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ON THE EFFICIENCY OF STORMWATER DETENTION 
TANKS IN POLLUTANT REMOVAL
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ABSTRACT
In the design of a stormwater detention tank is important to guarantee a sufficient retention time for the 
sedimentation of suspended solids, the biological uptake of nutrients and the die-off of bacteria carried 
in rainwaters. Long retention times increase the capacity of pollutant removal, but also the possibility 
of spills in downstream receivers and the risk of environmental pollution. In this paper, an analytical 
probabilistic approach, to estimate the probability distribution function of the average retention time 
and the efficiency in pollutant removal of stormwater tanks has been proposed. The possibility of water 
mixing from consecutive runoff events and storage carryover due to successive rainfall events has been 
considered. The method has been applied to a case study in Milano, Italy.
Keywords: analytical probabilistic approach, environmental pollution control, stormwater detention 
tanks.

1  INTRODUCTION
Detention tanks are often used in modern urban drainage systems to achieve both quantitative 
and qualitative control of stormwater runoff. The first goal is achieved by storing part of run-
off to reduce overflows to receiving water bodies; the second by ensuring proper water 
retention times.

The two goals are in conflict with each other since the growth of retention time increases 
the probability of spills from the tank. A proper design should consider both these aspects, 
also trying to limit costs [1–4].

The key point is the definition of an optimal retention time. For simplicity, many govern-
ments suggest the use of a drawdown time (time to drain a full storage) in the range of 24–48 h. 
This assumption has been supported by different studies that concluded that shorter retention 
times could be not sufficient to allow a good sedimentation of most of suspended solids, while 
longer retention times are useless because most of particles contained in stormwaters sediment 
in few days [5]. Moreover, long retention times can cause smell problems resulting from the 
combination of wastewater quality, temperature and time [6]. Other studies on retention time 
[7, 8], observed that it also depends on the size of particles and concluded that a retention time 
of 24 h can remove most of particles less than 10 μm diameter and all the particles larger than 
10 μm.

Although retention time is often regarded as a deterministic parameter [9–12], many 
authors have observed that it should be considered a random variable [13–15]. Therefore, 
also tank efficiency in pollution removal should be considered as a random variable.

In this paper, an analytical probabilistic approach is proposed, for the estimation of the 
probability distribution function of the average retention time to be used for the tank efficiency 
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estimation. The goal is, starting from a more rigorous definition of average retention time 
consider the possibility of spill when the volume is full and the possibility of water mixing 
from consecutive rainfalls due to pre-filling of the storage from previous events.

Final expressions have been applied on a case study in Milano, Italy; the series of rainfall 
data recorded at Milano-Monviso gauge station in the period 1991–2005 has been used. 
Results from the proposed method have been compared with those obtained from the con-
tinuous simulation of observed data.

2  TANK EFFICIENCY
Efficiency of a detention tank in terms of pollutant removal can be defined as the fraction of 
inflow particles that are trapped inside. A particle is trapped when its retention time, defined 
as the time passed inside the tank before overflow or sedimentation, is greater than or equal 
to the time of sedimentation, defined as the time needed to reach the tank bottom.

If sedimentation is supposed to be mainly driven by gravity and interaction among parti-
cles is neglected, the vertical component of velocity Vs for a particle of diameter D is 
expressed by the Stokes equation:
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Where ρp and ρ are the densities of particles and water and µ is the cinematic viscosity of 
water.

Considering the velocity expressed by eqn (1) as a mean value of a time variant physical 
quantity, the time required to a particle on the water surface to settle on the tank bottom ts is 
simply equal to the ratio:
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where H is the water depth.
Equating ts(D) to an assumed retention time tr, the limit diameter Do can be calculated as:

	 D
H

g to
p r

=
⋅ ⋅

⋅ − ⋅












18
1 2

m
r r( )

/

	 (3)

All the particles with a diameter D ≥ Do have a sedimentation time smaller than or equal to 
the retention time tr and so are trapped. The fraction of these particles can be estimated by 
field sieve analysis or from literature data on sediments in stormwater runoff. The others can 
be trapped or not according to their distance from the tank bottom.

Assuming a uniform distribution along the water depth of particle number of each diame-
ter, the fraction of particles rs with D<Do that is trapped is equal to:
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where hm is the distance from the tank bottom for which a particle with D<Do has a sedimen-
tation time equal to tr.

Tank efficiency in particle removal can then be calculated by the following relationship:
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where Fo is the fraction of particles with a diameter smaller than Do and fD(x) is the slope of 
the tangent of the particle gradation curve.

From the combination of eqns (3) and (5) results that the tank efficiency E is a function of 
the retention time tR. If inflow and outflow are equal and time invariant, as in steady flow 
sedimentation tanks, this time is constant and simply calculated by the relationship:

	 t
B H L

Q

W

QR
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= 	 (6)

where B and L are the tank width and the length and Q the constant flow.
Stormwater tanks, however, are characterized by variable inflow and outflow, causing a 

continuous process of filling and emptying. So, retention time is also variable and often an 
average value is considered, depending on inflow and outflow pattern.

Due to hydrologic processes of rainfall-runoff transformation acting on the upstream urban 
catchment, both this average retention time and the related tank efficiency can be regarded as 
random variables.

It has to be highlighted that using an average retention time implies also that the tank effi-
ciency given by eqn (5) should be considered as an ‘average’ too.

In the next paragraph, the probability distribution of average retention time is derived, to 
be used together with eqn (5) to achieve a probabilistic estimation of this ‘average’ tank effi-
ciency.

3  PROBABILITY DISTRIBUTION FUNCTION OF AVERAGE RETENTION TIMES
In the estimation of the probability distribution function of average retention times some 
assumptions for the simplification of the analytical probabilistic model have been made:

•	 On-line stormwater detention tank;

•	 Inflows have been considered of constant intensity (rectangular events);

•	 Constant outflows rate QO(t) = q;

•	 Runoff volume for unit of catchment surface v has been assumed equal to rainfall depth h 
less than an Initial Abstraction IA multiplied by the runoff coefficient φ, that is v=φ·(h-IA);

•	 Rainfall-runoff transformation has been neglected, as typical for small catchments with 
short corrivation times. For highly urbanized catchment where IA tends to zero and φ 
tends to one, runoff volume can be considered equal to rainfall volume, v = h and runoff 
duration can be assumed equal to rainfall duration;

•	 Use of the Inter Event Time Definition IETD, to isolate independent rainfall events from 
the continuous chain of storms: if the dry time between two consecutive rainfall events is 
smaller than IETD, the two events have been joined together into a single event, otherwise 
they have been considered independent;

•	 Exponential distribution of the hydrological variables involved in the storage process 
(rainfall depth h and duration θ, interevent time d):

	 f eh
h= ⋅ − ⋅ξ ξ 	 (7)

	 f e¸ = ⋅ − ⋅λ λ θ	 (8)

	 f ed
d IETD= ⋅ − ⋅ −( )ψ ψ

	 (9)
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where ξ =1/μh, λ = 1/μ
θ
 and ψ = 1/(μd-IETD), with μh: average rainfall depth, μ

θ
: average 

rainfall duration, μd: average interevent time.
To estimate the probability distribution function of average retention times, care must be 

taken to the definition of retention time. If the hypothesis of plug flow (flow parcels leave the 
basin in the same order they entered) and completely mixed flow are considered, the average 
retention time. tR can be calculated as the difference between the average release time tO and 
the average input time t sI  that is the horizontal distance between centroids of inflow and 
outflow hydrographs:

	 t t tR O I= − 	 (10)

On the assumption of independence of inflow and outflow hydrograph, eqn (10) can be 
simplified as follow:
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tO: release time, that coincides with emptying time;
tI: input time;
VO: outflow volume;
VI: inflow volume;
QO: outflow rate;
QI: inflow rate.
For constant outflow rate, QO(τ) = q = const., the average release time results:
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If even inflow rate is constant during the event, QI(τ) = qI = const., the average inflow time 
results:
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Considering the simplifying hypothesis of eqns (11)–(13) becomes:
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Sometimes, the tank is not completely empty when a new runoff event occurs, that is there is 
a carryover from previous runoffs. Obviously, the probability of pre-filling increases when 
outflow rate is low, as in the case of tanks for the enhancement of water quality (e.g. first flush 
tanks). For this reason, in the estimation of the probability distribution function of average 
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retention times the possibility of water mixing from two consecutive runoffs has been 
considered.

In the following, specific variable (for unit of area) have been used. For a couple of con-
secutive runoffs i and i+1, if w is the storage volume and q the constant outflow rate, two 
different conditions can occur:

•	 w/q ≤ IETD: the possibility of pre-filling of the storage volume from the event i at the 
beginning of the event i+1 is excluded;

•	 w/q>IETD: the storage volume could be not completely empty from the event i at the 
beginning of the event i+1 and pre-filling could occur.

In case there is no water carryover from event i storage volume is completely empty at the 
beginning of event i+1 (tO<θi+di), as shown in Fig. 1.

If the active volume is partially filled at the beginning of event i+1 (Fig. 2), water mixing 
from two consecutive events has to be considered in the derivation of the probability distribu-
tion function of average retention times.

Figure 1: Couple of runoffs without pre-filling.

Figure 2: Couple of runoffs with pre-filling.



	 A. Raimondi & G. Becciu, Int. J. Sus. Dev. Plann. Vol. 12, No. 1 (2017)� 149

Generally inflow rates can be higher or lower than outflow rates; in the first case, the pos-
sibility of spills if storage volume is full at the end of each event has been considered.

3.1  Condition w/q ≤ IETD: pre-filling is excluded

In this case, inter-event time is always enough to have no prefilling and events are independ-
ent. The inflow time tI coincides with the runoff duration θ, so that eqn (14) becomes:

	 t tR O= ⋅ −( )
1
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The emptying time tO can be expressed by:
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Substituting eqn (11) in eqn (10), the average retention time results:
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It has to be observed that the average retention time has an upper limit, equal to (w/q)/2, 
and its probability distribution function is truncated in the upper tail. From eqns (17), the 
probability that the average retention time is greater than a fixed value tx is then expressed 
as:
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and q* = ξ·q/λ.

3.2  Condition w/q >IETD: possibility of pre-filling

In case of pre-filling from event i at the beginning of event i+1, the average input time tI  can 
be expressed by:
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Equation (11) in this case results:
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The emptying time tO can be expressed by:
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case I – Rainfall intensity lower than outflow rate:

hi - q·θi ≤ 0; hi+1 - q·θi+1 ≤ 0

case II – No pre-filling, event i without spills:

0 < hi - q·θi ≤ w; hi - q·θi- q·di≤ 0;

case III – Intensity of event i lower than outflow rate, event i+1 without spills:

hi - q·θi ≤ 0; 0<hi +1- q·θi+1≤ w;

case IV – Pre-filling, event i without spills, event i+1 with intensity lower than outflow rate:

0 < hi - q·θi ≤ w; hi - q·θi- q·di>0; hi - q·θi- q·di+hi +1- q·θi+1≤ 0;

case V – No pre-filling, event i with spills:

hi - q·θi> w; w- q·di ≤ 0;

case VI – Event i with intensity lower than outflow rate, event i+1 with spills:

hi - q·θi ≤ 0; hi +1- q·θi+1> w;

case VII – Pre-filling, event i with spills, event i+1 with intensity lower than outflow rate:

hi - q·θi> w; w- q·di > 0; w- q·di +hi+1 - q·θi+1 ≤ 0;

case VIII – Pre-filling, both event i and event i+1without spills:

0 < hi - q·θi≤ w; hi - q·θi- q·di> 0; 0< hi - q·θi- q·di+hi+1- q·θi+1≤ w;

case IX –Pre-filling, both and event i and event i+1with spills:

hi - q·θi> w; w- q·di > 0; w- q·di +hi+1 - q·θi+1> w;

case X – Pre-filling, event i without spills, event i+1with spills:
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0 < hi - q·θi≤ w; hi - q·θi- q·di> 0; hi - q·θi- q·di+hi+1- q·θi+1> w;

case XI – Pre-filling, event i with spills and event i+1without spills:

hi - q·θi> w; w- q·di> 0; 0 <w- q·di+hi+1- q·θi+1≤ w.

For the same assumption on the probability distribution functions of rainfall depth, dura-
tion and interevent time considered above, that is fh,i=fh,i+i=fh, fθ,i=f

θ,i+1=f
θ
 and fd=fd,i=fd,i+1, 

case III, case IV, case VI, case VII and case XI cannot occur and eqn (20) becomes:

	 t t t t dR O I O= − = ⋅ − ⋅ −[ ]
1
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Substituting eqn (21) in eqns (15) and (22), respectively, if a single event or a couple of 
chained events is considered, the average retention time results:

	 t
h q

h q d

w q

R =
⋅ −( )

− −

⋅( )














0

0 5

2

2

. /

/ /

/

θ

θ

case I

case II

caseVIII

casesV IX X− −

	 (23)

Equation (23) is valid for w/q>IETD and for tx< w/(2·q).
The probability distribution function of average retention times results:
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θ1=θ3=θ5=θ7=0; θ2=θ4=θ6=θ8=∞;

d1=d8=2·tx; d2=d4=d5=w/q; d3=d7=IETD; d6=∞;

h1=h5=q·(θ+2·tx); h2=h3=h8=q·θ+(q·d+w)/2; h4=h6=∞; h7=q·(tx+d/2+θ);

which solution is:
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with: β = 2·ψ/(q·ξ+2·ψ) and q*= q·ξ/λ.

4  CASE STUDY
To test the reliability of derived expressions for the estimation of the probability distributions 
of average retention times, a case study in Milano, Italy, has been analyzed. The series of 
rainfall data recorded at Milano-Monviso gauge station in the period 1991–2005 has been 
used and IETD=10 hours has been assumed.
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Table 1: Main characteristics of rainfall variables.

μh [mm] 18.49 Vh [-] 1.15 ρh,θ [-] 0.62

μ
θ
 [h] 14.37 V

θ
 [-] 1.03 ρ

θ,d [-] 0.11

μd [h] 172.81 Vd [-] 1.30 ρd,h [-] 0.11

Figure 3: ��Probability and frequency distributions of average retention times (w = 5 mm;  
q = 1 mm/h; q = 0.5 mm/h).

Figure 4: �Probability and frequency distributions of average retention times(w = 20 mm; 
q = 1 mm/h; q = 0.5 mm/h).
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The main characteristics (mean, variation coefficient and correlation index) of rainfall 
variables involved in storage process (rainfall depth h, rainfall duration θ and interevent time 
d) have been shown in Table 1.

Outflow rates of q = 0.5 mm/h and q = 1.0 mm/h and a storage volume w = 5 mm and w = 
20 mm have been considered.

Figures 3 and 4 compare the probability distribution functions of the average retention 
time, calculated by eqns (18) and (24*) with the frequency distribution of simulated data, 
respectively, for w = 5 mm and w = 20 mm (continuous black line and circles for q = 0.1 
mm/h and continuous grey line and crosses for q = 1.0 mm/h).

Differences in results can be due to:

•	 The simplifying assumption on the independence of input rainfall variables h, θ, d while 
in particular the correlation index between rainfall depth and rainfall duration is not neg-
ligible (Table 1);

•	 The simplifying assumption on exponential distribution of input rainfall variables h, θ, 
d; as it can be deduced from Table 1, only the frequency distribution of rainfall durations 
perfectly fits an exponential probability distribution function (V

θ
≈1);

•	 The simplifying assumption of considering only a couple of consecutive event at time; if 
the outflow rate tends to zero, the number of chained events increases:

•	 The simplifying assumption of considering the probability distribution functions of rain-
fall characteristics of event i equal to those of event i+1(fh,i=fh,i+i=fh, fθ,i=f

θ,i+1=f
θ
 and 

fd=fd,i=fd,i+1), that excludes cases III-IV-VI-VII-XI of eqn (21) in the resulting formula 
(24*);

5  CONCLUSIONS
Proposed approach relates the efficiency of a stormwater detention tanks in pollutant removal 
with the retention time. In particular, the probability distribution function of the average 
retention time has been estimated. Derived formulas are easy to implement and can be a valid 
aid to engineer, when there are no long-term registration of records data and only the mean 
values of rainfall characteristics are available. Moreover, they can be used to size stormwater 
detention tanks because allow to analyze the influence of outflow rates and storage volumes 
on the probability distribution of the average retention time, that is on probability distribution 
of the efficiency of the storage in pollutant removal.
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