
 

 
 

 
 

 

1. INTRODUCTION 

 The no-slip boundary condition (the assumption that a 
liquid adheres to a solid boundary) is one of the central tenets 

of the Navier–Stokes theory. However, there are situations 
wherein this condition does not hold. The non-adherence of 

the fluid to a solid boundary, known as velocity slip, is a 
phenomenon that has been observed under certain 

circumstances [1]. The fluids that exhibit boundary slip have 
important technological applications such as in the polishing 

of artificial heart valves and internal cavities. Partial velocity 
slip may occur on the stretching boundary when the fluid is 

particulate such as emulsions, suspensions, foams and 
polymer solutions. The slip flow problem of laminar 

boundary layer is of considerable practical interest. 
Microchannels which are at the forefront of today's 

turbomachinery technologies, are widely being considered for 

cooling of electronic devices, micro heat exchanger systems, 
etc. If the characteristic size of the flow system is small or the 

flow pressure is very low, slip flow happens. If the 
characteristic size of the flow system tends to the molecular 

mean free path, continuum physics is no longer suitable. In 
no-slip-flow, as a requirement of continuum physics, the flow 

velocity is zero at a solid-fluid interface and the fluid 
temperature instantly closest to the solid walls is equal to that 

of the solid walls. For viscous fluid, the slip flow condition 
has been employed by Navier [2] and then used in studies of 

fluid flow in rough and coated surfaces, and gas and liquid 
flow in microdevices. Unlike the no-slip case, the velocity 

does not vanish at stationary surfaces. Recently, many 
researchers viz. Wang [3], Andersson [4], Ariel et al. [5], 

Ariel [6], Abbas et al. [7], Mukhopadhyay [8], Bhattacharyya 
et al. [9, 10] etc. investigated the flow problems taking slip 

flow condition at the boundary.  

 The study of hydrodynamic flow and heat transfer over a 

stretching cylinders or flat plates has gained considerable 
attention due to its wide applications in industries and 

important bearings on several technological processes. Crane 
[11] investigated the flow caused by the stretching of a sheet. 

Other researchers such as Gupta and Gupta [12], Dutta et al. 
[13], Chen and Char [14] extended the work of Crane [11] by 

including the effect of heat and mass transfer analysis under 
different physical situations. Recently, various aspects of 

similar  problem have been investigated by many authors such 
as Xu and Liao [15], Cortell [16,17], Elbashbeshy [18-21]. 

 Lin and Shih [22, 23] considered the laminar boundary 
layer and heat transfer along cylinders moving horizontally 

and vertically with constant velocity and found no similarity 
solutions due to the curvature effect of the cylinder. Ishak and 

Nazar [24] showed  that the similarity solutions could be 
obtained by assuming the cylinder stretched with linear 

velocity in the axial direction and claimed that their study 
might  be regarded as an extension of the papers by Grubka 

and Bobba [25] and Ali [26], i.e. from a stretching sheet to a 
stretching cylinder.  Recently, Ishak [27] discussed the mixed 

convection flow along a vertical cylinder in presence of 
surface heat flux. Off late, Mukhopadhyay [28] analyzed the 

solute transfer in case of boundary layer flow past a stretching 
cylinder in presence of slip. In this paper, by considering the 

effects of mixed convection and velocity slip at the boundary, 
a new dimension is added to the above mentioned study of 

Ishak and Nazar [24]. 
 Since no attempt has been made to analyze the effects of 

velocity slip on boundary layer axi-symmetric mixed 

convection flow along a stretching cylinder, it is considered in 
this paper. Using similarity transformation, a third order 

ordinary differential equation corresponding to the 
momentum equation and a second order ordinary differential 

equation corresponding to the heat equation are derived. 
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Using shooting method numerical calculations, up to desired 

level of accuracy, are carried out for different values of the 
dimensionless parameters of this problem and these serve the 

purpose of illustrating the results graphically. The results 
obtained are then compared with those of Ishak and Nazar 

[24], Grubka and Bobba [25] and Ali [26] who reported the 

results for some special cases of the present study. The 
analysis of the results obtained shows that the flow field is 

influenced appreciably by the mixed convection parameter 
and velocity slip parameter. Estimation of skin friction and 

heat transfer coefficient which are very important due to their 
application in industries are also presented in this analysis. It 

is hoped that the results obtained will not only provide useful 
information for applications, but also serve as a complement 

to the previous studies. 

2. EQUATIONS OF MOTION 

 Let us consider the steady axi-symmetric mixed 

convection flow of an incompressible viscous fluid along a 
stretching cylinder. The continuity, momentum and energy 

equations governing such type of flow are  
 

( ) ( )
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∂ ∂
+ =

∂ ∂
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u u u

u v r g T T
x r r r r
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where u and v are the components of velocity in the x and r 

directions respectively, ν µ ρ=  is the kinematic viscosity, ρ 

is the fluid density , µ  is the coefficient of fluid viscosity, κ is 
the thermal diffusivity of the fluid, T is the fluid temperature.   

2.1 Boundary conditions 

 It is a well known fact that a viscous fluid normally sticks 
to a boundary, i.e., there is no slip of the fluid relative to the 
boundary. However, there are numerous situations where 
there may be a partial slip between the fluid and the boundary, 
e.g., the fluid may be particulate or that it could be a rarefied 
gas with a suitable value of the Knudsen number. For such 
fluids the motion is still governed by the Navier–Stokes 
equations, but the usual no-slip condition at the boundary is 
replaced by the slip condition. 
 The appropriate boundary conditions for the problem are 
given by  

 

1( ) , 0, ( ) atu
wr

u U x B v T T x r Rν ∂
∂

= + = = =  (4) 

0, asu T T r∞→ → → ∞ . (5) 

 

Here 0( ) x

L
U x U=  is the stretching velocity, 0( ) x

w L
T x T T∞= +  

is the prescribed surface temperature, 
0U , 

0T  are the 

reference velocity and temperature respectively, T∞  is the 

ambient temperature , L is the characteristic length, 1B  is the 

velocity slip. 
 

2.2 Method of solution 

 The continuity equation is automatically satisfied by the 

introduction of stream function ψ as 

1 1
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Introducing the similarity variables as  
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and on substitution of (6) in equations (2), (3), (4) and (5), the 
governing equations and the  boundary conditions reduce to 
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where the prime denotes differentiation with respect to η, 
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2
0Re

U xUx
x Lν ν

= =  is the local Reynolds number. The no-slip 

case is recovered for B 0= . 

 One can note that if M 0=  (i.e. R → ∞ ), the problem 

under consideration (with λ 0= , B 0= ) reduces to the 

boundary layer flow along a stretching flat plate considered 

by Ali [26], with 1m =  in that paper. Moreover, when M 0=  

(stretching flat plate) is subjected to (9) with λ 0= , B 0= , 

the analytical solutions of Eqs. (7) and (8) are given by Crane 
[11] and Grubka and Bobba [25], respectively. 

3. NUMERICAL METHOD FOR SOLUTION 

 The above equations (7) and (8) along with boundary 
conditions are solved by converting them to initial value 

problems. We set 
 

/ / / 2
, , [ 2M λ ] /(1 2M )f z z p p z fp p θ η= = = − − − +  (11) 

/ /, [Pr( ) 2M ] (1 2M )q q fq z qθ θ η= = − − + +  (12) 

 
with the boundary conditions 

 
/ //(0) 0, (0) 1 B , (0) , (0) 1f f fγ γ θ= = + = = . (13) 

 
In order to integrate (11) and (12) as initial value problems, 

one requires a value for (0)p  i.e. // (0)f  and a value for 

(0)q  i.e. / (0)θ  but no such values are given at the boundary. 

The suitable guess values for // (0)f  and / (0)θ  are chosen 

and integration is carried out. Comparing the calculated 
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values for /
f  and θ  at 10η =  (say) with the given boundary 

conditions /
(10) 0f =  and (10) 0θ =  and adjusting the 

estimated values of // (0)f  and / (0)θ , a better approximation 

for the solution is obtained. Taking the series of values for 
//
(0)f  and /

(0)θ  and applying the fourth order classical 

Runge-Kutta method with step-size ∆η=0.01, the above 
procedure is repeated until the results up to the desired degree 

of accuracy ( 510− ) are obtained. 

4. RESULTS AND DISCUSSION 

4.1 Validation of the results 

 When using US letter size, please respect top and left 
hand-side conditions. 
 For the verification of accuracy of the applied numerical 
scheme, the available results for forced convection case with 

prescribed wall temperature 0 ( )
Nx

w L
T T T∞= +  at 0=y  is 

considered. In this case the heat equation becomes 

( ) // / / /1 2M 2M Pr( ) 0f Nfη θ θ θ θ+ + + − = , N being the 

temperature exponent. Putting 1N = , equation (8) can be 

recovered. 
 

Table 1 Values of 1/ 2 /Re (0)x xNu θ− = −  for several values of 

temperature exponent N for forced convection (λ 0)=  in flat 

plate (M 0)=  in the absence of slip (B 0)=  and Pr 1= . 

N 
Ishak and 

Nazar [24] 

Grubka and 

Bobba [25] 
Ali [26] 

Present 

study 

0 

1 
2 

0.5820 

1.0000 
1.3333 

0.5820 

1.0000 
1.3333 

0.5801 

0.9961 
1.3269 

0.5821 

1.0000 
1.3332 

 

 A comparison of the results corresponding to the heat 

transfer coefficient [ / (0)θ− ] for λ 0=  (i.e. for forced 

convection), B 0=  (in absence of velocity slip) and M 0=  

(for stretching flat plate) for several values of temperature 
exponent N is made with the available published results of 

Ishak and Nazar [24], Grubka and Bobba  [25], Ali [26] and 
is presented in Table 1. The results are found in excellent 

agreement. 

4.2 Effects of different parameters on flow and heat 
transfer characteristics 

 In order to get a clear insight of the physical problem, 
numerical results are displayed with the help of graphical 

illustrations. The results are given through a parametric study 
showing the influence of several non-dimensional parameters, 

viz. curvature parameter (M), mixed convection parameter 

(λ), velocity slip parameter (B) and Prandtl number (Pr). For 

the mixed convection case 1N =  is considered. 

 Let us first concentrate on the effects of curvature 
parameter M on velocity and temperature distribution. In 

Figure 1(a), horizontal velocity profiles are shown for 
different values of M. The horizontal velocity curves show 

that the rate of transport decreases with the increasing 

distance (η) of the sheet.  In all cases the velocity 
asymptotically vanishes at some large distance from the sheet 

(at η=10). Though the velocity decreases initially but after a 
certain distance from the wall it increases with increasing 

values of M. Due to slip effects at the wall the velocity 
decreases initially. The velocity gradient at the surface is 

larger for larger values of M, which produces larger skin 
friction coefficient. Temperature is found to decrease with the 

increasing curvature parameter M [Figures 1(b)]. The thermal 
boundary layer thickness decreases as M increases, which 

implies increase in the wall temperature gradient and in turn, 

the surface heat transfer rate increases. Hence, the Nusselt 
number increases as M increases. 
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Figure 1(a) Variation of velocity / ( )f η with η for several 

values of curvature parameter M of the stretching cylinder. 
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Figure 1(b) Variation of temperature ( )θ η  with η for several 

values of curvature parameter M of the stretching cylinder. 
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Figure 2(a) Variation of velocity /

( )f η  with η for several 

values of mixed convection parameter λ for flat plate. 
 

 Figures 2(a)–(c) display the effects of the mixed 
convection parameter on velocity, temperature for flat plate 

and stretching cylinder. Figures 2(a) and 2(b) demonstrate the 

effects of mixed convection parameter (λ) on velocity profiles 
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respectively for a stretching flat plate (i.e. for M 0= ) and a 

stretching cylinder (for M 0.25= ).  With the increasing λ, 

the horizontal velocity is found to increase for buoyancy 

aided flow ( λ 0> ) [Figures 2(a), 2(b)].  It is noted that λ has 

a substantial effect on the solutions. λ=0 corresponds to the 

forced convection case. For  λ 0> , there is a favorable 

pressure gradient due to the buoyancy forces, which results in 

the flow being accelerated. 
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Figure 2(b) Variation of velocity / ( )f η  with η for several 

values of mixed convection parameter λ for stretching 
cylinder. 
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Figure 2(c) Variation of  temperature ( )θ η  with η for several 

values of mixed convection parameter λ for flat plate. 
 

 Physically λ 0>  means heating of the fluid or cooling of 

the surface (assisting flow), λ 0<  means cooling of the fluid 

or heating of the surface (opposing flow). Also, an increase in 

the value of λ can lead to an increase in the temperature 

difference wT T∞− . This leads to an enhancement of the 

velocity due to the enhanced convection currents and thus an 

increase in the boundary layer thickness. 

 Variation of temperature ( )θ η  with η for several values 

of mixed convection parameter λ for flat plate is shown in 

Figure 2(c). Temperature decreases with increasing λ for 

buoyancy aided flow. An increase in the value of mixed 

convection parameter λ results in a decrease in the thermal 
boundary layer thickness and this results in an increase in the 

magnitude of the wall temperature gradient. This in turn 
produces an increase in the surface heat transfer rate. 

 The effects of slip parameter on velocity and temperature 
are exhibited in Figure 3(a)–Figure 3(d) for both flat plate and 

stretching cylinder. Due to slip, fluid velocity decreases 
initially but far away from the wall velocity is found to 

increase[Figure 3(a), Figure 3(b)]. When slip occurs, the flow 

velocity near the stretching wall is no longer equal to the 

stretching velocity of the wall. With the increase in B, such 
slip velocity increases and consequently fluid velocity 

decreases because under the slip condition, the pulling of the 
stretching wall can only be partly transmitted to the fluid. The 

temperature increases with increasing slip [Figure 3(c),  

Figure 3(d)]. All temperature profiles decay from the 
maximum value at the wall to zero in the free stream i.e. 

converge at the outer edge of the boundary layer. 
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Figure 3(a) Variation of velocity / ( )f η  with η for several 

values of velocity slip  parameter B for flat plate. 
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Figure 3(b) Variation of velocity / ( )f η  with η for several 

values of velocity slip  parameter B for stretching cylinder. 
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Figure 3(c) Variation of temperature ( )θ η  with η for several 

values of velocity slip parameter B for flat plate. 

 
 The effect of Prandtl number (Pr) on temperature profiles 

is exhibited in Figure 4(a) for flat plate (i.e. for M 0= ). 

Temperature is found to decrease with increasing Pr. An 

increase in Prandtl number reduces the thermal boundary 
layer thickness. Prandtl number signifies the ratio of 

momentum diffusivity to thermal diffusivity. Fluids with 
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lower Prandtl number will possess higher thermal 

conductivities (and thicker thermal boundary layer structures) 
so that heat can diffuse from the wall faster than higher Pr 

fluids (thinner boundary layers). Hence Prandtl number can 
be used to increase the rate of cooling in conducting flows. 

Figure 4(b) presents the behaviour of thermal field for 

increasing Pr for stretching cylinder ( M 1= ). It is very clear 

that the effects of Pr is much more prominent for flat plate 
compared to stretching cylinder. 
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Figure 3(d) Variation of temperature ( )θ η  with η for several 

values of velocity slip parameter B for stretching cylinder. 
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Figure 4(a)  Variation of temperature ( )θ η  with η for 

several values of Prandtl number Pr for flat plate. 
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Figure 4(b)  Variation of temperature ( )θ η with η for several 

values of Prandtl number Pr for stretching cylinder. 
 

 The magnitude of skin-friction decreases with increasing 

mixed convection parameter λ and increases with the 
increasing curvature parameter M of the cylinder          

[Figure 5(a)]. From the figure it is very clear that shear stress 
at the wall is negative here. Physically, negative sign of 

// (0)f  implies that surface exerts a dragging force on the 

fluid and positive sign implies the opposite. This is consistent 
with the present case because a stretching cylinder which 

induces the flow, is considered here. On the other hand 
magnitude of skin-friction decreases with increasing slip 

parameter B [Figure 5(b)]. Slip condition reduces the 
momentum transfer from the sheet to the fluid. Rate of heat 

transfer / (0)θ  is found to decrease with increasing slip 

parameter B but increases with increasing curvature 
parameter M [Figure 5(c)]. 
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Figure 5(a)  Skin friction coefficient // (0)f  against mixed 

convection parameter λ for two values of curvature parameter 
M. 
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Figure 5(b)  Skin friction coefficient // (0)f  against velocity 

slip parameter B for two values of curvature parameter M. 
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Figure 5(c)  Heat transfer coefficient / (0)θ  against velocity 

slip parameter B for two values of curvature parameter M. 
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5. CONCLUSIONS 

 The present study gives the numerical solutions for steady 

mixed convection boundary layer flow and heat transfer along 
a stretching cylinder with slip at the boundary. From this 

investigation the following observations are made: 
(i) The rate of transport is considerably reduced with 

increasing values of curvature parameter M. 
(ii) Due to slip, velocity decreases initially but increases 

away from the wall. 
(iii) Temperature increases with increasing values of slip at 

the boundary.  
(iv) The surface shear stress and the heat transfer rate at the 

surface increase as the curvature parameter increases. 
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