

Performance Comparison of Sorting Algorithms with Random Numbers as Inputs

Suvarna Buradagunta*, Jyostna Devi Bodapati, Nirupama Bhat Mundukur, Shaik Salma

Department of CSE, VFSTR Deemed to be University, Vadlamudi 522213, Guntur District, Andhra Pradesh, India

Corresponding Author Email: bs_cse@vignan.ac.in

https://doi.org/10.18280/isi. 250115

ABSTRACT

Received: 7 September 2019

Accepted: 5 December 2019

 Sorting is a huge demand research area in computer science. Sorting is a process of

arranging the elements in an order. In practical application computing requires things to be

in order. A comparative study is done in this study and performed the comparison for both

positive and negative numbers by taking the random numbers as input. In this study,

different algorithms like UNH Sort, Selection Sort, Bubble Sort, Insertion Sort, Merge Sort,

Quick Sort are considered for the experimentation. From the obtained results we can

conclude that, Initially when the input size is less UNH Sort is giving best when it is

compared with bubble sort. When the input size increases bubble sort takes long time to

perform sorting. And Quick sort takes less time to perform sorting.

Keywords:

random inputs, UNH sort, bubble sort,

insertion sort, selection sort, merge sort,

quick sort

1. INTRODUCTION

Sorting is a huge demand research area in computer science.

Sorting algorithms are widely used in different applications

like finding duplicates from a set of elements, Ranking i.e. for

a given set of elements finding the minimum and maximum,

median, numerical applications, Matrix chain Multiplication

[1], Kruskal algorithm and in searching. Searching can be done

easily after performing the sorting. We can also get the kth

position element easily when the elements are sorted.

Sorting is a process of arranging the elements in an order

(increasing or decreasing) based on the requirement. Generally

there are two types of sorting namely Internal sorting and

External Sorting. In the Internal Sorting the entire data is

stored in memory during sorting. Whereas External Sorting

means data is stored outside i.e. hard disk and loaded into

memory when needed. And it is especially used when whole

data can’t fit into memory.

In internal sorting we have different sorting algorithms

those are: Selection Sort, Bubble Sort, Insertion Sort, Merge

Sort, Quick Sort, Heap Sort and Radix Sort. From the listed

methods merge sort and Quick sort the two sorting techniques

performed by using the Divide and Conquer techniques.

Procedures for all the sorting listed above are discussed in

detail in the following sections.

The rest of the paper is organized as follows. Section 2

discuss about the related work. Section 3 discuss about the

comparative study. Section 4 discuss about the

experimentation and results. The conclusion and future work

presented in section 5.

2. RELATED WORK

A Study of sorting algorithms began in the early 1950’s and

it is still going on. Yang et al. [2] done the experimental study

on five sorting algorithms, Faujdar et al. [3] done the analysis

on bucket sort, Suresh et al. [4] done the analysis on various

combination sorting algorithms. As there are advancements in

hardware, several parallel techniques are developed.

Efficiency of the algorithms can be measured by both time and

space complexities [5-10].

3. COMPARIVE STUDY

3.1 Selection sort

Selection sort is a sorting algorithm which takes the time

complexity i.e. O (n2). Procedure: Initially take an array of

unsorted elements. Consider initial position (first element) as

min and compare that element with all the remaining elements

in the array (which are right to first element) and if found the

smallest element then replace that smallest element with min.

Then move the min to next position i.e.

1min_min_ += positiionposition

Similarly do the same procedure for remaining elements

which are in the right side (since all left side elements are

sorted). If there is no element smaller than min in the right side

the move the min to next position as above.

Follow the same procedure for all remaining elements in the

array until the elements are sorted [1]. Applications of

Selection Sort are, it is used for small data sets and can be used

in Embedded System [11].

3.2 Bubble sort

It is also known as Adjacent Sort or Exchange Sort. It can

be done in passes. In this for every pass an element is bubbled

up. If there are n elements, the sorting should be completed in

(n-1) passes. Procedure: Initially take an array of ‘n’ elements.

Pass 1: Compare first 2 numbers, if second number is smaller

than first number then swap the two numbers. Repeat the same

step for remaining elements in the array so that second number

is compared with third element and the next compare third

Ingénierie des Systèmes d’Information
Vol. 25, No. 1, February, 2020, pp. 113-117

Journal homepage: http://iieta.org/journals/isi

113

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250115&domain=pdf

element with fourth element and so on repeat the step. So that

finally the maximum number goes into its original position

(i.e., last). Pass 2: In this the procedure is same as pass 1 but

here the last element is not participated in swapping and the

next large element is in its correct position. Similarly follow

same procedure for (n-1) passes and get all elements are sorted.

Applications of bubble sort: The real time application for

bubble sort is classroom where student marks are sorted in this

way and assigning the rank.

3.3 Insertion sort

Insertion sort is another algorithm in which it is similar to

playing cards. Procedure: The array of elements is divides into

two parts. Sorted array and unsorted array. Generally, the left

side elements are sorted, and right side elements are unsorted.

Compare first element of unsorted array with last element of

sorted array and then place that unsorted element in its original

position in the sorted list. Similarly follow the same procedure

for remaining elements. This can be used in Playing cards.

3.4 UNH sort

This is the new algorithm that we are going to discuss. The

algorithm of the UNH sorting is explained below.

Algorithm UNHSort(A)

Begin:

for i = n-1 down to 1 do

for j = 1 to i do

if A[j] > A[j+1] then

swap(A[j], A[j+1])

end:

In every iteration of the inner loop the maximum element is

reaching to the last. Like this the UNH sorting algorithm is

sorting the elements. This algorithm takes time complexity O

(n2).

3.5 Merge sort

Merge sort depends on procedure called Merging. Merge

sort algorithm uses divide, conquer and combine algorithm.

Divide indicates that we need to divide the array of ‘n’

elements into n/2 parts. If array with 0 or 1 element, then need

not sort it again. Divide the elements of each part again until

we get separate elements. After getting the separated elements,

sort the elements by using conquer technique of two sub parts.

Then combine two sub parts then we get the sorted array of ‘n’

elements.

3.6 Quick sort

It is also called as partition exchange sort. It also follows the

divide and conquers method like merge sort. Procedure:

Initially take array of n elements. Here we heard about the term

pivot element generally, the stating elements are considered as

pivot element. So here our aim is to place the pivot element

into its original position. Here we are also taking care about

left and right sides. Pivot element is compared with all the

remaining elements such that the numbers smaller than pivot

are at left side and the numbers [12] greater than pivot element

are placed at right side that’s why we also considering left and

right sides i.e., smaller----Pivot-----Greater---

Here the procedure how pivot element is in its position:

Pivot element first start comparing from right side and if

element less than pivot then swap the two numbers then pivot

element position changes and then the pivot is at right side now.

Compare the pivot element from left side now and if any

number greater than pivot then swap the two numbers. Follow

the same procedure until the pivot element placed in its

original position. Finally, here we apply divide and conquer

method for elements before the pivot and after the pivot and

the sort the two lists by same procedure as merge sort and

combine two sorted lists by placing pivot in its place and then

elements are sorted.

3.7 Heap sort

Heap sort is done through the tree concept. Procedure:

Consider an array of n unsorted elements. These elements can

be represented in the form of the tree as the first element in an

array is considered as root element and second element and

third element of array are at left side and right side of root

element respectively. That tree is considered as Normal Tree.

Now we need to convert this tree in to Max heap tree which

means the maximum element in the Normal Tree is considered

as root node and ensure that root node is larger or in some

cases it is equal to any one of the remaining nodes. In max

heap swap the root node with last element and then redraw the

tree by disconnecting the root node and all disconnected nodes

are stored in another array. Again, redraw the max heap tree

with remaining elements in same manner. Perform the same

procedure by getting the minimum number in the array and

finally, we get the sorted elements.

3.8 Radix sort

Radix sort is performed from least significant digit to most

significant digit. Sorting can be completed in ‘n’ passes, here

‘n’ indicates that the maximum number of digits present in the

largest number in the array elements.

Procedure: Consider queues (Q0-Q9) which are called as

buckets. Consider the last digit of each element and place each

element in respective queue number. (if digit is same then

place according to sequence). The array is changed by taking

the elements from Q0 to Q9. Repeat the same procedure until

most significant digit and we get the sorted elements [13-29].

4. EXPERIMENTATION

Six sorting algorithms are selected for experimentation. For

the experimentation we take the elements or numbers from 100

and tested with different size of the elements up to 2,00,000.

We conducted experiments for taking both positive elements

and negative elements. We generated the different size of

elements with the help of random number generator. The

obtained results are shown in the form of table. Table 1 for

positive random numbers and Table 2 for negative numbers.

And the obtained results also presented in the form of graph.

Comparison is done for UNH sort, Insertion sort, Bubble sort,

selection sort, and the algorithms which use the divide and

Conquer techniques like Merge sort and Quick sort.

The experimentation part is organized as follows. Initially

UNH Sort, Bubble sort, Selection sort and Bubble sort are

compared in both positive and negative numbers in the

comparison 1. In the next section, only the comparison is done

for merge sort and quick sort. In the last section, the

comparison is done for all the sorting algorithms.

114

Table 1. With positive inputs

Records\Sorting UNH
Insertion

sort

Bubble

Sort

Selection

Sort

Merge

Sort
Quic kSort

100 0.000 0.0003 0.0003 0.0002 0.000 0.0002

1000 0.008 0.0053 0.0062 0.0050 0.002 0.0013

2000 0.024 0.0092 0.0114 0.0181 0.006 0.0017

5000 0.105 0.0681 0.0866 0.0573 0.008 0.011

10000 0.334 0.212 0.3526 0.1565 0.030 0.0225

20000 1.438 0.078 1.488 0.5206 0.040 0.0496

40000 5.784 2.7785 5.9458 1.8455 0.103 0.0746

60000 13.03 6.1519 13.573 4.1023 0.169 0.1207

80000 23.25 10.893 24.170 7.0718 0.239 0.1280

1 lack 36.37 17.090 38.007 11.023 0.302 0.1435

2 lack 147.1 67.401 150.51 45.472 0.901 0.3097

Table 2. With negative inputs

Records\Sorting UNH
Insertion

sort

Bubble

Sort

Selection

Sort

Merge

Sort

Quick

Sort

100 0.000 0.000 0.000 0.000 0.000 0.000

1000 0.012 0.005 0.006 0.006 0.002 0.000

2000 0.027 0.017 0.029 0.026 0.002 0.000

5000 0.097 0.087 0.084 0.103 0.010 0.004

10000 0.396 0.244 0.388 0.338 0.012 0.008

20000 1.515 0.801 1.494 1.299 0.043 0.017

40000 6.034 3.050 5.978 5.226 0.057 0.032

60000 13.53 6.800 13.46 11.75 0.124 0.044

80000 24.04 11.92 24.14 20.95 0.125 0.063

1 lack 37.42 18.56 37.62 32.69 0.172 0.072

2 lack 149.1 74.50 150.2 135.6 0.296 0.131

4.1 Comparison of UNH sort, Insertion sort, Bubble sort

and Selection sort

Initially UNH Sort, Bubble sort, Selection sort and Bubble

sort are compared with positive numbers in Figure 1, and

negative numbers in Figure 2.

Figure 1. For positive numbers

From the obtained results we can observe that initially UNH

sort taking more time compared with other sorting algorithms,

but later some point of time Bubble sort is taking the large

amount of time.

Figure 2. For negative numbers

4.2 Comparison of merge sort and quick sort

In this section the comparison is done for merge sort and

quick sort. Comparison is done for the positive numbers and

negative numbers. Comparison with positive inputs presented

in Figure 3. Comparison with negative inputs presented in

Figure 4.

From the obtained results quick sort is taking less time when

it is compared with merge sort in both positive and negative

numbers.

115

Figure 3. For positive numbers

Figure 4. For negative numbers

4.3 Comparison of all the sorting algorithms

The experimentation results for different sizes of all the

sorting algorithms which are described in this study are given

in Table 1 and Table 2. Table 1 is for the positive elements.

Table 2 is for the negative inputs.

The obtained results are placed in the form of graphs. Figure

5 describes about with the positive inputs. And Figure 6

describes about with negative numbers.

When all the algorithms are compared Quick sort is taking

less execution time and Bubble sort is taking large amount of

time to perform the sorting.

Figure 5. For positive inputs

Figure 6. For negative inputs

5. CONCLUSION

To perform sorting different sorting algorithms are

performing a vital role. Hence in this study, several sorting

algorithms are compared by doing the experimentation with

random positive and negative numbers. Experimental results

are saying that quick sort is taking the less amount of time

irrespective of the data size and type of the data. In future, new

algorithms can be used to observe the behavior of UNH and

other algorithms.

REFERENCES

[1] Suvarna, B., Maruthi Padmaja, T. (2018). Enhanced

matrix chain multiplication. Journal of Cyber Security

and Mobility, 7(4): 409-420.

https://doi.org/10.13052/jcsm2245-1439.743

[2] Yang, Y., Yu, P., Gan, Y. (2011). Experimental study on

the five sort algorithms. International Conference on

Mechanic Automation and Control Engineering, Hohhot,

China, pp. 1314-1317.

https://doi.org/10.1109/MACE.2011.5987184

[3] Faujdar, N., Saraswat, S. (2017). The detailed

experimental analysis of bucket sort. 7th International

Conference on Cloud Computing, Data Science &

Engineering, Noida, India, pp. 1-6.

https://doi.org/10.1109/CONFLUENCE.2017.7943114

[4] Suresh, A., George, A.K. (2018). Performance analysis

of various combination sorting algorithms for large

dataset to fit to a multi-core architecture. 2018 Second

International Conference on Inventive Communication

and Computational Technologies (ICICCT), Coimbatore,

India, pp. 51-56.

https://doi.org/10.1109/ICICCT.2018.8472956

[5] Kunth, D.E. (1975). The art of computer programming:

Sorting and searching, Addison-Wesley. Volume 3.

Sorting and searching, Second Edition.

[6] Gugale, Y. (2018). Super sort sorting algorithm. 2018 3rd

International Conference for Convergence in

Technology (I2CT), Pune, India, pp. 1-5.

https://doi.org/10.1109/I2CT.2018.8529769

[7] Faujdar, N., Ghrera, S.P. (2015). Analysis and testing of

sorting algorithms on a standard dataset. 2015 Fifth

International Conference on Communication Systems

and Network Technologies, Gwalior, India, pp. 962-967.

116

https://doi.org/10.13052/jcsm2245-1439.743
https://doi.org/10.1109/MACE.2011.5987184
https://doi.org/10.1109/CONFLUENCE.2017.7943114
https://doi.org/10.1109/ICICCT.2018.8472956
https://doi.org/10.1109/I2CT.2018.8529769

https://doi.org/10.1109/CSNT.2015.98

[8] Abdel-Hafeez, S., Gordon-Ross, A. (2017). An efficient

O(N) comparison free sorting algorithm. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 25(6): 1930-1942.

https://doi.org/10.1109/TVLSI.2017.2661746

[9] Mandal, P.K., Verma, A. (2019). Novel hash-based radix

sorting algorithm. IEEE 10th Annual Ubiquitous

Computing, Electronics & Mobile Communication

Conference (UEMCON), New York City, USA, pp.

0149-0153.

https://doi.org/10.1109/UEMCON47517.2019.8992938

[10] Osama, H., Omar, Y., Badr, A. (2016). Mapping sorting

algorithm. Sai Computing Conference, London, UK, pp.

488-491. https://doi.org/10.1109/SAI.2016.7556025

[11] Kumari, S., Singh, D.P. (2014). A parallel selection

sorting algorithm on GPUs using binary search. 2014

International Conference on Advances in Engineering &

Technology Research (ICAETR-2014), Unnao, India, pp.

1-6. https://doi.org/10.1109/ICAETR.2014.7012819

[12] Patel, Y.S., Singh, N.K., Vashishatha, L.K. (2014). Fuse

sort algorithm: A Proposal of divide & Conquer based

sorting approach with O(n log logn) time and linear space

complexity. 2014 International Conference on Data

Mining and Intelligent Computing (ICDMIC), New

Delhi, India, pp. 1-6.

https://doi.org/10.1109/ICDMIC.2014.6954240

[13] Yildiz, Z., Aydin, M., Yilmaz, G. (2013). Parallelization

of biotonic sort and radix sort algorithms on many core

GPUs. 2013 International Conference on Electronics,

Computer and Computation (ICECCO), Ankara, Turkey,

pp. 326-329.

https://doi.org/10.1109/ICECCO.2013.6718294

[14] Durad, M.H., Akhtar, M.N., Haq, I.U. (2014).

Performance analyisis of parallel sorting algorithms

using MPI. 12th International Conference on Frontiers of

Information Technology, Islamabad, Pakistan, pp. 202-

207. https://doi.org/10.1109/FIT.2014.46

[15] Khurana, M., Faujdar, N., Saraswat, S. (2017). Hybrid

bucket sort switching internal sorting based on the data

inside the bucket. 2017 6th International Conference on

Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), Noida, India,

pp. 476-482.

https://doi.org/10.1109/ICRITO.2017.8342474

[16] Zhong, C., Ke, Q., Liu, J., Huang, Y.R. (2011). Thread-

level parallel algorithm for sorting integer sequence on

multi-core computers. 2011 Fourth International

Symposium on Parallel Architectures, Algorithms and

Programming, Tianjin, China, pp. 37-42.

https://doi.org/10.1109/paap.2011.57

[17] Guigang zheng, shaohua teng, wei zhang, xiufen

fu(2009). a cooperative sort algorithm based on indexing.

13th international conference on computer supported

cooperative work in design.pp 704-709.

https://doi.org/10.1109/cscwd.2009.4968141

[18] Ullah, S., Khan, M.A., Khan, M. A., Akbar, H., Hassan,

S.S. (2015). Optimized selection sort algorithm for two

dimensional array. 2015 12th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD),

Zhangjiajie, China, pp. 2549-2553.

https://doi.org/10.1109/fskd.2015.7382357

[19] Ghaffarizadeh, A., Ahmadi, K., Flann, N.S. (2011).

Sorting unsigned permutations by reversals using multi-

objective evolutionary algorithms with variable size

individuals. 2011 IEEE Congress of Evolutionary

Computation (CEC), New Orleans, LA, USA, pp. 292-

295. https://doi.org/10.1109/CEC.2011.5949631

[20] Khurana, M., Faujdar, N., Saraswat, S. (2017). Hybrid

bucket sort switching internal sorting based on the data

inside the bucket. 6th International Conference on

Reliability, Infocom Technologies and Optimization

(ICRITO), Noida, India, pp. 476-482.

https://doi.org/10.1109/icrito.2017.8342474

[21] Chen, P.N., Gao, M.Y, Huang, J.Y., Yang, Y.X., Zeng,

Y. (2018). High-speed color sorting algorithm based on

fpga implementation. 2018 IEEE 27th International

Symposium on Industrial Electronics (ISIE), Cairns,

QLD, Australia, pp. 235-239.

https://doi.org/10.1109/isie.2018.8433831

[22] Faujdar, N., Ghrera, S.P. (2015). A detailed

experimental analysis of library sort algorithm. 2015

Annual IEEE India Conference (INDICON), New Delhi,

India, pp. 1-6.

https://doi.org/10.1109/INDICON.2015.7443165

[23] Lucas', K.T., Jana, P.K. (2009). An efficient parallel

sorting algorithm on OTIS mesh of trees. 2009 IEEE

International Advance Computing Conference (IACC

2009), Patiala, India, pp. 175-180.

https://doi.org/10.1109/IADCC.2009.4809002

[24] Faujdar, N., Ghrera, S.P. (2015). Analysis and testing of

sorting algorithms on a standard dataset. 2015 Fifth

International Conference on Communication Systems

and Network Technologies, Gwalior, India, pp. 962-967.

https://doi.org/10.1109/CSNT.2015.98

[25] Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.

(2012). A novel sorting algorithm for many-core

architectures based on adaptive bitonic sort. 2012 IEEE

26th International Parallel and Distributed Processing

Symposium, Shanghai, China, pp. 227-237.

https://doi.org/10.1109/IPDPS.2012.30

[26] Lipu, A.R., Amin, R., Mondal, M.N.I., Mamun, M.A.

(2016). Exploiting parallelism for faster implementation

of bubble sort algorithm using FPGA. 2nd International

Conference on Electrical, Computer &

Telecommunication Engineering (ICECTE), Rajshahi,

Bangladesh, pp. 1-6

https://doi.org/10.1109/ICECTE.2016.7879576

[27] White, S., Verosky, N., Newhall, T. (2012). A CUDA-

MPI hybrid bitonic sorting algorithm for GPU clusters.

2012 41st International Conference on Parallel

Processing Workshops, Pittsburgh, PA, USA, pp. 588-

589. https://doi.org/10.1109/ICPPW.2012.82

[28] Wang, L.W., Zhu, Y.Q., Pan, Y.F. (2005). FCM

algorithm and index cs for the signal sorting of radiant

points. Proceedings of the Fourth International

Conference on Machine Learning and Cybernetics,

Guangzhou, China, pp. 4415-4419.

https://doi.org/10.1109/ICMLC.2005.1527716

[29] Tarasiuk, P., Yatsymirskyy, M. (2018). Optimized

concise implementation of batcher’s odd-even sorting.

IEEE Second International Conference on Data Stream

Mining & Processing, Lviv, Ukraine, pp. 449-452.

https://doi.org/10.1109/DSMP.2018.8478515

117

https://doi.org/10.1109/CSNT.2015.98
https://doi.org/10.1109/TVLSI.2017.2661746
https://doi.org/10.1109/SAI.2016.7556025
https://doi.org/10.1109/ICDMIC.2014.6954240
https://doi.org/10.1109/ICECCO.2013.6718294
https://doi.org/10.1109/FIT.2014.46
https://doi.org/10.1109/ICRITO.2017.8342474
https://ieeexplore.ieee.org/author/37631142300
https://ieeexplore.ieee.org/author/38296791300
https://ieeexplore.ieee.org/author/38293283400
https://ieeexplore.ieee.org/author/38339719100
https://doi.org/10.1109/PAAP.2011.57
https://ieeexplore.ieee.org/author/37633424600
https://ieeexplore.ieee.org/author/37397766500
https://ieeexplore.ieee.org/author/37404197100
https://ieeexplore.ieee.org/author/37272568100
https://ieeexplore.ieee.org/author/37272568100
https://doi.org/10.1109/CSCWD.2009.4968141
https://doi.org/10.1109/FSKD.2015.7382357
https://ieeexplore.ieee.org/xpl/conhome/5936494/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5936494/proceeding
https://doi.org/10.1109/CEC.2011.5949631
https://doi.org/10.1109/ICRITO.2017.8342474
https://doi.org/10.1109/ISIE.2018.8433831
https://doi.org/10.1109/INDICON.2015.7443165
https://doi.org/10.1109/CSNT.2015.98
https://doi.org/10.1109/IPDPS.2012.30

