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The electrocardiogram (ECG) signal is the most important diagnostic test of heart disease 

detection; it is characterized by low frequency and weak amplitude which makes it 

susceptible to different kinds of noises such as high/ low-frequency noises. Thus, the 

diagnostic quality is reduced. This paper introduces a new filter that take the output of 

wavelet wiener based filter to design a normalized Least Mean Square (NLMS) based filter 

in order to reduce the broadband mypotentials (EMG) noise in ECG signal. Testing is 

performed by taking ECG signal from standard MIT/BIH arrhythmia database sampled at 

360 Hz-per second and the model of the EMG noise is generated by shaping white Gaussian 

noise before we add it to a clean ECG signal to get the noisy signal. The proposed method 

gives best noise reduction and preserves the ECG waves shape. In addition, the combination 

shows better results through increasing SNR and reducing Mean Square Error (MSE) 

compared to other existing techniques. 
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1. INTRODUCTION

The Electrocardiogram (ECG) is one important signal 

among bioelectrical signals; it reflects the electrical activity of 

the human heart and illustrates the sequences of atrial 

depolarization wave (P wave), a ventricular depolarization 

wave (QRS complex) and a ventricular repolarization wave (T 

wave) as presented in Figure 1 [1]. Since ECG is a low 

amplitude signal and contains low-frequency waves, it is very 

sensitive to different internal or external noises such as high/ 

low-frequency noises, one of the important high frequency 

noises being the electromyographic noise (EMG noise), which 

is caused by electrical activity of skeletal muscles during 

periods of contraction. Its frequency components are 

considerably overlapping the ECG spectrum. EMG noise is the 

most difficult type of broadband myopotentials noise to 

remove because it causes widening of the QRS complex, 

cropping of peaks in QRS complexes and completely mask PQ 

and ST intervals, the P- and T-waves [1, 2]. There are many 

methods that have been implemented to eliminate the noise 

from noisy signal such as nonlinear filter banks [3], adaptive 

filtering [4, 5], principal component analysis (PCA) and 

independent component analysis (ICA) [6], Genetic Particle 

Filtering [7], wavelet transform [8, 9], Empirical mode 

decomposition (EMD) and non-local mean (NLM) technique 

[10]. The filters possess disadvantages that they remove 

important frequency components in the vicinity of cut-off 

frequency, adaptive filters have the ability to adjust their 

parameters automatically and don’t need a prior knowledge of 

signal or noise description. Empirical mode decomposition 

technique is not perfect method in processing non-stationary 

signal such as ECG signal. Wavelet-based theory is different 

from Fourier analysis and spectral theory  since it is based on a 

local frequency representation where the wavelet denoising 

technique does not require a reference nor needs multi-channel 

signals. 

Nikolov and Gotchev [11] proposed an algorithm for ECG 

signal denoising in the wavelet domain. The coefficients were 

shrunk by applying a time and frequency dependent threshold. 

The amplitudes of the QRS complex are preserved and the 

noise is reduced. However, artifacts could arise in the transient 

PQ and ST. Nikolov and Gotchev [12] apply wavelet domain 

wiener filtering where the last problem was avoided. A 

denoising using combination between wavelet Shrinkage with 

Wiener filtering in translation-invariant wavelet domain was 

proposed which led to a reduction in the oscillation around 

QRS complex [13]. Li and Lin [9] proposed an optimal 

denoising algorithm for ECG signal using stationary wavelet 

transform where they conclude that by using Sym4, 

decompose the signal at level 5, and Hard shrinkage function 

with EBayes threshold can get the better de-noising effect 

before automatic evaluation or clinic analysis. Chmelka and 

Kozumplik [14] proposed the Wiener filtering in shift-

invariant wavelet domain with pilot estimation of the signal. 

The four-levels with hybrid thresholding were used for pilot 

estimation. Smital et al. [15] proposed an Adaptive Wavelet 

Wiener Filtering of ECG Signals, where a block of noise 

estimate was added, the approach provides better results than 

the classic wavelet Wiener filter. El B’charri et al. [16] 

proposed dual tree wavelet transform (DT-WT) to denoise and 

enhance ECG signal, the results have shown that the modified 

unified threshold with wavelet hyperbolic threshold denoising 

method is better in realistic and colored noises than the 

ordinary dual tree wavelet transform. Roopkanwal and Kaur 

[17] proposed a novel modified DWT-FFT-FXLMS algorithm

for ECG waveform denoising, the method achieved results

with better performance in terms of the number of

performance measures for ECG signal altered by diverse
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noises such as EMG noises. Kumar et al. [10] proposed 

empirical mode decomposition (EMD) with non-local mean 

(NLM) technique, EMD framework the was used for reduction 

of the noise from the ECG signal, then the output of the EMD 

passes through NLM framework for preservation of the edges, 

The method has showed lesser mean of percent root mean 

square difference (PRD), mean square error (MSE), and better 

mean SNR improvement. 

In this paper we introduce a new filter consists of two stages, 

first the noisy ECG signal passes through wavelet wiener filter 

where 59 filter banks and five thresholding techniques were 

tested using Log Scale Modified Universal (LSMU) threshold, 

then the output of the first filter is taken to design an adaptive 

filter which based on NLMS algorithm where the step size 

becomes adaptive. The main objective of this work is not only 

to clean the noisy ECG signal but also to get the signal with 

all its waves and characteristics without distortion; with lesser 

Mean Square Error (MSE), and better SNR improvement. The 

organization of the paper is as follows: The proposed new 

combination based on adaptive wavelet wiener filter with 

Normalized Least Mean Square (NLMS) algorithm using Log 

Scale Modified Universal (LSMU) threshold is explained in 

Section 2. The results and discussion are presented in Sections 

3 and 4, respectively. Final section presents the conclusion. 

 

 
 

Figure 1. Normal ECG signal 

 

 

2. MATERIALS AND METHODS 

 

2.1 Stationary wavelet transforms (SWT) 

 

The wavelet transform is an effective tool in the ECG signal 

denoising and it is the best choice then classical filtering as it 

exploits frequency and time content which does not happen in 

typical filter design. According to the literature in WT de-

noising domain also from the experience of authors dealing 

with signal processed [18, 19], it has been tested that using 

Cyclic Shift Tree, TI (Shifted Invariant) or SWT can improve 

SNR and reduce the Pseudo-Gibbs phenomenon. The SWT is 

similar to the classical discrete WT (DWT), except the signal 

is never sub-sampled, and the filters are up-sampled at each 

level of decomposition. Thus, interpolation wrongs that might 

occur during the reconstruction step can be avoided [15, 9]. 

The SWT signal denoising consists of three procedures:  

 1) Signal decomposition; where the noisy ECG signal is 

transformed to wavelet domain to find SWT coefficients up to 

appropriate level j (level of decomposition which denotes the 

jth frequency band); the procedure results in signal 

decomposition: lower bands with more components of QRS 

complex (approximate coefficients) and highest bands with 

EMG noise along with some additive components of QRS 

complex (detail coefficients) 

 2) SWT coefficients thresholding method; The algorithm 

was proposed by Donoho and Johnstone [8] applied on detail 

coefficients, it is varied based on types and rules to obtain the 

estimated wavelet coefficients that are calculated from 1 to j, 

this step needs to choose and estimate the optimal thresholding 

algorithms and the optimal threshold value. 

 3) Reconstruction of the denoised signal by applying the 

Inverse Wavelet Transformation (IWT) to coefficients. 

The corrupted signal denoted by x(n) is an additive mixture 

of noise-free signal s(n) and noise w(n) as illustrated in Eq. (1) 

as follows: 

 

x(n) = s(n) + w(n) (1) 

 

n represents the discrete time (n=0,1…., N-1) and N is the 

length in samples of the time-domain signal. 

In Eq. (2) the noisy signal x(n) is transformed into wavelet 

domain to obtain wavelet coefficients as follows: 

 

yj(n) = uj(n) + vj(n) (2) 

 

where, uj: are coefficients of noise free signal and vj  are the 

coefficients of the noise. 

The choice of decomposition-reconstruction filter banks, 

the level of decomposition, the threshold value and the 

strategy of thresholding method are important and affect the 

quality of noise suppression. And according to the selected 

values, the de-noised ECG signal could either retain some 

interference or have some distortion and discontinuities. 

In this paper 59 filter banks were tested, Haar, DB, sym, coif, 

bior, rbio, dmey and fk with different vanishing moments 

(which are present in the MATLAB Wavelet Toolbox);  

There are many methods for estimating the optimal 

threshold values [20]. For our combination Log Scale 

Modified Universal Method (LSMU) was used [21], this 

method has an advantage over others (Length Modified 

Universal Method, Log Variable Modified Universal Method, 

Scale Length Modified Universal Method, Minimax 

threshold ….) [22] that it takes different thresholds at different 

scales. LSMU threshold is progressively reduced, and it is 

accordant with the distribution characteristics of the noise in 

different scales of the wavelet transform to ensure the 

efficiency of the denoising technique; it is given by Eq. (3) as 

follows: 

 

TSHLSMU =
√2log(N)

log(j + 1)
 . σvj (3) 

 

The parameter σvj is the standard deviation of noise on j-th 

decomposition level, and log is a natural logarithm. σvj can be 

estimated using the median parameter [8] which can be 

calculated as given by Eq. (4) as follows: 

 

𝜎𝑣𝑗 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑗|)

0.6745
 (4) 

 

where, 
1

0.6745
 is a constant scale factor, it depends on 

distribution of the noise. 

Five thresholding algorithms were tested in this paper: hard, 
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soft, hyperbolic, nonnegative garrote and semisoft (firm) 

thresholding [23]. In hard thresholding the coefficient absolute 

values below the threshold are set to zero, in soft thresholding 

first setting to zero the coefficient absolute values below the 

threshold and then shrinking the coefficients absolute values 

greater or equal the threshold towards zero. The hard routine 

creates discontinuities, while the soft routine is a continuous 

function but induces a biased estimation of large coefficients 

[8]; garrote is an intermediate between soft and hard. It acts 

like soft thresholding for small data values and approximates 

hard thresholding for large data values; firm routine requires 

two threshold values (threshold-high and threshold-low) acts 

as soft thresholding for values below threshold-low and the 

same as hard thresholding for values above threshold-high. For 

intermediate values, the thresholded value is in between that 

corresponding to hard or soft thresholding. Firm is a 

continuous function as soft thresholding, but is unbiased for 

large values as hard thresholding. Hyperbolic routine can be 

obtained by soft thresholding energies of the wavelet 

coefficients [23]. Table 1 shows an example of some 

investigated parameters (decomposition level, thresholding 

methods and filter banks) for adaptation. 

 

Table 1. Example of investigate parameters for adaptation 

 
Decomposition 

Level 

Thresholding 

Method 

Filter Bank 

WT1 
Filter Bank 

WT2 

3 Hyperbolic sym8 Db4 

5 Semi-soft sym2 Sym2 

6 Soft bior1.3 Sym8 

4 Garrote sym8 bior1.1 

4 Hard fk4 Dmey 

 

2.2 Adaptive wavelet wiener filtering method (AWWF) 

 

After the classic wavelet Wiener filter (WWF) approach 

proposed by Chmelka and Kozumplik [14] as illustrated in 

Figure 2, a block of noise estimate (NE) was added in the study 

[15], the approach based on the Wiener filtering theory applied 

in the wavelet domain [22]. 

 

 
 

Figure 2. Block diagram of the WWF method 

 

WWF is based on two steps: 

1) 

• The input x(n) is decomposed to desired level j 

using wavelet filter bank 1(swt1 block) to 

obtain 𝑦𝑗(𝑛). 

• Apply thresholding technique on detail 

coefficients. 
• Reconstruct the denoised signal in ISWT1 block. 

• Then using wavelet filter bank 2 (swt2 block) to 

decompose the reconstructed signal to obtain 

 �̂�𝑗(𝑛) the estimate of 𝑢𝑗(𝑛).  

2) 

• 𝑦𝑗(𝑛) and �̂�𝑗(𝑛) are used to design the Wiener 

Filter via the Wiener correction factor as given 

by Eq. (5): 

 

�̂�𝑗(𝑛) =
�̂�𝑗

2(𝑛)

�̂�𝑗
2(𝑛) + 𝜎𝑣𝑗

2 (𝑛)
 (5) 

 

To obtain the modified coefficients 𝝀𝒚𝒋(𝒏) given by Eq. (6) 

as follows: 

 

𝜆𝑦𝑗(𝑛) = 𝑦𝑗(𝑛). �̂�𝑗(𝑛) (6) 

 

• The output y(n) signal is obtained by taking inverse 

stationary wavelet transform 2 of modified 

coefficients 𝜆𝑦𝑗(𝑛). 

In AWWF (Figure 3), The NE block needs two inputs:  

• The noisy signal x(n). 

• And the estimate of the noise-free signal y(n) 

obtained by the WWF method. The difference 

between these two signals gives an estimate of the 

input noise and thus SNR can be calculated. 

The parameters in WWF block are set up using the 

estimated SNRest value. Then the output signal z(n) is obtained 

by taking inverse stationary wavelet transform.  

 

 
 

Figure 3. Block diagram of the AWWF method 

 

The model of noise would have a similar power spectrum as 

the muscle noise, where the model of the surface EMG signal 

is created by filtering a white Gaussian noise using a shaping 

filter H(f) which is given by Eq. (7) as follows: 

 

𝐻(𝑓) =
𝑓ℎ

4𝑓2

(𝑓2 + 𝑓𝑙
2)(𝑓2 + 𝑓ℎ

2)2
 (7) 

 

where, f h=120 Hz (high cutoff frequency) and fl =60 Hz (low 

cutoff frequency). 

Right power of the noise is set to achieve required 𝑆𝑁𝑅𝑖𝑛. 

It is done by multiplying the noise by a constant A. so that the 

input signal is given by Eq. (8) as follows: 

 

𝑥(𝑛) = 𝑠(𝑛) + 𝐴𝑤(𝑛) (8) 

 

where, the constant A is given by Eq. (9) as follows: 

 

𝐴 = √
∑ [𝑠(𝑛)]2𝑁−1

𝑛=0

10
(

𝑆𝑁𝑅𝑖𝑛
10

) ∑ [𝑤(𝑛)]2𝑁−1
𝑛=0

 (9) 
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2.3 Normalized least mean square (NLMS) adaptive filter 

algorithm 

 

Adaptive algorithms are used to adjust the coefficients of 

the digital filter such that the error signal is minimized 

according to some criterion. In adaptive filters, the weight 

vectors are updated by an adaptive algorithm to minimize the 

cost function. A widely used linear adaptive filtering algorithm 

is named least mean square (LMS) algorithm by its originators, 

Widrow and Hoff (1960), it consists of two basic processes; 

filtering and adaptive process. LMS is simple to implement 

and gives a robust performance. However, it suffers from 

relatively slow convergence [24]. 

Figure 4 shows the structure of the based adaptive filter with 

an input sequence z(n) (from AWWF method) and with 

weights updated according to Eq. (10) as follows: 

 

𝑓(𝑛 + 1) = 𝑓(𝑛) + 𝜇 (𝑧(𝑛)𝑒(𝑛)) (10) 

 

where, f(n) are the filter coefficients, e(n) the estimation error, 

which is the difference between the desired response s(n) and 

the output of the filter f (n). 

μ is the adaptation step size that determines the amount of 

correction applied as the filter adapts from one iteration to the 

next. A small step size achieves the optimum value but results 

in slow convergence, on the other hand; the large value of step 

size achieves faster convergence but results in missing the 

actual target.  

 

 
 

Figure 4. Block diagram of Adaptive filter denoising 

 

In this paper; the adaptive algorithm used for EMG noise 

reduction in ECG is Normalized Least Mean Square (NLMS) 

algorithm where the step size becomes adaptive. NLMS is 

another class of LMS algorithms it is different from LMS in 

its weight updating rule where convergence speed of the LMS 

filter depends on the input signal power (uses an adaptive step 

size based on the signal power). To make it independent, 

signal normalization is introduced. The expression of the 

Normalized LMS (NLMS) algorithm is given by Eq. (11) as 

follows: 

 

𝑓(𝑛 + 1) = 𝑓(𝑛) + 
𝜇

𝑧𝑇(𝑛)𝑧(𝑛)
(𝑧(𝑛)𝑒(𝑛)) (11) 

 

where, 𝑧𝑇(𝑛) 𝑧(𝑛) is the normalized signal input. 

The block diagram of proposed combination (AWW and 

NLMS filtering) needs two inputs: S(n) the free original ECG 

signal, and Z(n) the noisy ECG signal obtained from AWW 

filtering.  

The noisy ECG signal passes through the adaptive filter 

NLMS algorithm.  

Thus, the adaptation of the filter coefficients and readjust 

itself continuously to minimize the error is fulfilled by the 

NLMS algorithm. And therefore, the output of the filter C (n) 

is a good estimate of S(n). 

 

 

3. RESULTS 

 

The implementation and performance evaluation are done 

using MATLAB R2016b. The ECG signals used for testing are 

from MIT/BIH Arrhythmia Database where the recordings 

were digitized at 360 samples _per second. Forty-eight 

recordings were used for evaluation in this paper; they were 

pre-filtered using an averaging filter. The artificial noise used 

was generated using WGN function then it is shaped to EMG 

spectrum using a shaping filter. SNR in   is set from -5 to 30 dB 

in steps of 5 dB. 

The results section consists of two parts named subsection 

1, and subsection 2.  

In subsection1: 

• Five outputs of the proposed denoising combination 

are compared using five different thresholding 

techniques (Hard, Garrote, Hyperbolic, Semi Soft 

and Soft thresholding). 

• The output of the proposed denoising combination is 

compared with the output of other techniques for 

denoising ECG signal such adaptive filtering [4], 

Butterworth low pass filtering [25], adaptive wavelet 

wiener with post LMS filtering [26] and adaptive 

wavelet wiener filtering [15]. 

• The output of the proposed denoising combination is 

compared with the original ECG signal. 

In subsection 2: 

• Achieved SNR of output signal and the Mean Square 

Error (MSE) of the proposed denoising combination 

is compared with achieved SNR of output signal and 

the Mean Square Error (MSE) of other techniques for 

denoising of ECG signal such as adaptive filtering, 

Butterworth low pass filtering , adaptive wavelet 

wiener with post LMS filtering and adaptive wavelet 

wiener filtering. 

• Dependence of improvement SNR on input SNR 

after using AWWF and then after using the proposed 

denoising methodology is shown. 

 

3.1 Subsection1 results 

 

Figure 5 shows the comparison of five outputs of the 

proposed combination using five different thresholding 

techniques (Hard, Garrote, Hyperbolic, Semi Soft and Soft 

thresholding) for denoising noisy ECG signal from added 

white Gaussian noise to the data number of 105 from MIT/BIH 

Arrhythmia Database at 30 dB input, Figure 6 shows the 

comparison of different methods to denoise noisy ECG signal 

from added white Gaussian noise to the data number of 105 

from MIT/BIH Arrhythmia Database at 30 dB input, Figure 7 

shows the comparison between the reconstructed signal 

obtained by the proposed combination and the original ECG 

signal.  

All the figures in subsection 1 (Figure 5, 6 and 7) display 

that the proposed combination (AWW and NLMS filtering) 

gives less distortion compared other ECG denoising methods, 

and display nearly similar shape as the original ECG signal. 
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(a) original ECG signal 

 
(b) noisy ECG signal obtained by adding EMG noise 

 
(c) Filtered ECG signal using AWWF (Hyperbolic thr) +NLMS filtering 

 
(d) Filtered ECG signal using AWWF (Garrote thr)+NLMS filtering 

 
(e) Filtered ECG signal using AWWF (Firm thr)+NLMS filtering 

 
(f) Filtered ECG signal using AWWF (Soft thr)+NLMS filtering 

 
(g) Filtered ECG signal using AWWF (Hard thr)+NLMS filtering 

 

Figure 5. Outputs of denoised ECG signal for input SNR of 30 dB and using LSMU threshold 

 

 
(a) original ECG signal 

 
(b) noisy ECG signal obtained by adding EMG noise 
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(c) filtered ECG using AWWF 

 
(d) filtered ECG using AWWF (garrote thresholding and LSMU threshold) 

 
(e) filtered ECG using Adaptive filtering 

 
(f) filtered ECG using AWWF+LMS algorithm 

 
(g) filtered ECG using Butterworth low pass filtering 

 

Figure 6. Outputs of denoised ECG signal for input SNR of 30 dB using different denoising techniques 

 

 
 

Figure 7. Original and denoised ECG signal using adaptive wavelet wiener (with LSMU threshold) and NLMS filtering 

 

3.2 Subsection 2 results 

 

The performance of the different noise denoising techniques 

of the ECG signal is evaluated by calculating SNR output 

(SNRout), Mean Square Error (MSE) and SNR improvement 

(SNRimp) given by Eq. (12), Eq. (13) and Eq. (14) 

respectively as follows: 

 

𝑆𝑁𝑅𝑜𝑢𝑡 = 10𝑙𝑜𝑔10 (
∑ [𝑠(𝑛)]2𝑁−1

𝑛=0

∑ [𝐶(𝑛) − 𝑠(𝑛)]2𝑁−1
𝑛=0

)   [𝑑𝐵] (12) 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑠(𝑛) − 𝐶(𝑛))

2
𝑁−1

𝑛=0

 (13) 

 

𝑆𝑁𝑅𝐼𝑚𝑝 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 (14) 

 

Table 2 shows that the combination AWW+NLMS (using 

Garrote thresholding and LSMU threshold) gives better output 

SNR and lesser MSE compared to other methodologies like 

adaptive filtering, wavelet wiener filtering, Butterworth low 

pass filtering and AWWF+LMS filtering for denoising ECG 

signal of added white Gaussian noise at -5 dB to 30 dB input 

SNR to the ECG signals. 

 

Table 2. SNR out and mean square error obtained after 

denoising ECG signal for 𝑆𝑁𝑅𝑖𝑛=30 𝑑𝐵 
 

Methods used SNRout (dB) MSE 

AWWF using LMSU threshold 43.256 0.00002522 

AWWF using Tuning parameter 

TM [15] 
41.055 0.00004022 

AWWF and NLMS filtering 52.816 0.00002304 

AWWF and LMS filtering [26] 48.389 0.00006993 

Butterworth low pass filter [25] 38.4849 0.00060880 

Adaptive filtering [5] 23.4495 0.00250200 
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Figure 8 shows Dependence of improvement SNR on input 

SNR, the average SNR improvement corresponding AWWF 

using LSMU threshold decreases from 24 to 6 dB with 

increasing input signal SNR while for proposed combination 

AWW+ NLMS filtering it decreases from 28 to 11 dB with 

increasing input signal SNR, where it is the better.  

 

 
 

Figure 8. Dependence of SNR imp on Input SNR 

 

 

4. DISCUSSION 

 

In this paper, a new combination adaptive filter based on 

wavelet wiener transforms and normalized least mean square 

algorithm is introduced in the aim of denoising corrupted ECG 

signal from EMG noise. Both subsection results 1 and 2 show 

that the proposed adaptive filter achieved good results and 

outperforms other existing Denoising technique.  

In subsection1 results, first the proposed combination using 

LSMU threshold and parameters introduced in Table 1 shows 

that: Hyperbolic with NLMS method (Figure 5c) results a 

widening in R wave and narrowing in Q wave, Firm with 

NLMS method (Figure 5e) results a widening in  R wave and 

distortion of the original ECG signal, using both of soft and 

hard with NLMS methods (Figure 5f, Figure 5g) the signal still 

keeps a lot of noise, but  using Non-negative garrote with 

NLMS method (Figure 5d) and sym8 for wavelet bank1, 

rbio1.1 for wavelet bank2 gets less distortion and nearly 

similar result as original ECG signal. Non-negative garrote has 

advantages over hard, soft, semi soft and hyperbolic 

thresholding rules in preserving the shape of QRS complex. 

The reason for these differences in the results obtained in this 

step is due to the successful combination between the 

smoothness of garrote rules, the accuracy of LSMU threshold 

from stage to stage, the optimal level that affects the shape of 

the signal and, the appropriate selection of the combination of 

filter banks (sym8, rbio1.1). Then in second comparison, 

AWWF using tuning parameter (Figure 6c) shows a widening 

in R wave due to the tuning parameter that prevents from 

correctly controlling the threshold when the signal changes 

suddenly, especially since it is constant in all levels. adaptive 

filtering method (Figure 6e) keeps QRS shape but a part in the 

beginning of the signal was omitted due to the step size 

parameter non adaptation characteristic of the least mean 

square algorithm. AWW with LMS method (Figure 6f) shows 

narrowing in Q wave due to the fixed threshold value in the 

first stage and to non adjusted step size in the second stage. 

Butterworth low pass filter method shows less noise but gives 

distortion of QRS complex (Figure 6g), while Butterworth is a 

not good choice for high frequency noise removal unless it is 

used in combination with another technique such wavelet 

transform. AWW with NLMS (Figure 6d) method using 

LSMU threshold shows best result compared to adaptive 

filtering, Butterworth low pass filtering, adaptive wavelet 

wiener with LMS filtering and adaptive wavelet wiener 

filtering for preserving QRS complex and removal added 

white Gaussian noise to the ECG signal.  

The proposed combination of AWW with NLMS filtering 

also shows better SNR improvement and lesser MSE 

compared to other techniques as shown in subsection2 results. 

The reasons for better performance of our combination are 

appropriate selection of best wavelet filter banks, LSMU 

threshold value where it takes different thresholds at different 

scales, thresholding technique, adaptive step size and 

normalized signal input of the NLMS algorithm. 

 

 

5. CONCLUSION 

 

In this paper, an adaptive wavelet wiener based filter 

combined with Normalized Least Mean Square algorithm 

filter is proposed to remove EMG noise from real ECG signal. 

The Mean Square Error, achieved SNR and SNR improvement 

of the proposed method are calculated at different input SNR. 

The use of SWT can increase the effectiveness of 

suppression of wide-band EMG noise in ECG signal by 

avoiding errors during reconstruction step of the decomposed 

signal and reducing the Pseudo-Gibbs phenomenon. The 

selection of the LSMU threshold value and garrote 

thresholding rule has an important influence on the preserving 

the shape of QRS complex of the signal and decrease the noise. 

The NLMS-based adaptive filter is able to produce superior 

results in reducing EMG noise from the ECG signal obtained 

from wavelet-wiener based filtering compared to the 

conventional LMS adaptive filter exploiting the important 

characteristics which are: normalizing the power of the input 

and the adaptive step size. The proposed combination (AWWF 

with NLMS) shows lesser Mean Square Error, and better SNR 

improvement compared to other existing techniques. 
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