
  

  

Parameter Estimation of Rayleigh-Generalized Gamma Mixture Model 
 

Ahmed Bentoumi1, Amar Mezache1,2*, Houcine Oudira1,3 

 
1 Département d’Electronique, Université Mohamed Boudiaf-Msila, Msila 28000, Algérie 
2 Laboratoire Signaux et Systèmes de Communications (SISCOM), Université de Constantine, Constantine 25000, Algérie 
3 Laboratoire LGE, Université Mohamed Boudiaf- Msila, Msila 28000, Algérie 
 

Corresponding Author Email: amar.mezache@univ-msila.dz 

 

https://doi.org/10.18280/i2m.190108 

  

ABSTRACT 

   

Received: 20 October 2019 

Accepted: 2 December 2019 

 The estimation problem of three parameters Rayleigh-Generalized Gamma Mixture (R-GG) 

radar clutter model is addressed in this paper. Expressions of integer order moments, non-

integer order moments and logarithmic moments are presented in such away the scale 

parameter of the R-GG probability density function (PDF) is eliminated and a two-dimensional 

estimators labeled HOME, NIOME and [zlog(z)] methods are obtained. Due to the presence 

of gamma function with fractional variables, these estimators cannot be given in closed forms. 

The fitness function for each estimator is given as a sum of squared errors of nonlinear 

equations. Using a numerical routine based upon the simplex search algorithm, the proposed 

methods were tested firstly on artificial data. Tail fitting of the R-GG model and the standard 

K-distribution (i.e., special case of the R-GG) is assessed against recorded radar data. The 

accuracy of the R-GG model and the proposed estimation methods is satisfactory, with the 

most accuracy of the [zlog(z)] method.   
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1. INTRODUCTION 

 

Radar clutter is defined as the unwanted reflective waves 

from irrelevant targets. Modeling of high resolution radar 

echoes is a key problem of target detection processors. Due to 

the phenomenon complexity of sea surface clutter, numerous 

clutter models have been proposed in the open literature [1-6]. 

The amplitude statistics of clutter have been firstly modeled 

by Rayleigh, log-normal, Weibull, K and mixture 

distributions. During the past thirty years there has been a 

considerable growth of interest in various texture components 

of compound-Gaussian distributed sea clutter returns. The 

study of statistical properties of sea clutter echoes is very 

complex. They not only depend on the type of background, but 

also on the parameters of the radar itself, such as resolution, 

wavelength, polarization, etc. [1]. In addition, since the 

environment will change with time, the clutter signal also 

exhibits non-stationary statistics. This adds more complexity 

to the study of statistical properties of sea clutter. For this 

reason, it not possible to obtain a model which characterizes 

the statistics of sea or land clutter in all cases. Generally, 

previous works considered compound Gaussian models with 

two parameters of the texture components. Thus, we have to 

search always for alternative models for radar clutter [2-6]. For 

the general case, generalized compound (GC) clutter is 

proposed by Anastassopoulos et al. [2]. Here, the speckle and 

the texture components are both fluctuated according to the 

generalized gamma law with different shape and power 

parameters. The popular K-distribution given by Bocquet [3] 

can be easily obtained from a particular case of the GC model 

parameters. It characterizes various types of radar 

backscattering and is considered by many researchers in radar 

signal processing schemes like especially in target detection 

with constant false alarm (CFAR) behavior. The K clutter 

model is one of the compound Gaussian (CG) distributions 

proposed in the open literature, but with a gamma law for the 

texture component. In order to achieve a goodness-of-fit to 

real life data, the modulation component for the CG model has 

been changed to be an inverse gamma law, an inverse 

Gaussian law, a log-normal law, etc. [4]. The mixtures of two 

or more models are also accurate for the interference 

distribution [5]. In this context, Abraham et al. [6] proposed a 

mixture of a Rayleigh and K distributions for representing 

active sonar data comprising clutter sparsely observed in a 

Rayleigh-distributed background. The K-Rayleigh mixture 

model was seen to provide improved PDF fits and inference 

on the clutter statistics. A parameter estimation technique 

based on the expectation maximization (EM) algorithm is 

proposed and shown to perform adequately. In order to give 

more properties of the mean clutter power (i.e., texture 

component), generalized gamma law with three parameters is 

considered by Anastassopoulos [2]. 

Parameter estimation of radar clutter is a very important 

task in modern radar technology. Concerning false alarms and 

effective detection processes, adaptive threshold requires the 

model parameters values estimated from the clutter range 

profile (CRP) [7]. There are many papers discussing this 

problem [7-10]. Since the statistical models of clutter for 

different environments are different, the methods of parameter 

estimation will be also different for different types of clutter. 

For this reason, several techniques have been proposed based 

on least squares (curve fitting), matching of moments (HOME), 

maximum likelihood (MLE), etc. Integer order moments 

approach is commonly used for parameter estimation of 

numerous clutter models, but it provides suboptimal results [8]. 

In the case of K clutter, it was shown that non integer moments 

and log moments can be manipulated to get closed form 

estimators labeled FOME and [zlog(z)] methods respectively 
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[8, 9]. If the texture component is modeled by a log-normal 

law, closed forms of [zlog(z)] and NIOME methods are also 

derived recently [9] and yield a good estimation accuracy 

relative to the HOME method. 

The purpose of this work is to derive three estimation 

approaches of the parameters of the R-GG radar clutter model. 

Recall that, this distribution has already been considered by 

Anastassopoulos [2], but the estimation methods based on the 

curve fitting and matching of moments were used. In this paper, 

we used different 2D estimation procedures in which a mixture 

of integer order moments, non-integer order moments and log 

moments are used. Corresponding formulas of these 

expressions of moments are presented in such away the scale 

parameter of the R-GG model is eliminated and a two-

dimensional estimators labeled HOME, NIOME and [zlog(z)] 

methods are obtained. Due to the presence of gamma function 

with fractional variables, these estimators cannot be obtained 

in closed forms. The objective function for each estimator is 

given as a sum of squared errors of nonlinear equations. The 

simplex Nelder-Mead (N-M) search algorithm is used for 

optimization of the proposed estimation methods using 

artificial data. To show the efficiency of the proposed [zlog(z)] 

estimation procedure, tail fitting of the R-GG model and the 

standard K distribution (i.e., special case of the R-GG) are 

compared against recorded IPIX radar data.  

The rest of the paper is outlined as follows. Section 2 

presents the R-GG radar clutter model, its expression of 

moments and corresponding distribution function. Then, 

Section 3 gives manipulations of integer order moments, non-

integer order moments and log moments in such away the 

estimation complexity of R-GG clutter parameters is reduced 

in two-dimensions. Section 4 evokes the minimization of three 

fitness functions by the N-M tool where the proposed 

estimators are assessed on both simulated and measured data. 

Finally, some conclusions are drawn in Section 5. 

 

 

2. R-G  CLUTTER DISTRIBUTION  
 

In radar detection applications, several statistical models 

have been proposed to fit sea reverberation data [1-6]. 

Appropriate model can have a significant impact on the 

success of detecting targets embedded within the sea surface. 

As discussed earlier, the GC model is obtained when both 

speckle and texture components follow generalized Gamma 

PDFs given by Sekine and Mao [1]. 
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where, a is the scale parameter, b1 and b2 are the power 

parameters, v1 and v2 are the shape parameters. The CG clutter 

model with generalized gamma texture law is obtained from 

(1) if b1=2 and v1=1. Hence, (1) becomes  
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(2) 

Taking b2=b and v2=v, the overall PDF of (2) is  
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Under the assumption of independent and identically 

distributed (iid) samples of the CRP, the expression of 

moments of order k is given by 
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where,  denotes expectation. The clutter power is 

2=a2(2/b+v)/(v). From (3), the complementary distribution 

function (CCDF) is given by 
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where, T is the normalized detection threshold. Some artificial 

scenarios of the R-GG PDF are depicted in Figure 1 for b=1 

and several values of v. Here, it is shown that the Rayleigh 

clutter case is obtained when v is large. 

 

 
 

Figure 1. Plots of the R-GG distribution given by (3) for b=1 

and E[x2]=1 (i.e., ( ) ( ) += ba /2/ ) 

 

The K-distribution is a special case of the R-G   

distribution. This is obtained when b=2 for which (3) is 

reformulated by 
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where, K(.) is the modified Bessel function of the second kind 

of order v-1 [11]. The corresponding CCDF of (6) will be 
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3. ESTIMATORS 
 

In the following, underling expressions are developed under 

the condition of iid samples where x1, x2, …, xM represent M 

independent magnitudes of radar clutter. From (4), 

combination of moments of orders 3 and 4 denoted by 3 and 

4 yields the following formula. 
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On the other hand, the manipulation of the first two integer 

moments, 1 and 2 gives    
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If we combine the first order moment, 1 with non-integer 

moments, k and k+1, the following expression as a function 

of b and   is obtained 
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It is observed that the scale parameter a is eliminated in (8)-

(10). Log moments can also be used to obtain modified 

expression without a. To do this, we take firstly the derivative 

of (4) with respect to k. Hence 
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For k=0, (11) is simplified to 
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For k=1, (11) becomes 
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The combination of 1=x with the above log(x) 

andxlog(x) formulas yields. 
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where, ( ) ( )( ) 2log12/1
2

1
−=−  is used [11].  

Note that, 1=x 
which means the first order moment is 

combined by (12) and (13) to yield the [zlog(z)] based 

estimator in terms of �̂� and �̂� as given by (14). This 

combination was used to reduce the number of variables of 

such estimation procedure.  

If b=2 which means the K-clutter case, closed form [zlog(z)] 

estimator is obtained when k=2 in (11) 
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Note that the scale parameter, a is not appeared in (8), (9), 

(10) and (14). This two-dimensional estimation problem can 

be solved by the solution of system with two nonlinear 

equations. In the next subsections, it will be shown that three 

nonlinear systems from (8), (9), (10) and (14) can be obtained. 

 

3.1 Higher order moments based estimator  

 

This method is referred to as HOME where (8) and (9) are 

used for the solution of the following system.  
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(16) 

 

3.2 Non-integer order moments based estimator 

 

This estimator is referred to as NIOME method where (9) 

and (10) are handled 
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3.3 Log moments based estimator 

 

That estimator is referred to as [zlog(z)] method where (9) 

and (14) are considered for solving the system below. 
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where, 
( )

( ) 1log
log

−−= z
z

zz
A . 

After computing b and   from (16), (17) or (18), the 

parameter a is simply computed using the first integer moment. 

Hence  
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4. ESTIMATION ANALYSIS 

 

It is now of interest to compare the performance of the new 

estimators given by (16)-(19). This will be done by generating 

artificial R-GG distributed clutter, with discrete shape 

parameter values between 0.1 and 1.5. For some values of b = 

0.5, 1, 2 and 3, the clutter power is normalized to one so that 

( ) ( ) += ba /2/ .  

These values have been selected to cover very spiky and 

spiky clutter situations. To solve systems of nonlinear 

equations evoked in Section 3, numerical routines are required. 

To this end, the fitness function is given in terms of the sum of 

squared errors for each equation. For the case of HOME 

method, we can write 
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Similarly, the belief function of the NIOME method is 
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Finally, the belief function for the case of mixture [zlog(z)] 

and the first two integer moments based methods yields 
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To solve (20)-(22), we used the Matlab function 

“fminsearch” to find the minimum with two variables, starting 

at an initial estimate. This is generally referred to as 

unconstrained nonlinear optimization. The “fminsearch” uses 

the simplex search method of [12 and therein]. This is a direct 

search method that does not use numerical or analytic 

gradients. The Nelder-Mead simplex algorithm uses a simplex 

of n+1 points for n-dimensional vectors x. The algorithm first 

makes a simplex around the initial guess x0 by adding 5% of 

each component x0(i) to x0, and using these n vectors as 

elements of the simplex in addition to x0. It uses 0.00025 as 

component i if x0(i) = 0.  

 

4.1 Estimation using simulated data 

 
Figure 2. MSE and Bias estimates using HOME, NIOME 

and [zlog(z)] based methods for b=0.5 and M=10000 

 

The following Matlab function is used to get R-GG 

distributed M independent samples. 
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where, ( ).,.vgammaincin  and ( ).raylrnd  are the inverse 

incomplete gamma and Rayleigh functions respectively. For 

consistency, the CRP size M is set to 10000 throughout. 

Monte-Carlo simulation is used to estimate the bias 

(   ˆBias −= ) and the mean square errors ( ( ) 2
 ˆMSE −= ) 

using n=100 runs. The fractional order is set to k=0.1 in all 

simulations. Figure 2 shows estimation performance as a 

function of v in the case of a small value of the power 

parameter b=0.5. It is clear, that the [zlog(z)] based estimator 

exhibits the best performance. Figure 3 repeats the same 

experiment except with b=1. The NIOME method provides 

almost the same results relative to the [zlog(z)] approach. The 

HOME method offers improved MSE and bias values when   

tends to 0.2. If the clutter is considered as a K-clutter with b=2, 

Figure 4 depicts values of MSE and bias in terms of  . Also, 

similar performance of NIOME and [zlog(z)] is obtained. We 

can observe that there is a week interval of   in which the 

HOME gives the better estimates. If the b is large (b=3), Figure 

5 illustrates performance comparison of the proposed 

estimators. It is noticed that the HOME method is the best for 

0.5<v<0.9. Comparing Figures 2-5, one concludes that 

estimator (22) performs almost ideally, due to the use of 

logarithmic moments. However, as b increases, it is clearly 

seen that the NIOME and [zlog(z)] methods perform 

comparably with HOME method. Also, these figures show 

that when the power parameter is increased more significantly, 

NIOME and [zlog(z)] procedures behave very similarly.
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Figure 3. MSE and Bias estimates using HOME, NIOME 

and [zlog(z)] based methods for b=1 and M=10000 

 
Figure 4. MSE and Bias estimates using HOME, NIOME 

and [zlog(z)] based methods for b=2 (K-clutter case) and 

M=10000 

 
Figure 5. MSE and Bias estimates using HOME, NIOME 

and [zlog(z)] based methods for b=3 and M=10000 

 

4.2 Estimation using real data 

 

In this subsection, the new estimator given by (22) is used 

to fit the R-GG model to IPIX real data. For comparison 

purposes, the K distribution is considered using the [zlog(z)] 

estimator given by (15). The lake-clutter data we processed 

were collected at Grimsby, Ontario, with the McMaster 

University IPIX radar. IPIX is experimental X-band search 

radar, capable of dual polarized and frequency agile operation 

[13]. We focus our analysis on the datasets 84, 85 and 86 

which correspond to the range resolutions 30m, 15m and 3m 

respectively. Characteristic features of the IPIX radar are 

found by Bakker and Currie [13]. The radar site was located at 

east of the “Place Polonaise” at Grimsby, Ontario (Latitude 43: 

2114±N, Longitude 79:5985±W), looking at lake Ontario from 

a height of 20 meter (m). The nearest shore on the far side of 

the lake is more than 20 Km away. The data of the Grimsby 

database are stored in 222 files, as 10 bits integers. 

 
 

Figure 6. Fitting the R-GG and K-distributions to empirical 

data with HH polarization, resolution 3m and 13th range cell 

 
 

Figure 7. Fitting the R-GG and K-distributions to empirical 

data with HH polarization, resolution 30m and 3rd range cell 

 

The effect of cell resolutions, antennas polarizations and 

range cells on the tail fitting of the R-GG and K models to 

empirical data is investigated. For the case of HH polarization, 

resolution 3m and 13th range cell, Figure 6 shows fitting the 

theoretical models to real data. Compared to the K-distribution, 

it is clear that the R-GG is well approximated to real PDF and 

CCDF. Another study is also investigated when a scenario of 

data is recorded for HH polarization, resolution 30m and 3rd 

range cell. Figure 7 highlights also fitting degradation of the K 

model against the proposed R-GG model. For VV polarization, 

resolution 15m and 19th range cell, Figure 8 displays fitting 

results of theoretical distributions against empirical data. Here, 

the tail fitting errors are remarkable in this scenario of the data. 

As mentioned in the introduction section, the problem of 
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modeling of sea clutter is the selection of the appropriate 

texture component distribution. For instance, the log-normal, 

inverse gamma and inverse Gaussian models have been 

proved to fit real data [4, 5, 9]. It is worth noted from the 

previous works that it is not possible to obtain the universal 

distribution for real data in all cases. The empirical data scene 

given in Figure 8 should deviates from the R-GG model. 

Figure 9 depicts PDF and CCDF curves for the case of VV 

polarization, resolution 3m and 26th range cell. The curves 

corresponding to each model are completely overlapped. This 

means that this scenario of data follows approximately both 

the K and R-GG distributions. 

Figure 8. Fitting the R-GG and K-distributions to empirical 

data with VV polarization, resolution 15m and 19th range cell 

Figure 9. Fitting the R-GG and K-distributions to empirical 

data with VV polarization, resolution 3m and 26th range cell 

5. CONCLUSIONS

In this paper, it was shown that parameters of R-G 
distributed radar clutter can converge to their real values using 

some combinations of integer order moments, non-integer 

order moments and logarithmic moments. Specifically, 

estimates of underling parameters could be approximated by 

the application of methods based on HOME, NIOME and 

[zlog(z)] involving numerical solutions of nonlinear systems. 

In most cases, this work has confirmed by means of simulated 

and real data that it is possible to obtain the best fit to real data 

if the R-G  model with [zlog(z)] estimator are taken into 

account.  
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