlled to the desired 

locations. 

Rathinam and Murray [6] introduced a method in a 

Riemannian geometry, which provide a complete 

characterization of configuration flatness for systems with 𝑛 

configuration variables and 𝑛 − 1 controllers and the range 

of control forces depends only on configuration variables. 

This method allows us to determine if such a system is 

configuration flat and, if so, provides a constructive method 

for finding all possible configuration flat outputs. Another 

test was carried out by Rathinam and Sluis [7] for differential 

flatness using the exterior algebra. The method consists of 

making an initial guess for 𝑚− 1 , (𝑚  inputs) of the flat 

outputs, which may involve parameters that are still to be 

determined. A choice of function of time for the 𝑚 − 1 
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output reduces the system to one with a single input. 

The differential flatness-based approach was applied to the 

development of finite-time control laws to the underactuated 

crane systems in 2-dimensional (2D) space by Zhang et al. 

[8]. Kiefer et al. [9] used the flatness property to design a 

controller for a 3DOF helicopter with a slight modification of 

the generalized force to impose the flatness property to the 

3DOF helicopter model. For the weight handling equipments 

(like crane), the controller based flatness with constraint 

Lagrangian system was designed by Kiss et al. [10].  

Using flatness the trajectory generation and tracking for 

nonlinear control system was presented by Van Nieuwstadt et. 

al. [11] where a large class of industrial and military control 

problems consist of planning and following a trajectory in the 

presence of noise and uncertainty. For unconstrained system, 

nonlinear trajectory generations using flatness based optimal 

control technique with B-spline as a basic function in the flat 

space were covered by Milam, and Murray [12, 13]. While 

for a constrained mechanical system, a trajectory generation 

was suggested by Milam et al. [14]. 

The main contribution of the present work consists of 

deriving a simple condition that will enable us to examine 

whether the underactuated mechanical by one control is a flat 

system or not.    

The organization of this paper is as follows: basic concept 

of flat system is presented in section two. The flatness 

condition for 2DOF underactuated mechanical systems is 

derived in section three, also for actuated and unactuated 

shape variable simple flatness conditions are derived in 

section three. The nonlinear controller design based on 

flatness property is presented in section (5) while the TORA 

system, as an application example, is covered in section (6). 

The numerical simulation for the proposed controller to the 

TORA system and the conclusions are presented in sections 

seven and eight, respectively. 

 

 

2. FLAT SYSTEM 
 

Flatness or differential flatness is an important property of 

underdetermined ordinary differential equation, which has 

the following form [6]: 

 

𝑓𝛼(𝑥1, 𝑥2, … . , 𝑥𝑛 , �̇�1, �̇�2, … . , �̇�𝑛) = 0 ,
𝛼 = {1,2, … .𝑚 < 𝑛} 

(1) 

 

where, 𝑥 ∈ ℛ𝑛 is the differential equations variables. The 𝑚 

underdetermined ordinary differential equations with number 

of variables 𝑛 greater than the number of equations 𝑚 is said 

to be differentially flat if there are outputs 𝑦 ∈ ℛ𝑝 (𝑝 = 𝑛 −
𝑚) known as flat outputs, such that: 

 

𝑥𝑖 = g𝑖 (𝑡, 𝑦, 𝑦
(1), …… , 𝑦(𝑙)(𝑡))

𝑦𝑗 = ℎ𝑗 (𝑡, 𝑥, 𝑥
(1), …… , 𝑥(𝑠)(𝑡))

   (2) 

 

Eq. (2) represents a one-to-one map between state x  and 

its derivative up to (𝑠)  times, 𝑥(1), …… , 𝑥(𝑠)  and the flat 

output and its derivatives to (𝑠) times. In the case of control 

system the following equation: 

 

𝑓𝛼(𝑥1, 𝑥2, … . , 𝑥𝑛 , 𝑢1, 𝑢2, … . , 𝑢𝑚) = 0 (3) 

 

 

with 𝛼 = 𝑛  considered as underdetermined equation with 

(𝑛 +𝑚) variables and therefore if there are 𝑚 flat outputs 

𝑦 = (𝑦1 , …… , 𝑦𝑚) then the control system (3) is a flat system. 

Therefore and according to the above definitions, the trivial 

system (the flat outputs) completely specifies the curve of the 

original system. The time that is regarded as an independent 

condition is preserved in both the trivial system, which 

consist of flat output, and the original system. In addition, in 

a control system, the dimension of the trivial system is equal 

to the number of the controller in the control system and 

there is a one-to-one relation between the variable of the 

system including the controller with the flat output and its 

derivatives. More precisely, if the system has state 𝑥 ∈
ℝ𝑛and input 𝑢 ∈ ℝ𝑚  then the system is flat if we can find 

outputs 𝑦 ∈ ℝ𝑚of the form: 

 

𝑦 = ℎ(𝑥, 𝑢, 𝑢(1), …… , 𝑢(𝑟))   (4) 

 

Such that: 

 

𝑥 = 𝜑(𝑦, 𝑦(1), …… , 𝑦(𝑞))

𝑢 = 𝛼(𝑦, 𝑦(1), …… , 𝑦(𝑞))
 (5) 

 

 

3. FLATNESS OF MECHANICAL SYSTEM 

UNDERACTUATED BY ONE-CONTROL 
 

In this section, we will follow the results of the testing and 

setting approach to the flat outputs of the mechanical system 

underactuated by one-control introduced by Rathinam and 

Murray [6]. Then, the differential form of the flat outputs 

using simple inner product condition will be obtained. To 

state the result of Rathinam and Murray a quantity like the 

vector field 𝜉  and the distribution 𝐷  is defined. The vector 

field 𝜉 is an annihilator to the codistribution Δ∗  spanned by 

the force vector 𝐹𝐼  i.e. 𝜉 = 𝜉𝑖
𝜕

𝜕𝑞𝑖
= 𝑎𝑛𝑛Δ∗ where Δ∗ =

𝑠𝑝𝑎𝑛[𝐹1, …… , 𝐹𝑛−1]. The distribution 𝐷 associated with the 

mechanical system is defined as: 

 

𝐷 = 𝑠𝑝𝑎𝑛 [𝜉, ∇ 𝜕

𝜕𝑞𝑖

𝜉: 𝑖 = 1,…… , 𝑛] (6) 

 

where, 𝑠𝑝𝑎𝑛[. ] is a subspace formed by a linear combination 

of the vectors (𝜉, ∇ 𝜕

𝜕𝑞𝑖

𝜉: 𝑖 = 1,…… , 𝑛) , ∇  is the covariant 

derivative and ∇ 𝜕

𝜕𝑞𝑖

𝜉  denotes the covariant derivative of 𝜉 

along 
𝜕

𝜕𝑞𝑖
 .  

Theorem (1) [6]: Let 𝑞 be a point on 𝑄 and 𝑈 be an open 

neighborhood of 𝑞 , and suppose  𝑦: 𝑈 ⊂ 𝑄 → ℝ𝑚  is a 

submersion. If 𝑦1 , … . , 𝑦𝑚
,
 are configuration flat outputs, then: 

 

g(ker𝑇𝑦, 𝐷) = 0 (7) 

 

where, g(. , . ) is a bilinear map, which represents an inner 

product with respect to the Riemannian metric g. Conversely 

if g(ker𝑇𝑦, 𝐷) = 0 and if a certain regularity holds at 𝑞, then 

𝑦1, … . , 𝑦𝑚  are configuration flat outputs around 𝑞 . The 

regularity condition is that the ratios of functions in the 

following set should not all be the same at 𝑞: 
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∇𝜂(g(𝜉, 𝑍)): g(𝜉, 𝑍),

∇𝜂 (g(∇𝑍1𝑍2, 𝜉)) : g(∇𝑍1𝑍2, 𝜉),

∇𝜂(𝜉(𝑉)) ∶ 𝜉(𝑉) }
 

 
 (8) 

 

where, 𝑍, 𝑍1,  𝑍2 are arbitrary vector fields around 𝑞 that are 

𝑦-related to some vector field on ℝ𝑚 and 𝜉, 𝜂 are fixed non-

vanishing vector fields such that 𝜉 = 𝜉𝑖
𝜕

𝜕𝑞𝑖
= 𝑎𝑛𝑛Δ∗ =

𝑠𝑝𝑎𝑛{𝜉}  and ker𝑇𝑦 = 𝑠𝑝𝑎𝑛{𝜂} . The regularity conditions 

can be checked in coordinates as follows. Choose a function 

𝑦0 that completes 𝑦1, … . , 𝑦𝑚  to acoordinate system. Then 

𝑦1, … . , 𝑦𝑚  will be flat outputs if the following ratios of 

functions are not all identically equal in a local neighborhood: 

 

𝜕

𝜕𝑦0
(g (𝜉,

𝜕

𝜕𝑦𝑗
)) : g (𝜉,

𝜕

𝜕𝑦𝑗
) , 𝑗 = 1,… . ,𝑚   (9a) 

 

𝜕

𝜕𝑦0
(g(∇ 𝜕

𝜕𝑦𝑘

𝜕

𝜕𝑦𝑗
, 𝜉)) : g (∇ 𝜕

𝜕𝑦𝑘

𝜕

𝜕𝑦𝑗
, 𝜉) ,

𝑗, 𝑘 = 1,… . ,𝑚 

(9b) 

 
𝜕

𝜕𝑦0
(𝜉(𝑉)): 𝜉(𝑉)   (9c) 

 

If these are all identically equal that means 𝑦1, … . , 𝑦𝑚 are 

differentially dependent and another one-dimensional 

distribution must be tried.  

To complete the tools used to derive the flat outputs using 

the known integrability theory of Frobenius [15], let 𝜂 is a 

non-trivial vector field such that  g(𝜂, 𝐷) = 0 , then the 

following conditions are equivalent: 

 

g(ker𝑇𝑦, 𝐷) = 0 ⇔ 〈𝜂𝑘, 𝑑𝑦𝑖〉 = 0     (10) 

 

𝑖 = 1,2, …… ,𝑚 and 𝑘 ≥ 1 is an integer. 

In witch, the existence of 𝜂  vector field depends on the 

dimension of 𝐷 . Since dim𝐷 ≤ 𝑛 − 1 for flat system, then 

this proves the existence of 𝜂 . Also from the condition, 

g(ker𝑇𝑦, 𝐷) = 0 the kernel to the tangent subspace of the 

flat outputs y is orthogonal to the distribution 𝐷 with respect 

to metric g and that means 𝜂 is the kernel to the tangent space 

to flat outputs. The kernel to 𝑇𝑦 , spanned by  ker𝑇𝑦 =

𝑠𝑝𝑎𝑛𝑇{⋂ 𝑦𝑖 = 𝑐𝑖𝑖=1,….,𝑚 } .These vector fields annihilate the 

differential form of the flat outputs, i.e., 〈ker𝑇𝑦, 𝑑𝑦𝑖〉 =
0 , 𝑖 = 1,2, …… ,𝑚 , or 〈𝜂, 𝑑𝑦𝑖〉 = 0. 

Remark (1): The flat output is directly computed from its 

differential form if 𝑑𝑦𝑖  is exact otherwise 𝑚flat outputs (refer 

to it �̃�) form the differential forms 𝑑𝑦𝑖are obtained with an 

integration factor as 𝑑�̃�𝑗 = 𝛾𝑗𝑖  𝑑𝑦𝑖 . 

Proof: Appendix A 

Therefore theorem (1) does not only enable us to test the 

flatness of underactuated mechanical system but also 

guarantee getting 𝑚 flat outputs as proved above. 

Remark (2): The flat outputs for a mechanical system 

depend only on the configuration variables and named as 

configuration flat [6]. 

 

 

4. FLATNESS CONDITION FOR 2DOF 

UNDERACTUATED MECHANICAL SYSTEM 

 

The main contribution of this work is to derive a simple 

flatness condition for the 2DOF underactuated mechanical 

system given below. Three corollaries are also obtained for 

the special forms of the 2DOF underactuated system. Finally, 

the flat output and the relations between the states, inputs and 

the flat output and its derivatives are derived for the TORA 

system. Based on flatness property a nonlinear controller is 

then designed using Backstepping method. 

The 2DOF underactuated mechanical system described by 

the following Euler-Lagrange differential equation 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝐹𝑖𝑢 

 

where, 𝑖 = 1,2  and 𝑢 ∈ ℛ . The main contribution of the 

present work is given in the following condition; The 2DOF 

underactuated mechanical system is a differentially flat 

system if and only if the following condition holds: 

 
〈∇ 𝜕

𝜕𝑞𝑗

𝜉, 𝐹〉 = 0 , 𝑗 = 1,2 
(11) 

 

where, 𝜉 is a vector field, which satisfies the inner product 

〈𝜉, 𝐹〉 = 0 and ∇ 𝜕

𝜕𝑞𝑗

𝜉 is the covariant derivatives with respect 

to 
𝜕

𝜕𝑞1
 and 

𝜕

𝜕𝑞2
. 

The existence of 𝜉  is obvious since 𝐹  span a one-

dimensional sub-space. Then following theorem (1), the 

dimension of the distribution 𝐷 must equal to one in order for 

the system (1) to be a flat system. The distribution 𝐷 spanned 

by 𝐷 = 𝑠𝑝𝑎𝑛 {𝜉, ∇ 𝜕

𝜕𝑞1

𝜉, ∇ 𝜕

𝜕𝑞2

𝜉} .Therefore ∇ 𝜕

𝜕𝑞1

𝜉  and ∇ 𝜕

𝜕𝑞2

𝜉 

must be collinear to 𝜉 in order to 𝑑𝑖𝑚𝐷 equal to one and that 

means ∇ 𝜕

𝜕𝑞1

𝜉  and ∇ 𝜕

𝜕𝑞2

𝜉  annihilate 𝐹  i.e. satisfy the inner 

product condition given in Eq. (11).  

To compute the flat output, the integrable differential form 

of the flat output 𝑦 for the 2DOF underactuated mechanical 

system is given by: 

 

𝑑𝑦 = 𝑑𝑞1 + (
𝑚21𝜉1+𝑚22𝜉2

𝑚11𝜉1+𝑚12𝜉2
) 𝑑𝑞2   (12) 

 

where, 𝜉1  and 𝜉2  are the elements of 𝜉  vector field and 𝑚𝑖𝑗 

are the elements of the inertia matrix. The distribution 𝐷 

spanned by 𝜉 (𝐷 = 𝑠𝑝𝑎𝑛{𝜉}). Let 𝜂 be given by = 𝜂1
𝜕

𝜕𝑞1
+

𝜂2
𝜕

𝜕𝑞2
, 𝜂2 = 1. The 𝜂 vector field is computed such that the 

condition g(𝜂, 𝜉) = 0  holds. As a result  𝜂  becomes 𝜂 =

−(
𝑚21𝜉1+𝑚22𝜉2

𝑚11𝜉1+𝑚12𝜉2
)

𝜕

𝜕𝑞1
+

𝜕

𝜕𝑞2
. Also let 𝑑𝑦  be given by 𝑑𝑦 =

𝑑𝑞1 + 𝑎(𝑞)𝑑𝑞2  then, 〈𝜂, 𝑑𝑦〉 = 0 , 𝑎(𝑞)  is calculated 

as  𝑎(𝑞) =
𝑚21𝜉1+𝑚22𝜉2

𝑚11𝜉1+𝑚12𝜉2
; therefore, 𝑑𝑦 = 𝑑𝑞1 +

(
𝑚21𝜉1+𝑚22𝜉2

𝑚11𝜉1+𝑚12𝜉2
) 𝑑𝑞2. 

Note that 𝑑𝑦 is integrable differential form (the one-form 

of dimension 2 is always integrable [15]). 

The following corollaries for 2DOF underactuated 

mechanical system with actuated and unactuated shape 

variables are stated (the inertia matrix is function to the shape 

variables 𝑞𝑠 ). These types of mechanical systems are the 

main examples of underactuated system studied in many 

research works [16, 17]. 

Corollary (1): The 2DOF underactuated mechanical 

system with actuated shape variable is flat if and only if the 
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mass element 𝑚11 is constant. Accordingly the flat output is 

given by: 

 

𝑦 = 𝑞1 + ∫
𝑚21(𝑠)

𝑚11
𝑑𝑠

𝑞2
0

   (13) 

 

Proof: Appendix B 

The Acrobot is an example of a non-flat 2DOF 

underactuated mechanical system with an actuated shape 

variable [18], and that according to Corollary (1), where m11 

is not constant.  

Corollary (2): 2DOF underactuated mechanical system 

with unactuated shape variable is differentially flat if and 

only if the following conditions hold: 

 
𝑚11 = 𝑐𝑜𝑛𝑠𝑡.  &

2𝑚11
𝜕𝑚12

𝜕𝑞2
+𝑚21

𝜕𝑚22

𝜕𝑞2
= 0

 (14) 

 

The flat output is then equal to: 

 

𝑦 = 𝑞1 +∫
𝑚21(𝑠)

𝑚22(𝑠)
𝑑𝑠

𝑞2

0

 (15) 

 

Proof: Appendix C 

Note that, for a potential energy 𝑉 = 𝑉(𝑞) the term 𝜉(𝑉) 

is a Lie-derivative with respect to 𝜉, i.e. 𝜉(𝑉) = 𝜉𝑖
𝜕𝑉

𝜕𝑞𝑖
 .  

Remark (3): The Penduput, the Cart-Pole system and the 

double Inverted Pendulum are all non-flat underactuated 

mechanical systems with unactuated shape variables because 

the element 𝑚11 of the inertia matrix for all these systems is 

a function of the shape variable 𝑞𝑠. The inertia matrices of 

the Penduput, the Cart-Pole system and the double Inverted 

Pendulum are as derived by Olfati-Saber [18]. 

Corollary (3): 2DOF underactuated mechanical system 

with constant inertia matrix and constant force vector F , 

namely: 

 
𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
= 0, &

𝜕𝐹𝑖

𝜕𝑞𝑘
= 0,    𝑖, 𝑗, 𝑘 = 1,2   (16) 

 

is a flat system with flat output of the form; 

 

𝑦 = 𝑞1 + (
𝑚21𝜉

1+𝑚22𝜉
2

𝑚11𝜉
1+𝑚12𝜉

2) 𝑞2   (17) 

 

Proof: Appendix D 

 

 

5. CONTROLLER DESIGN BASED ON FLATNESS 

PROPERTY 

 

In this section, a controller for a 2DOF underactuated 

mechanical system based on flatness property will be 

proposed. As a first step, the form of the underdetermined 

differential equation for a general underactuated system by 

one control is presented next. 

The underdetermined differential equation for a flat 

mechanical system underactuated by one control is generally 

given by: 

 

𝐹(𝑦, �̇�, 𝑦,̈ 𝑞𝑜) = 0 (18) 

 

where, 𝑦 is the flat output, 𝑦 ∈ ℛ𝑛−1  and 𝑞𝑜 ∈ [𝑞1, … . . , 𝑞𝑛] 

is one of the configuration variables which appears in Eq. 

(18) without its differentials [6]. Eq. (18) can also be written 

as 

 

�̈� = 𝑓1(𝑦, �̇�) + g(𝑞𝑜) (19) 

 

For the 2DOF case 𝑦 ∈ ℛ1  and 𝑞𝑜 ∈ [𝑞1, 𝑞2] . By letting 

𝑦 = 𝑞1and𝑞𝑜 = 𝑞2 , the dynamic equations for the 2DOF 

system becomes: 

 
�̈� = 𝑓1(𝑦, �̇�) + g1(𝑞2)                           

�̈�2 = 𝑓2(𝑦, 𝑦,̇ 𝑞2, �̇�2) + g2(𝑦, 𝑦,̇ 𝑞2, �̇�2)𝑢
 (20) 

 

For the underactuated mechanical system given by Eq. 

(20), the Backstepping method is utilized with 𝑞2 as a virtual 

controller which it controls the flat output 𝑦  in the 

underdetermined equation. Therefore the idea behind this 

design approach is to use the virtual controller to regulate the 

flat output, then the actual control 𝑢 objective is to force the 

configuration variable 𝑞2 to follow the virtual controller. To 

this end the flat output regulated to zero and consequently the 

configuration variables are also regulated to the desired 

values.  

Petar V. Kokotovic and others [19] developed a technique 

named as Backstepping to design stabilizing controls for a 

special class of nonlineardynamical systems. The 

Backstepping approach is a step-by-step algorithm, which 

construct the feedback control based on a Lyapunov function. 

In this work designing a Backstepping control will be non-

Lyapunov-based and hence an additional condition is 

imposed to ensure the stability of the control system. This 

condition is the input to state stability (ISS) introduced by 

Sontag [20] for interconnected system as will be explained 

later.  

As mentioned above, the first step is the design of the 

virtual control denoted by 𝑞2𝑣 then the control 𝑢 is designed 

to regulate the error between 𝑞2  and 𝑞2𝑣  to zero after a 

certain period of time. Let 𝑞2𝑣  be chosen such that the flat 

output dynamics 

 

�̈� = 𝑓1(𝑦, �̇�) + g1(𝑞2𝑣) = 𝑓(𝑦, �̇�)   (21) 

 

is an asymptotically stable. Then define the following error 

function 

 

𝑒 = 𝑞2 − 𝑞2𝑣 (22) 

 

Now by differentiating 𝑒 twice, we get 

 

�̈� = �̈�2 − �̈�2𝑣 = 𝑓2(𝑦, 𝑦,̇ 𝑞2, �̇�2) + g2(𝑦, 𝑦,̇ 𝑞2, �̇�2)𝑢
− �̈�2𝑣  

(23) 

 

The control law that will stabilize the error function 𝑒 can 

be taken as; 

 

𝑢 =
1

g2
{−𝑘1𝑒 − 𝑘2�̇� + �̈�2𝑣 − 𝑓2}, 𝑘1, 𝑘2 > 0   (24) 

 

However the control law as given in Eq. (24) cannot 

succeed in regulating the flat output and the configuration 

variable 𝑞2 unless the following conditions are satisfied: 

1) Singularity in control input: g2(𝑦, 𝑦,̇ 𝑞2, �̇�2) ≠ 0  at any 

point (𝑦, 𝑦,̇ 𝑞2, �̇�2). 
2) ISS property: The term 𝛿(𝑦, 𝑦,̇ 𝑞2) for the flat dynamics 
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�̈� = 𝑓1(𝑦, �̇�) + g1(𝑞2𝑣) + 𝛿(𝑦, 𝑦,̇ 𝑞2)

= 𝑓(𝑦, �̇�) + 𝛿(𝑦, 𝑦,̇ 𝑞2)                 
 (25) 

 

is input to state stable (ISS), where 𝛿(𝑦, 𝑦,̇ 𝑞2) = g1(𝑞2) −
g1(𝑞2𝑣). 

The ISS will ensure that the flat output 𝑦 is bounded for a 

bounded disturbance 𝛿(𝑦, 𝑦,̇ 𝑞2) in Eq. (25). A constructive 

version of the ISS is given by Sepulchre et al. [21]. Namely 

the linear growth condition is introduced in this reference 

(theorem 4.7, p.129) to ensure the stability of the state for 

bounded input. In the subsequent section the linear growth 

property will be used to prove the stability of the derived 

controller for the TORA system.   

Note that, regulating the flat output and its differentials 

leads to regulate the configuration variables (𝑞1, 𝑞2), since 

there is a one to one relation between the configuration 

variables and the flat output and its differentials. 

 

 

6. APPLICATION EXAMPLE: THE TORA SYSTEM 

 

The TORA system is used here as an application example 

to the present work. It consists of translational oscillating 

platform, which is controlled via a rotational eccentric mass 

as shown in Figure 1 [22, 23]. The rotating eccentric mass on 

the platform is actuated by a dc motor. The motion of the 

eccentric mass applies a force to the platform which can be 

used to damp the translational oscillations [24]. The motor 

torque is considered as the control variable, and the task is to 

derive a control law, based on the flatness property, to 

asymptotically stabilize the system at the desired equilibrium 

point. 

 

 
 

Figure 1. The TORA system 

 

The equations of motion which are derived using Euler-

Lagrange equation are given by [25]: 

 

�̈� =
(𝑚 ∗ 𝑒2 + 𝐼)

Δ
{𝑚 ∗ 𝑒 ∗ sin(𝜃) ∗ �̇�2 − 𝑘𝑥}

−
(𝑚 ∗ 𝑒 ∗ cos(𝜃))

Δ
 

(26a) 

 

�̈� =
(𝑚 ∗ 𝑒 ∗ cos(𝜃))

Δ
{𝑘𝑥 − 𝑚 ∗ 𝑒 ∗ sin(𝜃) ∗ �̇�2}

+
(𝑀 +𝑚)

Δ
𝑢 

Δ = (𝑀 +𝑚)(𝑚𝑒2 + 𝐼) − (𝑚 ∗ 𝑒 ∗ cos(𝜃))
2
  

(26b) 

where, 𝑀 is the cart mass, 𝑚 is the unbalanced mass with a 

moment of inertia 𝐼  about its center of mass, located at a 

distance 𝑒  from its rotational axis, 𝑘  is a linear spring 

constant and u is the control action (torque). Let 𝑥  be the 

platform translation and 𝜃 is the eccentric mass angle. 

The platform translation 𝑥 and eccentric mass angle 𝜃 are 

the two configuration variables for the TORA system. The 

inertia matrix and the potential energy for the TORA system 

are: 

 

𝑀 = [
𝑀 +𝑚 𝑚𝑒cos(𝜃)

𝑚𝑒cos(𝜃) 𝑚𝑒2 + 𝐼
]

𝑉(𝑥, 𝜃) =
1

2
𝑘𝑥2

}    (27) 

 

The TORA system, according to corollary (1), where the 

actuated shape variable 𝜃, is a flat system where 𝑚11 equal to 

constant (𝑚11 = 𝑀 +𝑚). The flat output from Eq. (12) is 

given by: 

 

 

𝑦 = 𝑥 + ∫
𝑚ecos(𝑠)

(𝑀+𝑚)
𝑑𝑠

𝜃

0
= 𝑥 + (

𝑚𝑒

𝑀+𝑚
) sin(𝜃)  (28) 

 

The underdetermined equation is found by differentiating 

Eq. (28) twice: 

 
(𝑀 +𝑚)�̈� + 𝑘𝑥 = 0 (29) 

 

where, according to Eq. (19), 𝑘𝑥 =  g(𝑞𝑜) i.e.,𝑞𝑜 = 𝑥. Using 

Eq. (29) as the underdetermined differential equation leads to 

a singularity in control input. Therefore, by eliminating 𝑥 

from Eqns. (28) and (29), the underdetermined equation 

becomes: 

 

�̈� = − (
𝑘

𝑀 +𝑚
)𝑦 +

𝑘𝑚𝑒

(𝑀 +𝑚)2
sin(𝜃) (30) 

 

The TORA system can know be described by the 

underdetermined Eq. (30) and Eq. (26b) for the eccentric 

mass angle 𝜃. According to Backstepping method we need 

first to design a stabilizing virtual control for the 

underdetermined Eq. (30). Eq. (30) in terms of the virtual 

control 𝑣 is: 

 

�̈� = − (
𝑘

𝑀 +𝑚
)𝑦 +

𝑘𝑚𝑒

(𝑀 +𝑚)2
sin(𝑣) (31) 

 

As suggested by Jankovic et al. [24], the virtual control 

that will asymptotically stabilize the flat output 𝑦 is chosen as: 

 

𝑣 = − tan−1(𝑐�̇�)   (32) 

 

where, 𝑐 > 0 is a constant. Now define 𝜉 = 𝜃 − 𝑣, then Eq. 

(30) becomes: 

 

�̈� = − (
𝑘

𝑀+𝑚
) 𝑦 +

𝑘𝑚𝑒

(𝑀+𝑚)2
sin(𝑣 + 𝜉)   (33) 

 

To test the ISS property, Eq. (33) can be written as: 

 

�̈� = − (
𝑘

𝑀+𝑚
) 𝑦 +

𝑘𝑚𝑒

(𝑀+𝑚)2
sin(𝑣) + 𝑔(𝑣, 𝜉)𝜉   (34) 

 

where,  

 
𝑘𝑚𝑒

(𝑀+𝑚)2
sin(𝑣 + 𝜉) =

𝑘𝑚𝑒

(𝑀+𝑚)2
sin(𝑣) + 𝑔(𝑣, 𝜉)𝜉   (35) 

 

and 𝑔(𝑣, 𝜉) can be computed as follows [26]: 
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𝑔(𝑣, 𝜉) =
𝑘𝑚𝑒

(𝑀 +𝑚)2
∫ 𝐷𝜉  sin(𝑣 + 𝜏𝜉)𝑑𝜏
1

0

 

 

Clearly sin(𝑣 + 𝜏𝜉)  is globally Lipschitz function; that 

means 𝑔(𝑣, 𝜉)is a bounded quantity. To show that Eq. (34) is 

ISS, we first refer to 𝑔(𝑣, 𝜉)𝜉 as the interconnected term [21], 

then we can state that 𝑔(𝑣, 𝜉)𝜉  is a linear growth term. 

Namely, 

 
|𝑔(𝑣, 𝜉)𝜉| ≤ 𝐿|𝜉| (36) 

 

where, |𝑔(𝑣, 𝜉)| ≤ 𝐿 . Since the interconnected term is 

bounded with respect to the flat output and its differential 

then Eq. (34) is ISS.  

To derive the actual control law, we differentiate the new 

state 𝜉 twice because the relative degree between 𝜉 and 𝑢 is 

two; 

 

𝜉̈ = �̈� − �̈� = 𝑓(𝜃, 𝜃,̇ 𝑥, �̈�) + g(𝜃)𝑢    (37) 

 

where, 𝑓(𝜃, 𝜃,̇ 𝑥, �̈�) =
(𝑚∗𝑒∗cos(𝜃))

Δ
{𝑘𝑥 − 𝑚 ∗ 𝑒 ∗

sin(𝜃) ∗ �̇�2} − �̈� and g =
(𝑀+𝑚)

Δ
. Finally, the control law that 

will globally asymptotically stabilize 𝜉 (Eq. (37)) is given by: 

 

𝑢 = −
1

g
{𝑓(𝜃, 𝜃,̇ 𝑥, �̈�) + 𝜆1𝜉 + 𝜆2𝜉̇} , 𝜆1&𝜆2 > 0   (38) 

 

 
 

Figure 2. Platform position vs. time (𝑐 = 15) 

 

 
Figure 3. Eccentric mass angle vs. time (𝑐 = 15) 

 

The control objective here is to regulate the flat output and 

its differentials which lead to regulate the platform position 

as consequence to the flatness property of the TORA system. 

The numerical simulations for the TORA system model as 

given in Eq. (26) use the following parameter values [27]: 

 

𝑀 = 1.3608 kg, 𝑚 = 0.096 kg, 𝑒 = 0.0592 m, 
𝑘 = 186.3N m⁄ , 𝐼 = 0.0002175 kg m2 

 

While the control parameters are; 𝑐 = 15, 𝜆1 = 8 and 𝜆2 =
15. In Figure 2 the cart position is plotted with time where 

the damping effect due the control action stabilizes the cart in 

less than 5 second while in Figures 3 and 4 the eccentric 

mass angle 𝜃 and the control effort are plotted. The damping 

effect to the eccentric mass is directly related to the design 

parameter 𝑐 as can be seen here: when 𝜉 → 0 we have 𝜃 =

− tan−1(𝑐�̇�) or tan(𝜃) = −𝑐�̇� ⇒ sin(𝜃) =
−𝑐�̇�

√1+(𝑐�̇�)2
, then Eq. 

(23) becomes; 

 

�̈� = −(
𝑘

𝑀 +𝑚
)𝑦 −

𝑐𝑘𝑚𝑒

(𝑀 +𝑚)2√1+ (𝑐�̇�)2
�̇� 

 

This point is demonstrated in Figure 5, where 𝑐 = 25.  

 

 
 

Figure 4. Control action (N.m) vs. time (𝑐 = 15) 

 

 
 

Figure 5. Platform position vs. time (𝑐 = 25) 

 

 

7. CONCLUSIONS 

 

In the present work a simple flatness condition was 

derived for a class of mechanical systems known as 

underactuated mechanical systems. To derive the flat outputs, 

the equivalence relation (Eq. (10)) was proposed based on the 

integrability theory. This led to complete the tools required 

for testing the flatness (theorem (1)) and deriving the flat 

outputs for a mechanical system underactuated by one 
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control. Applying these tools to a 2DOF underactuated 

mechanical system led to derive a simple flatness condition 

and to the integrable differential form of the flat output. 

Additionally, the flatness test is found in corollaries (1) to (3) 

as simple condition depending only on the elements of inertia 

matrix beside the actuation type, where the underactuated 

mechanical system are classified as actuated and unactuated 

shape variable.  

Depending on the flatness property for the 2DOF 

underactuated mechanical system, a control law was derived 

using Backstepping method. The TORA system was used in 

this work as an application example and it is found flat 

according to corollary (1), and a nonlinear control law was 

designed. The effectiveness of the designed controller to the 

TORA system was demonstrated via numerical simulation by 

giving an initial displacement of 0.025 𝑚  to the platform 

from its equilibrium point. 
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APPENDIX 

 

Appendix A 

 

If 𝑑𝑦𝑖  is an exact differential then the flat output 𝑦 can be 

obtained by direct integration of 𝑑𝑦 . Otherwise the 

differential form is still integrable because the 𝑛 − 1 linearly 

independent differential form are always integrable 

wheredim[𝑑(𝑑𝑦𝑖) ∧ (𝑑𝑦1 ∧ ……∧ 𝑑𝑦𝑛−1)] > 𝑛 with the use 

of an integration factor 𝛾 to get �̃�.  

 

Appendix B 

 

For the 2DOF, unactuated shape variable the force vector 

(one-form) is expressed by 𝐹 = 𝑑𝑞𝑠. Let 𝑞2 = 𝑞𝑠, then: 𝐹 =
𝑑𝑞2. The 𝜉 vector field satisfies the condition 𝜉 = 𝑎𝑛𝑛Δ∗ that 

is 𝜉 =
𝜕

𝜕𝑞1
. The covariant derivatives ∇ 𝜕

𝜕𝑞𝑖

𝜉, 𝑖 = 1,2 are equal 

to ∇ 𝜕

𝜕𝑞𝑖

𝜉 = ∇ 𝜕

𝜕𝑞𝑖

𝜕

𝜕𝑞1
= Γ𝑖1

𝑘 𝜕

𝜕𝑞𝑘
. The flatness condition is;  

 

〈Γ𝑖1
𝑘 𝜕

𝜕𝑞𝑘
, 𝑑𝑞2〉 = 0 or 〈Γ𝑖1

1 𝜕

𝜕𝑞1
+ Γ𝑖1

2 𝜕

𝜕𝑞2
, 𝑑𝑞2〉 = 0 

 

Then to satisfy this condition the Christoffel symbol Γ𝑖1
2  

must equal to zero, where the Christoffel symbol Γ𝑖1
2  is 

computed as Γ𝑖1
2 =

1

2
𝑚2𝑗 {

𝜕𝑚𝑗1

𝜕𝑞𝑖
−

𝜕𝑚𝑖1

𝜕𝑞𝑗
} . The mass matrix 

appears above is function only to shape variable 𝑞2. For 𝑖 =

1 , we have Γ11
2 = −

1

2
𝑚22 ∗

𝜕𝑚11

𝜕𝑞2
 and for 𝑖 = 2 , Γ21

2 =

1

2
𝑚22 {

𝜕𝑚21

𝜕𝑞2
−

𝜕𝑚21

𝜕𝑞2
} = 0 . Therefore, Γ𝑖1

2  is equal to zero if 

and only if 𝑚11  is constant which satisfies the flatness 

condition (11). To show that this condition is the only 

condition for flatness, we have to proof that the regularity 

condition is satisfied without any additional condition. To 

start, let 𝑦𝑜 = 𝑞1 , then 
𝜕

𝜕𝑦
=

𝜕

𝜕𝑞1
, 

𝜕

𝜕𝑦𝑜
= −

𝑚21(𝑞2)

𝑚11

𝜕

𝜕𝑞1
+ 

𝜕

𝜕𝑞2
. 

The first regularity condition is given by 

𝜕

𝜕𝑦0
(g (

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞1
)) : g (

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞1
) and it is computed as 0:𝑚11. 

Also the second regularity condition is  

𝜕

𝜕𝑦0
(g (∇ 𝜕

𝜕𝑞1

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞1
)) : g (∇ 𝜕

𝜕𝑞1

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞1
) and is computed as; 

𝜕

𝜕𝑦0
(𝑚11Γ11

1 ):𝑚11Γ11
1 ⇒ 0: 0.  

Since the two ratios are unequal, therefore the output 𝑦 is a 

flat output provided that 𝑚11  is constant as a sufficient 

condition for flatness and irrespective to the potential energy 

form.  

 

 

 

Appendix C 

 

For unactuated shape variable case, the force vector 𝐹 is 

given by 𝐹 = 𝑑𝑞1. Accordingly, 𝜉 =
𝜕

𝜕𝑞2
. Then by follow the 

flatness condition (11), we have 

 

〈∇ 𝜕

𝜕𝑞𝑖

𝜕

𝜕𝑞2
, 𝑑𝑞1〉 = 0      or       〈Γ𝑖2

𝑘 𝜕

𝜕𝑞𝑘
, 𝑑𝑞1〉 = 0 

 

This leads to the following condition: Γ𝑖2
1 = 0 , where 

Christoffel symbols Γ𝑖2
1  are equal to Γ12

1 =
1

2
𝑚11 𝜕𝑚11

𝜕𝑞2
, Γ22

1 =

𝑚11 𝜕𝑚12

𝜕𝑞2
+

1

2
𝑚21 𝜕𝑚22

𝜕𝑞2
. To satisfy the above Γ𝑖2

1 = 0, we get 

the following condition for flatness: 

 

𝑚11 = 𝑐𝑜𝑛𝑠𝑡.&2𝑚11 𝜕𝑚12

𝜕𝑞2
+𝑚21 𝜕𝑚22

𝜕𝑞2
= 0 

 

To check the regularity condition, let 𝑦0 = 𝑞2 , then we 

have 
𝜕

𝜕𝑦
=

𝜕

𝜕𝑞1
, 

𝜕

𝜕𝑦𝑜
=

𝜕

𝜕𝑞2
−

𝑚21(𝑞2)

𝑚22(𝑞2)

𝜕

𝜕𝑞1
. The first regularity 

condition is given by 
𝜕

𝜕𝑦0
(g (

𝜕

𝜕𝑞2
,
𝜕

𝜕𝑞1
)) : g (

𝜕

𝜕𝑞2
,
𝜕

𝜕𝑞1
) , 

𝜕

𝜕𝑦0
(𝑚21):𝑚21 and for the second regularity condition 

 

𝜕

𝜕𝑦0
(g(∇ 𝜕

𝜕𝑞1

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞2
)) : g (∇ 𝜕

𝜕𝑞1

𝜕

𝜕𝑞1
,
𝜕

𝜕𝑞2
)

⟹
𝜕

𝜕𝑦0
(g (Γ11

𝑘
𝜕

𝜕𝑞𝑘
,
𝜕

𝜕𝑞2
)) : g (Γ11

𝑘
𝜕

𝜕𝑞𝑘
,
𝜕

𝜕𝑞2
)

⟹
𝜕

𝜕𝑦0
(𝑚12Γ11

1 +𝑚22Γ11
2 ): g(𝑚12Γ11

1 +𝑚22Γ11
2 ) ⟹ 0: 0

 

 

where, Γ11
𝑘 = 0. This result leads to two cases, depending on 

𝑚21. If 𝑚21 ≠ 0 then the system is flat, otherwise if 𝑚21 = 0, 

then the mechanical system is flat if the following third 

regularity condition 
𝜕

𝜕𝑦0
(𝜉(𝑉)): 𝜉(𝑉) differs from 0: 0.  

 

Appendix D 

 

For a system with inertia matrix satisfying Eq. (16), the 

Christoffel symbols are zero Γ𝑖𝑗
𝑘 = 0, 𝑖, 𝑗, 𝑘 = 1,2. In addition, 

𝜉 consists of constant elements then ∇ 𝜕

𝜕𝑞𝑖

𝜉 is equal to zero as 

can be deduced from the covariant derivative, given by 

 

∇ 𝜕

𝜕𝑞𝑖

𝜉 = 𝜉𝑘Γ𝑗𝑘
𝑖
𝜕

𝜕𝑞𝑖
+
𝜕𝜉𝑘

𝜕𝑞𝑗

𝜕

𝜕𝑞𝑘
 

 

Hence, the flatness condition (11) is satisfied and the 

system is flat. Also the flat output can be derived directly 

using Eq. (12).  
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