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1. INSTRUCTION 

Ammonium hydroxide is one of important cooling 

medium for many devices such as gas collecting tubes in the 

process of the coal chemical technology, and preparation of 

ammonia hydroxide from liquid ammonia is an important 

part of coal chemical process [1]. With the development of 

fine coal chemical industry, the performance of device 

temperature control become more and more critical, so the 

request to the temperature control and measurement accuracy 

of liquid ammonia is also increasing [2]. 

Volumetric flowmeters such as turbine flowmeter and 

vortex flowmeter are used extensively in the flow 

measurement to volatile and high saturated vapor pressure 

liquid like liquid ammonia, ethylene, etc. But the given flow 

value directly of the volumetric flowmeter is merely volume 

flow value, and the conversion of mass flow and volume flow 

is often performed according to the following relation in 

order to satisfy customer demands for mass flow 

measurements [3]. 

 

m f vq q                                                                      (1) 

 

In (1), mq  [ /kg h ] is the mass flow and f  [
3/kg m ] is 

the fluid density in working condition. 

While liquid ammonia density is a function of 

temperature, that is ( )f t  . Because of the nonlinear 

relationship between density and temperature of liquid 

ammonia, the fitting coefficients and constants need vary 

constantly for different temperature sections [3, 4]. With the 

improvement of intelligent of volumetric flowmeters such as 

turbine flowmeter and vortex flowmeter, the traditional 

method using quadratic density-temperature expression is 

often not effective, especially when the temperature span is 

relatively large [5, 6]. It is necessary to develop a nonlinear 

regression method to satisfy the high precision requirements 

for liquid ammonia temperature control and measurement [7, 

8]. 

It is possible to use Support Vector Machine (SVM) to 

establish regression inverse model of temperature 

compensation to liquid ammonia, which can reduce 

temperature sensitivity during the translation of mass flow 

and volume flow and improve stability and accuracy of 

volumetric flowmeter [9, 10]. In view of the nonlinearity and 

complexity of regression system, the trial and error is usually 

needed for kernel function parameters matching, and it is 

exactly these results that are at risk in the SVM training 

process [11]. With the aid of powerful global searching of 

particle swarm optimization (PSO) algorithm, the SVM 

kernel function parameter σ can be optimized, which can 

modify the parameters of the density-temperature regression 

model, and thus the measuring precision is improved. 

 

2. VARIABLE WEIGHT PSO 

 

2.1 PSO algorithm 
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PSO algorithm is a kind of swarm intelligence 

optimization algorithm, which originates from studying 

predatory behavior of the bird swarm [12]. In the process of 

predation, the most simple and effective strategy of finding 

food is to search for the surrounding area of the nearest bird 

to food. 

Each particle in PSO algorithm represents a potential 

solution of the problem and corresponds to a fitness value 

determined by the degree of freedom. The velocity of the 

particle determines its moving direction and distance by 

adjusting dynamically according to the movement experience 

of its own and other particles, and realizes the individual 

optimization in the feasible solution space [13]. 

At the beginning of PSO algorithm, a group of particles 

are initialized in the feasible solution space, each of which 

represents a potential optimal solution for the extremum 

optimization problem. The characteristics of each of particles 

are represented by three indexes, such as position, velocity 

and fitness value. The fitness value which represents the 

superiority of the particle is obtained by the fitness function. 

Each particle moves in the solution space, and the individual 

position is updated by tracking individual extremum and 

swarm extremum. Individual extremum refers to the optimal 

position of the fitness value obtained in the positions the 

individual experienced [12, 13]. Swarm extremum refers to 

the optimal location of the fitness of all particles in the 

population. Once the particle positions are updated every 

time, these fitness values are calculated. By comparing the 

fitness value of the new particles and the fitness value of 

individual extremum and swarm extremum, the position of 

individual extremum and swarm extremum are updated. 

Assuming that in a D  dimensional search space, there is 

a population S = 1 2( , , , )nS S S  including of n  particles, 

whose thi  particle is expressed as a D  dimensional vector 

i
S = T

1 2( , , , )i i iDS S S representing the position of the thi  

particle in the D  dimensional search space and representing 

a potential solution to the problem. According to the 

objective function, the fitness value of each particle position 

i
S  can be calculated. The velocity of thi  particle is 

i
V = T

1 2( , , , )i i iDV V V , individual extremum is 

i
P = T

1 2( , , , )i i iDP P P , swarm extremum is g
P  

= T

1 2( , , , )g g gDP P P  [14]. During each iteration, the particles 

update their velocity and position by individual extremum 

and swarm extremum, which are 

 
1

1 1 2 2( ) ( )k k k k k k

id id id id gd gdV V c r P S c r P S                          (2) 

 
1 1k k k

id id idS S V                                                                (3) 

 

Among them, ω is the inertia weight, 1,2, ,d D , 

1,2, ,i n , k  is the current iteration number, idV  is 

particle velocity, 1c  and 2c  are nonnegative constants called 

the acceleration factors, 1r  and 2r  are the random numbers 

distributed within the interval [0,1] . 

 

2.2 Variable weight PSO 

In PSO algorithm, inertia weight ω reflects the ability of 

inheriting the previous particles velocity, the bigger weight is 

advantageous to the global search, while the smaller weight 

is advantageous to the local search. In order to better balance 

the global search and local search ability, the linear 

decreasing inertia weight is adopted here [13-15]. Four 

common linear inertia weight methods are as follows. 
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Among them, 
start  is the initial inertia weight. 

end  is 

inertia weight value when the iteration is maximum. 
maxT  is 

the maximum number of iterations. The four inertia weight 

curves are shown in Figure 1. 
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Figure 1. The variation curves of four types of weights 

 

In the nonlinear function optimization, most of the 

optimization calculation are seeking maximum or minimum 

values. For example, finding the maximum value of the 

following nonlinear functions. 

 

2 2 cos 2 cos 2

2

2 2

sin
( )

x yx y
f x e

x y

 
 


                                 (8) 

 

From the function simulation in figure 2, we can see that 

there are a lot of local maximum points for the function, the 

extremum position is (0, 0), its maximum value is obtained 

near the point. 

Here, the population size is 20, the number of evolutionary 

is 300. In order to improve the effectiveness of the algorithm 

and avoid local optimal results interference, the algorithm 

runs 100 times, and then the average value of their results as 

the final results. In the algorithm, different linear decreasing 

inertia weight methods are adopted. And 0 ( )k  weight 

method is set to a fixed weight value, that is start = end =1, 

to compare with other variable weight methods. start  is 0.9, 

end  is 0.4 and c  is 10 in other variable weight methods. 
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Figure 2. Nonlinear function simulation 

 

As can be seen from the table 1 and figure 3, when the 

inertia weight is a constant, the PSO algorithm has the fast 

convergence rate, but it is easy to get into local optimum and 

the accuracy is low; and the other variable weight PSO 

algorithms converge slightly slowly in the initial stage of the 

algorithm, but they will be strong in the latter search. In this 

way, it is advantageous to get the global optimal solution by 

jumping out of the local optimal solution, so as to improve 

the accuracy of the algorithm [14,15]. 
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Figure 3. The convergence curves of mean value based on 5 

different types of weights 

 

Table 1. The algorithm performance comparison based on 

five kinds of inertia weight 

 

  
Optimum 
solution 
obtained 

Average 
value 

The number of 
trapping in local 
optimal solution 

The number of 
globe optimal 

solution 

0   3.693 2 3.685 2 25 75 

1  3.693 2 3.675 7 18 82 

2  3.693 2 3.693 2 0 100 

3  3.693 2 3.685 5 11 89 

4  3.693 2 3.671 1 27 73 

 

 

3. ESTABLISHMENT OF SVM REGRESSION MODEL 

OF TEMPERATURE COMPENSATION 

3.1 SVM regression model 

The SVM regression method is different from multivariate 

regression analysis method, whose constructors including 

nonobject parameters to be eliminated needn't be established, 

can get theoretical optimal solution using convex quadratic 

optimization problem transformation through estimation and 

prediction of the small samples on the basis of VC dimension 

theory coming from statistic learning theory and structural 

risk minimization [16]. Sampling group points 

1{( , )}N

i iy


i
x in input analytical space X can be mapped to 

become training group points ( ( ), )iy
i

φ x  in high 

dimensional Hilbert space F by SVM kernel function 

algorithm, and the training set 
1{( ( ), )}N

i iD y



i

φ x  which 

have been mapped is regressed by constructing linear 

discriminant function in Hilbert space F. Thus the regression 

inverse model has better generalization ability, and the 

dimension disaster is avoided, which means that algorithm 

complexity is unrelated to sample dimension [17]. 

Set sample set to 
1{( , )}N

i iy


i
x , where 

d
i

x R
 is input 

vector, iy
 is corresponding expected value. A dual problem 

model constrained convex quadratic optimization is defined 

as 

1 1 1

1

1
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i

y y K
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  

 

  



 

   

 

 0 , 

α
ω α x  x 

          (9) 

 

i  is the Largrang multiplier and ( )i jK x x，  is the kernel 

function. 

Let 
1 2

* * ** ( )
N

   α ， ， ，  be the solution vector of (9), 

in which usually only part of solutions are not zero. i
x  is the 

input sample of corresponding nonzero solutions and serves 

as support vectors, which determined decision boundary. The 

data regression based on SVM is done to establish the fitting 

relationships between input x and output y, that is 

 

1

( ) ( )
s

T

i i

i

y b K b


   x ω x x, x                          (10) 

In (10), i
x  is the support vector; s is the number of the 

support vectors; b is the SVM offset; ω  is the weight 

coefficient whose number is similar to support vectors 

number. Gaussian radial basis function which meets Mercer 

condition is chosen as kernel function [18]. That is 

 

2
( ) exp

2

i

iK


 
  

 

x x
x x，                                     (11) 

σ is the kernel function parameter. The forecast accuracy 

of SVM would be improved by regulating σ properly. 

 

3.2 Preparation of the data samples 

The number of the overall sample pairs ( )iy，
i

x  

( 1,2, , )i N  is p tN N N  , and pN  is the number of 

training samples ( pN  accounted for 1/2～2/3 of the overall 

sample number N ), tN  is the number of testing samples. 

The 26pN   training samples and 25tN   testing samples 

are randomly selected from liquid ammonia density 

temperature relation table (-20℃～30℃) [11].  

The relation data of liquid ammonia density temperature is 

shown in table 2. 
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Table 2. Liquid ammonia density temperature relation table 

 

NO. 
Temperature Density 

NO. 
Temperature Density 

℃ 
3/kg m

 
℃ 

3/kg m
 

1 -20 665.005 27 6 630.293 
2 -19 663.721 28 7 628.897 
3 -18 662.433 29 8 627.496 
4 -17 661.141 30 9 626.089 
5 -16 659.846 31 10 624.678 
6 -15 658.546 32 11 623.261 
7 -14 657.243 33 12 621.838 
8 -13 655.936 34 13 620.411 
9 -12 654.625 35 14 618.978 

10 -11 653.31 36 15 617.539 
11 -10 651.991 37 16 616.094 
12 -9 650.668 38 17 614.644 
13 -8 649.341 39 18 613.188 
14 -7 648.009 40 19 611.726 
15 -6 646.673 41 20 610.258 
16 -5 645.333 42 21 608.784 
17 -4 643.989 43 22 607.303 
18 -3 642.64 44 23 605.817 
20 -1 639.929 45 24 604.324 
21 0 638.567 46 25 602.824 
22 1 637.2 47 26 601.318 
23 2 635.828 48 27 599.805 
24 3 634.451 49 28 598.285 
25 4 633.07 50 29 596.759 
26 5 631.684 51 30 595.225 

 

4. THE OPTIMIZATION OF SVM KERNEL 

FUNCTION PARAMETER BY PSO 

4.1 The PSO optimization algorithm design 

Trained SVM with training samples is tested by MSETD 

which represent the standard deviation of mean square error 

between the density calibration values and the predicted 

values of testing samples, in order to reduce the dependence 

of parameter selection to testing samples. The experiments 

show these learning parameters in SVM, including boundary 

of Lagrange multiplier C, the condition parameter of convex 

quadratic optimization λ and ε-neighborhood parameter 

around solutions ε, have no obviously effect on the output 

results, but the kernel function parameter σ that have the 

largest influence on the output results is often difficult to 

identify only by trial and error [20]. Taking MSETD as 

fitness function, the kernel function parameter σ is optimized 

by virtue of PSO global search performance for optimal 

solutions and then the proper offset b and weight coefficient 

  are found, so that output results are optimal or suboptimal 

to meet the precision and accuracy of system measurement. 

The fitness function can be expressed as 

 

Ff MSETD
                                                              (12)                                                 

 

In addition, the object function is 

 

min( ) min( )Obj Ff f MSETD 
                                   (13) 

 

The algorithm flow of PSO is shown in Figure 4. 
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Figure 4. The algorithm flow of PSO 

 

4.2 The operation result of PSO 

The population size of the PSO equal to 20, the maximum 

number of iterations is 300. Through the analysis of various 

inertia weight method above, and because of the nonlinearity 

in the selection of SVM kernel function parameter σ, the 

linear decreasing inertia weight ω2 is adopted here [21]. The 

corresponding SVM configuration parameters are set as 

follows: the kernel function is RBF function, regularization 

parameter C is 500 and the non-sensitive ε is 0.001. 

After the algorithm runs 100 times,the optimal value and 

the average optimal value of each iteration are obtained 

respectively [15, 22]. Can be seen from Figure 5, their 

convergence curves finally tend to be consistent. The average 

optimal value of each iteration in the process of optimization 

of the kernel function parameter σ is shown in Figure 6. 
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Figure 5. The convergence curves of the optimal values and 

the average optimal values 
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process of optimization of the kernel function parameter σ 

 

According to the results of PSO operation, MSETD, 

namely the standard deviation of mean square error between 
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the density calibration values and the predicted values of 

testing samples, is 41656.2148 when kernel function 

parameter σ obtained by PSO equals 6.8956. 

5. SVM TEMPERATURE COMPENSATION EFFECT 

COMPARISON OF ALL KINDS OF VARIABLE 

WEIGHT PSO METHODS 

With the traditional quadratic expression method, the 

model is as follow [3]: 

 
2 2 6

1 2[1 ( ) 10 ( ) 10 ]d d dt t t t          
              (14) 

 

Here, t [℃] is the temperature of liquid ammonia; 
dt  [℃] 

is the reference temperature of liquid ammonia; 
d  

[
3/kg m ] is the density of liquid ammonia that correspond 

to
dt ; 

1  [
210 ℃ ] is the linear compensation coefficient of 

liquid ammonia; 
2  [ 610 -2℃ ] is the quadratic 

compensation coefficient of liquid ammonia.  

When 5dt  ℃ , then
3631.684 /d kg m  , the two 

endpoint temperature values -20℃and 30℃, and the density 

data are substituted in (14) using binary equation groups to 

obtain 
1 0.2209    and 

2 3.9741   , and the relation 

between the temperature t and the density ρ can be 

established so long as 
1  and 

2  are substituted in (14) 

again. 

In the optimization of SVM kernel function parameter by 

5 types of inertia weight PSO methods, when the inertia 

weights are from ω0 to ω4, the optimization results of the 

corresponding kernel function parameter respectively are 

6.6887, 6.7576, 6.8956, 6.9921 and 7.0127. The temperature 

compensation of SVM regression is carried out by 

respectively using these kernel function parameter values, 

the comparison results of their error curves and the error 

curve of the conventional quadratic expression method are 

shown in (a)～(e) of Figure 7.  
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Figure 7. The error contrast of quadratic expression method and SVM (optimized by PSO when weights are ω0, ω1, ω2, ω3 and 

ω4 respectively) method 

 

The error contrast effect of SVM temperature 

compensation optimized by 5 types of inertia weight PSO 

methods is shown in Figure 8.  
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Figure 8. The error contrast of SVM (optimized by PSO 

based on 5 different types of weights) method 

 

The temperature compensation accuracy of the SVM 

method based on the variable weight PSO is significantly 

higher than that of the traditional quadratic expression 

method, and the optimization effect of PSO using the linear 

decreasing inertia weight ω2 is better than others. 

 

6. CONCLUSIONS 

 

Based on experiment data processing and theoretical 

analysis, the main results obtained in this study can be 

summarized as follows: 

(1) SVM regression method can play an important role in 

temperature compensation only if the corresponding 

parameters such as kernel function parameter σ are well 

configured. 
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(2) The temperature compensation accuracy of the SVM 

method based on the variable weight PSO is significantly 

higher than that of the traditional quadratic expression 

method, and the selection of weight method has the effect on 

the optimization effect. Therefore, it’s important to find the 

appropriate weight method by comparison to improve the 

effect of PSO in the SVM parameter optimization. 

(3) Using the quadratic expression method or SVM 

regression method for temperature compensation, the 

temperature compensation effect is the best in the middle of 

the temperature region, but that of the two ends of the region 

is relatively poor. Therefore, in the application, pay attention 

to the choice of reasonable temperature region or adopt other 

assistant compensation way [23]. 

By using SVM regression temperature compensation 

method based on variable weight PSO, the measurement 

accuracy and the environmental adaptability of volumetric 

flowmeter can be significantly improved in the measurement 

of liquid ammonia quality, the method will have the wide 

application prospects in modern coal chemical industry. 
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