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Turbine rotors have complex geometry that is difficult to determine their dynamical 

behaviour. Strong approaches like finite element methods is used to analyze the small 

steam turbine system to eliminate difficulty of complex geometry problems. Finite 

element method saves time by allowing reductions in equations beside it is possible to 

obtain faster solutions by using software that can solve these equations. In this paper, 

rotor-dynamic analysis of a small steam turbine rotor with certain geometrical and 

mechanical properties was performed and critical speeds, modal shapes and Campbell 

diagram of the system was obtained by using FEM based Dynrot software. 
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1. INTRODUCTION

Rotating machines are significant sub-systems of 

engineering systems and extensively used in the industry. So, 

it is very important issue to understand dynamical behaviour 

of rotating systems. These machines, especially turbines, must 

be cautiously designed by taking into consideration their 

dynamic characteristics. Therefore there are many research 

that was carried out in the field of rotordynamic analysis. 

Sinou [1] investigated the response of a rotor. Non-linear 

dynamic analysis of a rotor which is supported by roller 

bearings was performed. He studied on a system comprised of 

a disk with a single shaft, two flexible bearing supports and a 

roller bearing. He found that the reason of the exciter is 

imbalance. He used a numerical method called Harmonic 

Balance Method for this study. 

Das et al. [2] aimed to develop an active vibration control 

scheme to control the transverse vibrations on the rotor shaft 

arising from imbalance and they performed an analysis on the 

vibration control and stability of a rotor-shaft system which 

has electromagnetic exciters. 

Whalley and Abdul-Ameer [3], calculated the rotor 

resonance, critical speed and rotational frequency of a shaft 

whose diameter changes by the length. For this purpose, they 

used basic harmonic response method. 

Brusa and Zolfini [4], GGG (Galileo Galilei on the Ground) 

evaluated and compared the experimental results and the 

results they obtained by using FEM based Dynrot program in 

terms of imbalance and stability. 

Lei and Palazzolo [5] have analyzed a flexible rotor system 

supported by active magnetic bearings and synthesized the 

Campbell diagrams, and eigenvalues to optimize the rotor-

dynamic characteristics and obtained the stability at the speed 

range. They also investigated the rotor critical speed, mode 

shapes, frequency responses and time responses. 

Taplak and Parlak [6] studied on a small gas turbine rotor 

with certain geometrical and mechanical properties by using 

FEM based Dynrot program. They obtained the critical speeds, 

Campbell diagram and the response of the rotor system which 

has non-homogen compressor. 

Jalali et al. [7] carried out full dynamic analysis of a high 

speed rotor using 3D finite element model, one-dimensional 

beam type model and experimental modal test. They obtained 

Campbell diagram, critical speeds, operational deflection 

shapes, and unbalance response of the rotor. Their finite 

element model results had good agreement with experimental 

results. 

Chatelet et al. [8] studied on the modeling approaches for 

dynamic analyses of the rotating assemblies of turbomachines. 

They compared the results obtained from the 3D finite element 

modeling of two case studies with those obtained from a 

software named ROTORINSA which is based on beam type 

1D finite elements. 

Jeon et al. [9] created the rotordynamic model of a fuel 

turbopump and performed the dynamic analysis to predict 

natural frequencies, critical speeds and instability of the 

system. 

Wang et al. [10] modelled a dual-rotor system by using 1D 

finite element model and 3D finite element model based on 

actual test rig. The modal frequencies and modal shapes of the 

dualrotor in static state were calculated and the results were 

verified by those of modal test. 

Qin et al. [11] developed the finite element models to 

predict dynamic characteristics of rotating bolted disk-drum 

type rotors. 

Wang et al. [12] investigated the comparison of vibration 

patterns and unbalance responses between rigid shaft with 

flexible supports like fan rotor system in aero-engine and the 

flexible rotor with rigid supports by using Euler beam element. 

Ma et al. [13] developed a novel rotor-blade model, in 

which the rotating blades were simplified using Timoshenko 

beams. 

Campbell diagrams and deformations caused by critical 

speeds is very important in investigation of the dynamic 

behaviours of rotors. For this reason, obtaining the Campbell 

diagrams of the rotating systems and determining the critical 

speeds are very useful for us to observe the system behaviours. 

There are several programs based on finite element method to 
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obtain these data and diagrams. In this study, a program named 

Dynrot was used to make dynamic analysis and the evaluation 

of the results. For this purpose, a small steam turbine rotor 

certain geometrical and mechanical properties modeled and 

critical speeds and modal shapes of rotor were calculated by 

using Dynrot program. 

 

 

2. CONSTITUTIVE RELATIONS AND THEORY (THE 

FINITE ELEMENT METHOD) 
 

The finite element method is a general discretization 

method for the solution of partial derivative differential 

equations, and consequently, it finds its application in many 

other fields beyond rotordynamic analysis. The FEM is based 

on the subdivision of the structure into finite elements, i.e., 

into parts whose dimensions are not vanishingly small. Many 

different element formulations have been developed, 

depending on their shape and characteristics (beam elements, 

shell elements, plate elements, solid elements, and many 

others); however, the elements commonly used in elementary 

rotordynamics are just beam, mass, and spring elements. 

Each element is essentially the model of a small deformable 

solid in which a limited number, usually quite small, of 

degrees of freedom is substituted for the infinity of degrees of 

freedom typical of continuous models. Inside each element, 

the displacement u(x, y, z) of the point of coordinates x, y, z 

is approximated by the linear combination of a number n of 

functions, the shape functions, which are assumed arbitrarily, 

 

u(x, y, z, t) = N(x, y, z)q(t), (1) 

 

where, u is the displacement, written as a vector of order 3 in 

the three-dimensional space (sometimes of higher order, if 

rotations are also considered), q is a vector in which the n 

generalized coordinates of the element are listed, and N is the 

matrix containing the shape functions. There are as many rows 

in N as in u and as many columns as the number n of degrees 

of freedom. 

Usually the degrees of freedom of the elements are the 

displacements at given points, which are referred to as nodes. 

In this case, Eq. (1) is usually reduced to the simpler form 

 

{

𝑈𝑥(𝑥, 𝑦, 𝑧, 𝑡)
𝑈𝑦(𝑥, 𝑦, 𝑧, 𝑡

𝑈𝑧(𝑥, 𝑦, 𝑧, 𝑡

}

= [

𝑵(𝑥, 𝑦, 𝑧) 0 0
0 𝑵(𝑥, 𝑦, 𝑧) 0

0 0 𝑵(𝑥, 𝑦, 𝑧)
] {

𝒒𝑥(𝑡)
𝒒𝑦(𝑡)

𝒒𝑧(𝑡)

} 

(2) 

 

where, the displacements in each direction are functions of the 

nodal displacements in the same direction only. Matrix N, in 

this case, has only one row and as many columns as the 

number of nodes of the element. Eq. (2) has been written for a 

three-dimensional element; a similar formulation can also be 

easily obtained for one- or two-dimensional elements. 

The shape functions are, as already stated, arbitrary. The 

freedom in the choice of such functions is, however, limited, 

because they must satisfy several conditions. A first 

requirement is a simple mathematical formulation, which is 

needed to lead to developments that are not too complex. 

Usually a set of polynomials in the space coordinates is 

assumed. To get results that are closer to the exact solution of 

the differential equations, which constitute the continuous 

model discretized by the FEM, while reducing the size of the 

elements, the shape functions must  

–be continuous and differentiable up to the required order, 

which depends on the type of element.  

–be able to describe rigid-body motions of the element 

leading to vanishing elastic potential energy.  

–lead to a constant strain field when the overall deformation 

of the element dictates so. 

–lead to a deflected shape of each element that matches the 

shape of the neighboring elements. This means that when the 

nodes of two neighboring elements displace in a compatible 

way, all of the interface between the elements must displace in 

a compatible way.  

Another condition, which is not always satisfied, is that the 

shape functions must be isotropic, i.e., must not show 

particular geometrical properties that depend on the 

orientation of the reference frame. Sometimes not all of these 

conditions are completely met; in particular, there are elements 

that fail to completely satisfy the matching of the deflected 

shapes of neighboring elements. 

The nodes are usually located at the vertices or on the sides 

of the elements and are common to two or more of them, but 

points that are internal to an element can also be used. The 

equation of motion of each element can be written through 

Lagrange equation, but there are plenty of alternative 

formulations, all leading to the same final expressions. The 

strains can be expressed as functions of the derivatives of the 

displacements with respect to space coordinates. In general, it 

is possible to write a relationship of the type 

 

ϵ(x, y, z, t) = B(x, y, z)q(t), (3) 

 

where, ϵ is a column matrix in which the various elements of 

the strain tensor are listed (it is commonly referred to as a 

strain vector, but it is such only in the sense that it is a column 

matrix) and B is a matrix containing appropriate derivatives of 

the shape functions with respect to the x, y, z coordinates. B 

has as many rows as the number of components of the strain 

vector and as many columns as the number of degrees of 

freedom of the element. 

If the element is free from initial stresses and strains and the 

behavior of the material is linear, the stresses can be directly 

expressed from the strains 

 

σ(x, y, z, t) = Eϵ = E(x, y, z)B(x, y, z)q(t), (4) 

 

where, E is the stiffness matrix of the material. It is a 

symmetric square matrix whose elements can theoretically be 

functions of the space co-ordinates but are usually constant 

within the element. The potential energy of the element can be 

easily expressed as 

 

𝑈 =
1

2
∫ 𝜖𝑇𝝈𝑑𝑉 =

1

2
𝒒𝑇 (∫ 𝑩𝑇𝑬𝑩𝑑𝑉

0

𝜐

)𝒒
0

𝜐

 (5) 

 

The integral in Eq. (5) is the stiffness matrix of the element 

 

𝐾 = (∫ 𝑩𝑇𝑬𝑩𝑑𝑉
0

𝜐
)    (6) 

 

Because the shape functions do not depend on time, the 

generalized velocities can be expressed as 

 

𝒖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑵(𝑥, 𝑦, 𝑧)�̇�(𝑡) (7) 
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If all generalized coordinates are related to displacements, 

the kinetic energy and the mass matrix of the element can be 

expressed as 

 

𝜏 =
1

2
�̇�𝑇 (∫𝜌𝑵𝑇𝑵𝑑𝑉

.

𝜐

) �̇� 

𝑴 = (∫𝜌𝑵𝑇𝑵𝑑𝑉
.

𝜐

) 

(8) 

 

When some generalized displacements are physically 

rotations, Eq. (8) must be changed to introduce moments of 

inertia, but its basic structure remains the same. In the case of 

a non-natural (gyroscopic) system, the gyroscopic matrix can 

be obtained together with the mass matrix by taking also the 

spin speed into account when computing the kinetic energy. 

As already stated, the FEM is often used just to compute the 

stiffness matrix to be used in the context of the lumped-

parameters approach. In this case, the consistent mass matrix 

Eq. (8) is not computed and a diagonal matrix obtained by 

lumping the mass at the nodes is used. The advantage is that 

of dealing with a diagonal mass matrix, whose inversion is far 

simpler than that of the consistent mass matrix. The accuracy 

is, however, reduced or, better, a greater number of elements 

is needed to reach the same accuracy; as a consequence, the 

convenience between the two formulations must be assessed 

in each case. Generally speaking, the consistent approach 

leads to values of the natural frequencies that are higher than 

those computed using the elastic continuum model, whereas 

those obtained using the lumped-parameters approach are 

smaller. 

If a force distribution p(x, y, z, t) acts on the body, the virtual 

work dL linked with the virtual displacement δu = Nδq and the 

nodal force vector f can be expressed in the form 

 

𝛿𝐿 = ∫ 𝛿𝒒𝑇𝑵𝑇𝒑(𝑥, 𝑦, 𝑧)𝑑𝑉
0

𝜐

 

𝒇(𝑡) = ∫ 𝑵𝑇𝒑(𝑥, 𝑦, 𝑧)𝑑𝑉
0

𝜐

 

(9) 

 

In a similar way, it is possible to obtain the nodal force 

vectors co-responding to surface force distributions or to 

concentrated forces acting on any point of the element. The 

equation of motion of the nonrotating element is then the usual 

one for discrete undamped nonrotating systems 

 

𝑴�̈� + 𝑲𝒒 = 𝒇(𝑡) (10) 

 

where, vector f contains all forces acting on the element [14]. 

 

 

3. RESULTS 
 

3.1 Small steam turbine system and components 

 

In this section, dimensions and mechanical properties of 

small steam turbine’s components are presented (Table 1). di 

and dd are inner and outer diameter of the elements 

respectivelly. ℓ denotes the axial length of the elements. Small 

steam turbine consists two sections, compressor and turbine 

whose mechanical properties and dimensions are same. As 

seen in Figure 1, finite elemet model of the system was 

modeled by using 1d beam element mesh in Dynrot software. 

 

 
 

Figure 1. Finite element model of the small steam turbine 

 

It can be showed that in Figure 1, the system consist of 7 

beam elements that was created by 8 nodes. For instance, 

element 1 has two nodes, first nodes is beginning point and the 

second point is end point of the element 1. The system 

comprise two sections whose lumped mass is on second and 

seventh nodes and compressor and turbine can be considered 

as rigid bodies. Parameters for the mass elements are presented 

in Table 2. In addition bearings were modeled by using spring 

and damper elements on the fourth and fifth node. 

 

Table 1. Mechanical and geometric properties of the 

elements 

 

Element 

Number 
1 2 3 4 5 6 7 

di (mm) 0 0 0 0 0 0 0 

dd (mm) 120 120 63 63 63 120 120 

l (mm) 68.3 34.2 100 150 100 34.2 68.3 

ρ (kg/m2) 0 0 7810 7810 7810 0 0 

E (MN/m2) 2100 

 

Table 2. Mass and inertia parameters of the compressors 

 

Mass Number 1 2 

Node Number 2 7 

m (kg) 20.81 20.81 

Jp (kg.m2) 0.285 0.285 

Jt (kg.m2) 0.174 0.174 

 

3.2 Critical speeds of the system and the system behavior 

at the critical speeds 

 

Critical speed of a rotating system is the angular velocity 

that excites the natural frequency in the field of rotordynamics. 

While angular velocity of the system approaches the system’s 

critical speed (natural frequency), the system subject to 

excessive vibration and this cause to resonance. Thus, angular 

velocity, that cause resonance, is the critical speed of the 

rotating system. 

The critical speed base on stiffness of the shaft and its 

support, mass of the shafts and attached parts, amount of 

damping in the system (damping of the shafts and support), 

magnitude of unbalance mass in the system, the shape of the 

rotor system. 

70



 

The main equation (Eq. 11) is used to determine the critical 

speed for a linear isotropic rotor system, as used in the our 

model: 

 

det(−𝜔2([𝑀] − [𝐺] − [𝐾𝜔]) + [𝐾]) = 0 (11) 

 

where, [M], [G] and [K] is mass matrix, gyroscopic matrix and 

stiffness matrix, respectively. ω is also critical speed value of 

the system. 

By solving equation 11, we obtain the critical speed of the 

small steam turbine respectively as 362,254993 rad/s, 818, 

354116 rad/s, 13784,025470 rad/s and 36500,392864 rad/s. 

Figures 2-9 show the mode shape of the system at these critical 

speeds respectively. 

 

 
 

Figure 2. The mode shape of the rotor at first critical speed 

 

 
 

Figure 3. Three-dimensional view of the mode shape at first 

critical speed 

 

 
 

Figure 4. The mode shape of the rotor at second critical 

speed 

 

 
 

Figure 5. Three-dimensional view of the mode shape at 

second critical speed 

 
 

Figure 6. The mode shape of the rotor at third critical speed 

 

 
 

Figure 7. Three-dimensional view of the mode shape at third 

critical speed 

 

 
 

Figure 8. The mode shape of the rotor at fourth critical speed 

 

 
 

Figure 9. Three-dimensional view of the mode shape at 

fourth critical speed 

 

As seen in the figures related with the mode shapes, the 

maximum value of the deflection is about 0.05 meters. In 

addition, because of the symmetrical configuration of the 

system, mode shapes occur like symmetric. System of Taplak 

and Parlak’s [6] previous study has a compressor and turbine 

whose mass and geometric parameters differ from each other, 

so mode shapes of that system are like non-symmetric. 

Another way to identify the critical speed of the system is 

to use the Campbell diagram which presents the relationship 

between the natural frequencies and rotational speed. 

Campbell diagram illustrates the first and second natural 

frequencies of the turbine as a function of rotor speed [15]. 

Campbell diagram for the small steam turbine system is shown 

Figure 10. 
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Figure 10. Campbell diagram of the rotating system 

 

The first and second critical speed can be found on 

Campbell diagram (Figure 10). First critical speed was 

obtained at first forward mode (intersection point of orange 

curve and black line) and the second critical speed was 

obtained at the forward mode (intersection point of blue curve 

and black line). 

 

 

4. CONCLUSIONS 

 

Because of many rotors have complex geometry, using 

finite element method saves time and provide quite accurate 

results for rotating machinery. Reasonable results are obtained 

from the rotor system modeled by FEM based Dynrot software. 

Results show that the deflection on the bearings area at the first 

critical speed is relatively small and the deflection on the 

bearings increase with increment of critical speed. Reason of 

this result is being low value damping and stiffness coefficient 

of the bearings. The problem can be solved by optimizing 

these values. 

The studies in this paper helped in understanding the 

effectiveness of finite element models to predict natural 

frequencies, modal shapes of a turbine. The results show that 

finite element analysis for rotating system such as turbine is a 

powerful and effective tool for rotordynamic analysis. 
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