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1. INTRODUCTION 

Porous media is a heterogeneous object which is composed 

of solid skeleton and tiny gaps filled with single phase or 

multiphase coexistence fluids between skeletons.The 

phenomena of energy, momentum and mass transfer in porous 

media exist in every field of industrial and agricultural 

production. Natural convection heat transfer in porous media 

is a benchmark problem due to its wide application 

background, such as heat pipe, heat preservation material, oil 

storage industry, decontamination of groundwater, thermal 

drying and casting solidification, etc. Ingham and Pop [1, 2] 

elaborated the natural convection problem in porous media in 

their works. An excellent and comprehensive review has been 

given by Nield and Bejan [3]. The numerical method for 

solving the convection problem of porous media and the 

knowledge of engineering applications are extensively 

investigated by other scholars [4～6], and they broadened the 

study in this field.  

As a promising numerical method, Lattice Boltzmann 

method(LBM) [7～9] has became a new tool to simulate fluid 

motion and model complex physical phenomena after decades 

of development. Different from the traditional method of 

computational fluid mechanics, LBM is not based on the 

macroscopic continuous equation but grounded on the fluid 

microscopic model and mesoscopic dynamic equations. Then, 

the evolution mechanism in accord with physical laws is 

constructed to calculate. LBM can be used to simulate the 

fluid flows and heat transfer due to its simple implements, 

good concurrency, simple boundary treatment etc, and it also 

has been widely employed to study of the works in porous 

media by international scholars. Seta et al. [10] applied lattice 

Boltzmann method to analyze the performance of natural 

convection heat transfer in porous media cavity for different 

Rayleigh number, Darcy number and porosity. Yan  et al. [11, 

12] implemented LBM to simulate the flow field and the 

temperature field in a cavity filled with porous medium, 

especially researched the influence of the porosity and the 

porosity of the medium vary from place to place on the nature 

convection.Xun [13] studied the natural convection problem 

in a two-dimensional cavity that the upper horizontal wall and 

the vertical walls were held at a constant cold temperature, 

and another wall was heated locally from below. It 

investigated the change of flow field and temperature field by 

adjusting heat wall length and Rayleigh number. 

In actual engineering, the natural convection heat transfer 

problem in a porous media cavity which is heated from below 

and the size of two cold vertical walls is varied has wide 

applications, such as equipment cooling, heat preservation, 

drying processes, etc. Therefore, the study of the problem has 

an important significance. This paper uses the coupled lattice 

Boltzmann model proposed by Guo et al. [14] To solve the 
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heat transfer problem in porous media at representative 

elementary volume scale by writing C++ program. On this 

basis, a comprehensive study of the effect of natural 

convection heat transfer is carried out for various values of the 

length of the dimensionless D , of Rayleigh number, of Darcy 

number, and of porosity. 

 

2. PHYSICAL MODEL AND GOVERNING EQUATIONS 

2.1 Physical model 

In this paper, the physical model is a two-dimensional 

square cavity of length L  that filled with porous media, as 

shown in Figure 1. In the model, the vertical surfaces are 

partially held at a constant temperature LT and remaining 

impermeable walls are adiabatic. The actual length of the cold 

walls is d and the dimensionless length of the walls is 

( / )D d L . The horizontal walls are under constant 

temperature HT , at 0y  and LT , at y L , respectively. 

The origin of coordinate system is the lower left corner of the 

cavity, and take horizontal direction as the x  direction, the 

opposite direction of gravity as the y  direction. 

 

 
 

Figure 1. Schematic of the physical model of enclosure 

cavity 

 

The initial conditions and boundary conditions are as follows: 

 

0t  , 0u v  , 0T  ;  

 

0x  , 0u v  ,  LT T ;  

 

0x  , 0 u v , 0





T

x
; (adiabatic section) 

 

x L , 0u v  , LT T ;  

 

x L, 0u v  , 0
T

x





; (adiabatic section) 

 

0y  , 0 u v ,  HT T ;  

 

y L , 0u v  ,  LT T . 

2.2 Governing equations 

In the study, we assume that the configuration of porous 

media in the cavity is homogeneous, rigid and isotropic. We 

also assume that the convective incompressible, and viscous 

fluid flow is described by Brinkman-Forchheimer model and 

that the Boussinesq approximation is valid. At this point, the 

flow continuity equation and Brinkman-Forchheimer equation 

can be written as the following form [15]: 
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Where,   is the porosity of porous media,   is the 

density of fluid, u  and p  is the average speed of fluid 

volume and pressure, respectively,  e is the effective 

kinematic viscosity coefficient. F  is the total body force 

due to the presence of a porous media and other external force 

fields, it can be written as the following form 

 

F

K K


   F u u u G

                      

(3) 

 

On the right-hand side of the equation, the first item is the 

frictional resistance of fluid and porous media skeleton, and 

the second one is the inertia due to the presence of a porous 

medium.   is the kinematic viscosity of the fluid, K is the 

permeability and F  represents the geometric function, G  

is the volume force caused by external forces.If G  is caused 

only by gravity, under the Boussinesq assumption, the 

influence of gravity can be expressed as 

 

    mT TG g
                               

(4) 

 
Where, g  is the gravitational acceleration,   is the 

thermal expansion coefficient, and mT  is the average 

temperature of the system.The geometric function F  and 

the permeability K  have relationship with the porosity  , 

respectively.For the porous media that is made of solid 

particles, F  and K  can be expressed based on Ergun’s 

[16] empirical formula as 
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(5) 

 

Where pd  is the diameter of the solid particles. 

When heat transfer problem is involved in fluid flow, if we 

ignore the compression work and the viscous heat dissipation, 

it can meet local thermodynamic equilibrium condition 

between the fluid and  solid, then the energy equation of 

convection heat transfer in the porous media can be expressed 

as  
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Where T  is the average volume temperature of fluid, 

 1 /       s ps f pfc c  represents the ratio between the 

heat capacities of the solid and fluid phase, s , f , psc , 

pfc  are the density and capacity of the solid and fluid phase, 

respectively, m  denotes the effective thermal diffusivity. 

In order to represent the characters of natural convection 

heat transfer in porous media, we can introduce several 

dimensionless numbers and its exprssion: the Darcy number 
2

/Da K L  , the viscosity ratio /eJ    , the Prandtl 

number Pr / m  , and the Rayleigh number 

3
/ mRa g TL    . 

Where L  is the cavity length, H LT T T    is the 

temperature difference between the hot and cold side walls. 

3. LATTICE BOLTZMANN MODEL 

For the natural convection heat transfer problems in porous 

media in this paper, we use the double distribution function 

model to study the flow field and temperature field of 

fluid.Meanwhile, the D2Q9 model is accepted and the Lattice 

Boltzmann evolution equations[15] can be expressed as 

follows: 
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Where, 0 8i  ; if  is the distribution function; 

eq

if  is 

the corresponding equilibrium distribution function; ig
 is 

the temperature distribution function and 

eq

ig
 is the 

equilibrium temperature distribution function; v  and T  is 

the velocity nondimensional relaxation time and the 

temperature relaxation time, respectively. Equation (7) 

recovers the continuity and the momentum Equations. (1) and 

(2). Equation (8) describes the evolution of the internal energy 

and leads to Equation (6). 

Usually the speed configuration of D2Q9 model is accepted 

as follows: 
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Where, lattice speed /x tc   , x  and t are time step 

and the grid step. Generally the grid spaces on the directions 

of x and y are the same x y   . 

On the basis of the continuous Boltzmann equation, we can 

get the equilibrium distribution function according to discrete 

the time and space.It is defined as 
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Where, 0 4 / 9  / 3sc c  is the speed of sound; the 

values of the weight are given by ,  1/ 9 1 4  i i , 

 1/ 36 5 8  i i  . 

In Equation. (7), the forcing term can be given by  
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The corresponding effective viscosity and the effective 

thermal conductivity in macro equation are given by 
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The macroscopic quantities, fluid density and internal 

energy are defined as 

 

i

i
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The speed of the fluid is calculated by using a temporary 

speed, it can be written as 
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Where, parameters 0c and 1c  and   are given by 
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4. RESULTS OF NUMERICAL SIMULATION AND 

ANALYSIS 

4.1 Method validation 

In order to test the reliability of the model and method, the 

lattice Boltzmann method was used to simulate natural 

convection in a two-dimensional square cavity filled with 

porous medium. 
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The vertical surfaces of the cavity are held at a constant high t

emperature and low temperature, respectively. The horizontal 

walls are adiabatic and impermeable. To evaluate the 

calculation results, the comparison of average Nusselt 

numbers on the hot wall between the existing literature data 

and the LBM results is tabulated in Table 1. Meanwhile, it 

shows good quantitative agreement. 

 

 

Table 1. Comparison of average Nusselt numbers on the hot wall with other numerical results 

 

Ra    Da  Pr  
Literature data  

[17] 

LBM result 

[11] 

LBM result 

[10] 

Calculated value of 

this paper 

103 0.4 10-4 1.0 1.010 —— 1.007 1.001 

105 0.4 10-4 1.0 1.067 1.066 1.063 1.058 

106 0.4 10-4 1.0 2.550 2.602 2.544 2.573 

4.2 The influence of size change of two cold vertical walls 

on natural convection heat transfer 

In order to study the effect of changes in the size of the 

vertical cold walls on natural convection heat transfer in the 

cavity, computational parameters are set as follows: 
3
,10 Pr 0.7, 1, 1, 0.4 


    Da J , and then 

calculate with D ranging from 0 to 1. Figure 2 is the fluid 

streamlines and isotherms diagram when steady-state is 

reached under different D. It can be clearly seen from Figure 2, 

flow field is two circulation cells along the center axis of 

symmetry when the value of D is greater than zero and less 

than  or equal to one.When both sides of the vertical cold  

 

 

 

walls size decrease, the center of the circulation cells move 

upward. Its isotherms are arched distribution and the start 

point of the arch relates to the lowest point of the cold surface, 

at the moment, the strength of natural convection heat transfer 

is directly related to the size of the vertical cold walls. To 

compare and observe quantitatively, we can find from Figure 

3 that the average Nusselt number on hot wall grows slowly 

when D is less than 0.5, while the slope of the curve shows 

that the Nusselt number grows more pronounced when D is 

greater than 0.5. In other words, when setting the sizes of the 

left and right side of cold walls, we must make sure that they 

should be greater than half the length of the vertical plane, as 

a result, natural convection heat transfer intensity can 

exponentially increase.  

   
 

(a) 

 

   
 

(b) 

 

D=1              D=0.75            D=0.5 

 

Figure 2. Streamlines(a) and isotherms(b) for a variable D . 3 510 Pr 0.7 10 0.4、 、 、   Da Ra ; from left to right, 

1,  0.75,  0.5D 
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Figure 3. Nusselt number as function of the dimensionless D  for different Rayleigh numbers 

4.3 The influence of Rayleigh number on natural 

convection heat transfer 

Figure 4 shows the effects of different Rayleigh numbers 

on the average Nusselt number for 
3 6

10  ,  =0.4,  Pr 0.7,  0.5  1.0Da D
 

  ,10 、 , the value 

of the Rayleigh numbers are 103, 104, 105 and 106, 

respectively. As can be seen from figure 4, with increasing 

Ra , the average Nusselt numbers on the hot wall change 

obviously. When Ra<1e+5, the average Nusselt numbers 

on the hot wall increase gradually, when Ra>1e+5, the 

average Nusselt numbers jump significantly.This is 

because the larger the Rayleigh numbers are, the stronger 

the motivation of natural convection and vortex intensity 

will be. Conversely, at the low Rayleigh numbers, such as 

103 to 104, the change of the hot wall average Nusselt 

number is not obvious. However, at a relative small Darcy 

number, the change of the Rayleigh number has little 

influence on the intensity of natural convection.For this time, 

the permeability of the cavity is small, the air circulation is 

poor, and the heat transfer is mainly depend on the solid 

heat conduction. 

 

 

 
 

Figure 4. The effects of Rayleigh number on the Nusselt number for 
3 6

,10 ,10 0.5,  1.0
 

 Da D  

 

4.4 The influence of Darcy number on natural 

convection heat transfer 

Figure 5 shows the effects of different Darcy numbers on 

average Nusselt number. Under the condition 

of 510 =0.4  Pr 0.7 0.5， ， ，  Ra D , the value of the 

Darcy numbers are 10-3, 10-4, 10-5, 10-6 and 10-7, respectively. 

With increasing Da , the average Nusselt number on hot 

wall increases greatly. However, when the Darcy number in 

the range of 10-4, the curve remains horizontal and the 

Nusselt number has a little growth. At 
4

10Da


 , the 

Nusselt number increases rapidly. This is because of the 

existence of natural convection and heat conduction in the 

porous media cavity at the same time. At 
410Da , with a 

poor permeability and air circulation, the heat transfer 

mainly rely on solid heat conduction. On the contrary, the 

higher values of Nusselt number for 
4

10Da


  are a result 

of an increase in convection due to an increase in 

permeability. 
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Figure 5. The effects of Darcy number on the Nusselt number 

 

4.5 The influence of porosity on natural convection heat 

transfer 

 

Figure 6 shows the influence of the porosity on heat 

transfer with different Darcy numbers at 
5

10  Pr 0.7 0.5Ra D  ， ， . Here we can see that,  the 

convection within the cavity at low Da , the variation of 

porosity has very little impact on the average Nusselt 

number on the hot wall. At 
3

10Da


 , the influence of the 

porosity on natural convection is significant .  

 
 

Figure 6. Nusselt number as function of the porosity for different Darcy numbers  

5. CONCLUSION 

A systematic numerical study of natural convection in the 

cavity filled with porous media which is heated from below 

and the size of two cold vertical walls is varied has been 

presented. By using the lattice Boltzmann method, the 

influence of  dimensionless length D , Rayleigh number, 

Darcy number, and porosity on natural convection is 

considered. The simulation results lead to the following 

conclusions: 

(1)  The lattice Boltzmann method and the proposed model 

are capable of solving natural convection in porous 

media at the representative elementary volume scale. 

(2)  For two-dimensional cavity, when setting the sizes of 

the left and right side of cold walls, we must make sure 

that they should be greater than half the length of the 

vertical plane, as a result, natural convection heat 

transfer intensity can increase exponentially.  

(3) The impact on natural convection heat transfer is 

significant when Rayleigh number and Darcy number 

is in large level. In the case of large Darcy number, the 

influence of porosity on natural convection is 

significant. 
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NOMENCLATURE 

L      Cavity length, m  

HT      Temperature of the hot wall, K  

LT      Temperature of the cold wall, K  

d      Actual length of the cold vertical walls, m  

t       Time, s  

P      Pressure, Pa  

F      Total body force, /N kg  

iF      Discrete body force in direction i , 3/ ( )kg m s  

K      Permeability, 2m  

F      Geometric function 

G      Volume force caused by external forces, .. 

g       Acceleration due to gravity, 
2

/m s  

mT       Average temperature of the system, K  

pd       Diameter of the solid particles, m  

T       Average volume temperature of fluid, K  

,ps pfc c
 

Capacity of the solid and fluid phase, / ( )J Kg K  

D       Dimensionless length of the cold vertical walls, 

/d L  

Da      Darcy number, 
2

/K L  

J       Viscosity ratio, /e   

Pr       Prandtl number, / m   

Ra      Rayleigh number, 
3

/g TL m    

aveNu
  

Average Nusselt number on the hot wall, 

0 0( ( / ) ) /
L

yT y dx T      

T     Temperature difference between the hot and cold  

side walls, H LT T 
 

if      Distribution function in direction i , 
3

/kg m  

eq

if     Equilibrium distribution function in direction i , 

3
/kg m  

ig
     

Temperature distribution function in direction i , 

K  
eq

ig     Equilibrium temperature distribution function in 

direction i , K  

v , T  
Velocity nondimensional relaxation time and the 

temperature relaxation time 

ie       Discrete velocity in direction i , /m s  

c        Lattice speed, /x t   

x , y   Time step 

t       Grid step 

I       Second order identity tensor 

sc       Speed of sound, / 3c   

u       Average speed of fluid volume 

       Temporary speed 

0 1,c c     Parameters defined in Equation. (16) 

,x y      Cartesian coordinates, m  

,u v    Velocity components in x  direction and y  

direction, /m s  
 

Greek symbols 

 

       Porosity of the porous media 

       Density of fluid, 
3

/kg m  
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e       Effective kinematic viscosity coefficient, 
2

/m s  

       Viscosity coefficient of fluid, Pa s  

       Thermal expansion coefficient, 1/ K  

       Ratio between the heat capacities of the solid and 

fluid phase  1 /s ps f pfc c     
 

s , f  Density of the solid and fluid phase, 
3

/kg m  

m      Effective thermal diffusivity, 
2

/m s  

i       Weight 

 

 

 

 

 

 

Subscripts 

 

H       High 

L       Low 

e        Effective 

i       Nine directions, 0 8  

ave      Average 

s        Solid 

f       Fluid 

v        Velocity 

T       Temperature 

p       Particle 

 

Superscripts 

 

eq       Equilibrium 

 

76




