IDENTIFICATION OF POTENTIAL HAZARDOUS EVENTS OF UNLOADING SYSTEM AND CO₂ STORAGE TANKS OF AN INTERMEDIATE STORAGE TERMINAL FOR THE KOREA CLEAN CARBON STORAGE PROJECT 2025 HYONJEONG NOH¹, KWANGU KANG^{1,*}, CHEOL HUH², SEONG-GIL KANG¹ & YOUNGKYUN SEO¹ ¹ Korea Research Institute of Ships & Ocean Engineering, Daejeon, Republic of Korea. ² Ocean Science & Technology School, Korea Maritime and Ocean University, Busan, Republic of Korea. #### ABSTRACT Carbon capture and storage (CCS) is regarded as one of key technologies to meet global greenhouse gas emission reduction goal. In this manner, South Korea is developing a one-million-ton-scale offshore CCS project to reduce national greenhouse gas emission, entitled the Korea Clean Carbon Storage Project (KCCS) 2025. In this project, the CO₂ is captured from power plants on coast, loaded to CO₂ carriers, and transported to an intermediate storage terminal, which is located on shoreline nearby offshore storage reservoirs at the Ulleung Basin. Then the CO₂ is exported via an offshore pipeline to offshore platform for injection to geological storage site for a permanent containment. Since the concept of the KCCS 2025 includes CO2 carriers as a transportation method, it requires an intermediate storage terminal that receives the CO₂ from carrier and send out continuous CO₂ flow to the offshore pipeline after the pressurization of CO₂ to higher than 100 bar. The intermediate storage terminal will consist of (1) unloading system, (2) CO₂ storage tanks, (3) LP pumps, (4) a reliquefaction package, (5) a vent stack and (6) HP pump and injection pump (a booster station). Because there are few actual projects with an intermediate storage terminal worldwide, researches on intermediate storage facilities are insufficient. To support an optimal concept design of the intermediate storage terminal for the KCCS 2025, this study identified the potential hazardous events for the unloading system and the CO₂ storage tanks. For the unloading system, an unloading arm and LCO2 recirculating line are found to be major components causing serious damage in case of accident. In the case of the CO2 storage tanks, where large amounts of CO₂ are stored, they can cause serious damage due to large amounts of CO₂ leakage when the tanks are ruptured, over-pressurized, low-pressurized, overcharged, etc. Because hazardous events may pose significant harm to humans or the environment, these results should be considered in the next phases of the project. The results of this study can be helpful for the development of safe CO₂ transportation technology in the future. Keywords: CCS, CO2 storage tank, CO2 storage terminal, hazard, PHA, unloading arm ## 1 INTRODUCTION Worldwide efforts are being made to reduce GHG emissions in response to climate change. As a bridge technology, the importance of carbon dioxide capture and storage (CCS) is emphasized, which captures CO_2 from a large emission sources such as thermal power plants, and permanently stores in sediments between 800 and 3,000 m underground [1]. In Korea, the industrial structure is focused on manufacturing, and therefore, it is necessary to make structural changes in the industry to reduce CO_2 emissions in Korea. Various practical measures are being taken by the Korean government. As part of these efforts, the Korean government is preparing a 1 million-ton offshore CCS project [2]. The title of this 1 million-ton offshore CCS project, which is currently in the process of the conceptual design, is Korea Clean Carbon Storage Project (KCCS) 2025. In the KCCS 2025 project, CO_2 is captured from a thermal power plant located on the west coast of Korea and transported to an intermediate storage terminal via CO_2 carriers. Subsequently, the CO_2 is transported to a platform via an offshore pipeline, and then injected to reservoirs located in the Ulleung Basin. What is © 2018 WIT Press, www.witpress.com ISSN: 2041-9031 (paper format), ISSN: 2041-904X (online), http://www.witpress.com/journals DOI: 10.2495/SAFE-V8-N2-258-265 notable about KCCS 2025 is that it uses CO_2 carriers as a transport method from the CO_2 source to the intermediate storage terminal. Because it is very difficult to inject the CO_2 continuously to offshore geological storage site directly from CO_2 carrier, the CO_2 transport method using carriers usually requires a CO_2 intermediate storage terminal. However, there are few studies on a CO_2 intermediate storage terminal, especially on the risk analysis. Based on the conceptual design of KCCS 2025, in this study, preliminary hazard analysis (PHA) is conducted on two facilities of the intermediate storage terminal, the unloading system and the CO_2 storage tanks. The PHA results of this study can be important on the reliability and risk analysis in the FEED study of a CO_2 intermediate storage terminal [3]. # 2 CO₂ INTERMEDIATE STORAGE TERMINAL The targets of this study are the unloading system and the $\rm CO_2$ storage tanks of the $\rm CO_2$ intermediate storage terminal of the KCCS 2025 project. The $\rm CO_2$ intermediate storage terminal aims for temporary storage of liquid $\rm CO_2$ transported through 8K $\rm CO_2$ carriers. After pressurization and heating process at the terminal, the $\rm CO_2$ is sent to the offshore platform for injection through the offshore pipeline. The KCCS project uses three 8K $\rm CO_2$ carriers to transport liquefied $\rm CO_2$ from the source to the intermediate storage terminal. The schedule of $\rm CO_2$ carriers can vary depending on the weather, and the terminal should also act as a buffer station of $\rm CO_2$ transportation. The temperature and pressure conditions of the $\rm CO_2$ carrier cargo tank and the $\rm CO_2$ storage tanks are the same at 1.5 Mpag and -27 °C. The $\rm CO_2$ intermediate storage terminal consists of six facilities as shown below. - 1. Unloading system (including a vapor return arm) - 2. CO₂ storage tanks - 3. LP pumps - Reliquefaction package (including a pressure built-up vaporizer) - Vent stack - 6. HP pump & injection pump (a booster station) The unloading system works for liquid CO_2 unloading and vapor CO_2 loading. The CO_2 storage tanks store the CO_2 transported from the CO_2 carriers. The LP pumps act as a pressurizer to send CO_2 in the storage tank to the booster station. Reliquefaction package re-liquefies boiled-off vapor CO_2 . The pressure-built up vaporizer produces vapor CO_2 to prevent negative pressure in the CO_2 storage tank. The vent stack serves to release the vapor CO_2 generated in the emergency to the atmosphere. The HP pump and the injection pump are responsible for pressurizing the LCO_2 pressure to around 100 bar, which is suitable for CO_2 injection. In this study, the hazard of (1) the unloading system and (2) the CO_2 storage tanks are analysed, which are considered to have high risks among the above six facilities. The unloading system and the CO_2 storage tanks are described in more detail below. #### 2.1 Unloading system When the CO_2 carriers arrive at the CO_2 intermediate storage terminal located in Ulsan port, LCO_2 is unloaded using an unloading arm with 2000 m³/h rate. The LCO_2 is transported to the CO_2 storage tanks through 24-inch unloading pipeline. The pressure of CO_2 emitted from the CO_2 carrier is designed as 2.1 Mpag considering the pressure reduction in the unloading arm and the unloading pipeline, and the height and storage condition of the CO_2 storage tanks. When LCO_2 is unloaded from the CO_2 carrier, the cargo tank in the carrier should be charged with the vapor CO_2 to prevent negative pressure in the cargo tank. For this purpose, a vapor CO_2 return arm and a vapor CO_2 return line should be installed. To maintain the temperature of the CO_2 unloading line, the recirculation line should be installed and some of the LCO_2 separated from the HP Pump should be flowed. The unloading system is divided into six components and PHA is performed on each component. The first component is the 14-inch unloading arm, which is responsible for unloading the LCO₂ transported through the CO₂ carrier. The second component is the vapor CO₂ return arm, which is responsible for loading vapor CO₂ into the CO₂ carrier to compensate for the negative pressure in the cargo tank. The third component is the 24-inch unloading line, which is the main pipeline connecting from the unloading arm to the CO₂ storage tank. The fourth component is the 8-inch recirculation line that circulates some LCO₂ separated from the booster station to keep the unloading line at a low temperature. The fifth component is a 10-inch vapor CO₂ return line that supplies vapor CO₂ to prevent negative pressure on the cargo tank of the CO₂ carrier. The 6th component is on-off valves. # 2.2 CO₂ storage tanks The CO_2 storage tanks consist of four 5,000 m³ spherical tanks. The 8K CO_2 transported by the CO_2 carrier is stored in two 4K storage tanks, respectively. At the same time, vapor CO_2 in the tank is sent to the cargo tank of the carrier to prevent the negative pressure. LCO_2 in the one of the rest two tanks is transmitted through the LP pumps to the boosting station, and the other tank acts as a buffer tank. During the CO_2 transmission, negative pressure can be generated in the tank. It is necessary to charge vapor CO_2 from the vaporizer to the tank to prevent any failure of the tank induced by negative pressure. The CO_2 storage tanks are divided into five components as follows. The first component is the storage tank itself. The second component is the 24-inch LCO_2 charging line that transports the LCO_2 from the unloading system to the CO_2 storage tanks. The third component is the 6-inch LCO_2 transmission line connecting the storage tank to the LP pumps. The fourth component is the 2-inch pressure built-up vapor CO_2 line to prevent the negative pressure in the storage tanks when LCO_2 is transmitted to the LP pumps. The fifth component is the 3-inch vapor CO_2 release line that discharges vapor CO_2 from the storage tanks to the cargo tank in the carrier or reliquefaction package. ## 3 PROCEDURE OF PHA In this study, PHA is conducted for the unloading system and the CO_2 storage tanks of the CO_2 intermediate storage terminal. The purpose of the PHA is to identify the potential hazardous events of facilities at the conceptual design stage and to proceed FFED study taking into account the PHA results [4]. The results can be used for the reliability and risk analysis of CO_2 intermediate storage facilities in the future. The unloading system is divided into 6 components and the CO_2 storage tanks are divided into five components to perform the PHA. Subsequently, potential hazardous events are then derived for each component. After that, cause and effects, and the risk-reducing measures are derived for each event. ## 4 RESULTS ## 4.1 Unloading system The unloading system consists of six components as shown in Fig. 1. Table 1 summarizes the PHA results of potential hazardous events and risk-reducing measures for each event in the unloading system. The six components can be divided into three categories depending on risk characteristics as follows. The first category is the loading/unloading arms. Rupture in the arm or connection failure of the arm with the carrier can cause low temperature vapor and solid CO₂ leakage and may threaten the safety of the operator. In particular, the poor connection between the 14-inch LCO₂ unloading arm and the carrier is very dangerous. It is also necessary to prevent additional leakage of CO₂. Moreover, the arm or the manifold of the carrier may be damaged or CO₂ may leaks from the unloading arm if it is out of the operating envelope due to excessive movement of the carrier by heavy weather condition. In this situation, the arm should be disconnected from the manifold of the carrier safely. In order to cope with the potential hazard that may arise in the arm, it is necessary to install an emergency shutdown valve (ESDV) to isolate the damaged areas, and to install the emergency release system (ERS) to protect the arm or manifold. The second category is the pipelines of the unloading system. The potential hazardous events in this category include (1) CO_2 leakage due to rupture in the LCO_2 unloading line, the vapor CO_2 return line, and the recirculation line, (2) CO_2 flow rate out of normal range, or (3) pressure increase due to insulation failure. It is necessary to install an emergency shutdown device such as ESDV in case of CO_2 leakage due to rupture in lines. Sufficient temperature Figure 1: Schematic diagram of unloading arm. Table 1: PHA results of the unloading system. | | Table 1: PHA results of the unloading system. | | | | | | | |-----|--|--|---|--|--|--|--| | No. | Components | Potential
hazardous
events | Effects | Risk-reducing measures | | | | | 1 | 14-inch
LCO ₂
unload-
ing arm | Rupture or leakage Bad connection Excessive the CO ₂ carrier movement | Low temperature vapor and solid CO₂ leakage, and may harm workers Low temperature vapor and solid CO₂ leakage, and may harm workers Low temperature vapor and solid CO₂ leakage, and may harm workers Damage of the unloading arm | Activate ERS to safely separate the arm from the CO₂ carrier Stop the pump on the CO₂ carrier Activate ESDV | | | | | 2 | 8-inch
vapor
CO ₂
return
arm | Rupture or leakage Bad connection Excessive the CO ₂ carrier movement | Low temperature vapor CO₂ leakage, and may harm workers Low temperature vapor CO₂ leakage, and may harm workers Low temperature vapor CO₂ leakage, and may harm workers Damage of the vapor return arm | • Activate ERS to safely separate the arm from the CO ₂ carrier • Activate ESDV | | | | | 3 | 24-inch
LCO ₂
unload-
ing line | CO ₂ surge Rupture or leakage | Increase pipeline rupture possibility due to pressure rise CO₂ storage tank is depressurized CO₂ is released around the line, and pressure drop in the line CO₂ backflow from LCO₂ storage tank | Stop the pump on the CO₂ carrier spot Install PSV Activate ESDV and ERS Close the valve before and after the damaged location to isolate | | | | | 4 | 8-inch
LCO ₂
recircu-
lation
line | Rupture or leakage Temperature increase due to insulation failure etc. | Decrease in cooling efficiency due to CO₂ leakage Temperature increase causes malfunction of entire unloading system | Activate ESDV when
low pressure detected Activate ESDV when
high pressure detected Install TSV | | | | | 5 | 10-inch
vapor
CO ₂
return
line | Rupture or leakage | Vapor CO₂ leakage Negative pressure and temperature drop in the CO₂ carrier cargo tank Increase pipeline rupture possibility | Activate ESDV (and ERS) Close the valve before and after the damaged location to isolate CO₂ release through a | | | | | 6 | On-off
valve | Failure to open Failure to close | due to pressure rise • CO ₂ unloading is impossible • Increases the unloading system rupture possibility due to pressure increase • CO ₂ Leakage • CO ₂ backflow from the LCO ₂ storage tank | vent stack • Activate ESDV | | | | safety valve (TSV) or pressure safety valve (PSV) must be installed in order to prevent damage in lines by abnormal CO_2 flow rate or increased temperature. In particular, the insulation failure in the 8-inch LCO_2 recirculation line is very dangerous because it may cause the overall temperature increase of whole unloading system. Therefore, the risk of recirculation line should be sufficiently reduced by installing TSVs. The third category is the CO_2 leakage or pressure increase due to the failure of opening and closing of the on-off valves. To prevent these hazardous situations, an emergency shutdown device such as ESDV should be installed and the valves should be properly managed. # 4.2 CO₂ storage tanks The CO_2 storage tanks consist of five components, as represented in Fig. 2. Table 2 summarizes the PHA results of potential hazardous events and risk-reducing measures for each event in the CO_2 storage tanks. The 5 components can be divided into two categories depending on risk characteristics as follows. The first category the storage tanks them. The main hazardous situations of the storage tanks may be overpressure / low pressure / overcharge due to operational error or leakage caused by rupture. If rupture or leakage occur in the CO_2 storage tanks due to various situation such as drop object, about 4K CO_2 may be leaked, which could lead to disastrous accidents. Therefore, the material and thickness of the tanks should be properly designed so that it will not be affected by various accidents. If overpressure or overcharging situations occur, it can also result in a major accident. PSV valves, level alarms must be installed to manage this situation. Also, ESDV should be installed to stop the CO_2 charging process. Low pressure in the tank can also lead to very dangerous situations. In this case, the low-pressure in the CO_2 tank should be managed by supplying vapor CO_2 through the pressure built-up vapor line. The second category is pipelines attached to the CO_2 storage tanks. The possibility of rupture of pipelines is relatively small, but it can cause CO_2 leakage or low pressure in the CO_2 storage tanks. In order to manage this situation, it is necessary to install a low-temperature sensor around pipelines to detect the leak and install ESDV to isolate the rupture area in the pipeline. Figure 2: Schematic diagram of the CO₂ storage tanks. Table 2: PHA results of the CO₂ storage tanks. | No. | Components | Potential
hazardous
events | Effects | Risk-reducing measures | |-----|---|----------------------------------|---|---| | 1 | CO ₂ storage tank | Rupture
or leak-
age | • CO ₂ is released around
the storage tank, and
can affect the nearby
tanks | • Ensure that the material and thickness of the tank are safely designed | | | | Overpres-
sure | • If the pressure exceeds
the design pressure
of the storage tank,
rupture or leakage can
occur at the vulnerable
part | Install PSV | | | | Low pressure | • Rupture or leakage can occur at the vulnerable part | • Charge vapor CO ₂ through
the pressure built-up vapor
CO ₂ line from the vaporizer | | | | Over-
charge | • CO ₂ is released around
the storage tank, and
can affect the nearby
tanks | If the level is above 95%, the alarm sounds. If the level is above 98%, close the valve(or ESDV) in the LCO₂ charging line | | | | Turnover | • Pressure increase in the storage tanks | Safety design needed considering the turnover situation | | 2 | 24-inch
LCO ₂ charg-
ing line | Rupture
or leak-
age | Pressure drop in the CO₂ storage tank CO₂ is released around the line | Install a low-temperature sensor around the pipeline to detect CO₂ leakage. Install ESDV as close as possible to the storage tank | | 3 | 6-inch LCO ₂ transmission line | Rupture
or leak-
age | CO₂ storage tank is depressurized CO₂ is released around the line | Install a low-temperature sensor around the pipeline to detect CO₂ leakage. Install ESDV as close as possible to the storage tank | | 4 | 2-inch pressure built-up vapor CO ₂ Line | Rupture
or leak-
age | CO₂ storage tank is depressurized CO₂ is released around the line | Install a low-temperature sensor around the pipeline to detect CO₂ leakage. Stop LCO₂ transmission to LP pumps Install ESDV as close as possible to the vaporizer Install check valve as close as possible to the storage tank | (Continued) | 5 | 3-inch vapor | Rupture | • CO ₂ storage tank is | Install a low-temperature | |---|-------------------------|---------|--------------------------------------|--| | | CO ₂ release | or | depressurized | sensor around the pipeline to | | | line | leakage | • CO ₂ is released around | detect CO ₂ leakage. | | | | | the line | • Close the valve(or ESDV) in | | | | | | the LCO ₂ charging line | | | | | | Install ESDV as close as | | | | | | possible to the storage tank | #### 5 CONCLUSION In this study, hazard analysis is carried out for the unloading system and the CO₂ storage tanks, which are considered the most dangerous facilities in the CO₂ intermediate storage terminal for offshore CCS transportation process. As a risk analysis method, PHA is used. The unloading system is divided into six components and the CO₂ storage tanks into five components, and it is identified potential hazard events for each components. The effects and risk-reducing measures are derived for each potential hazardous event. For the unloading system, the unloading arm and the LCO₂ recirculating line are found to be dangerous components in case of accidents. In the case of the unloading arm, if an accidents such as a rupture or bad connection with the CO₂ carrier occur, low-temperature solid and vapor CO₂ will leak, which may cause fatal damage to workers. Therefore, installations of ERS, ESDV, etc. are essential. When the LCO₂ recirculating line fails, the temperature of the entire CO₂ intermediate storage facilities can increase, which can cause a serious damage to assets. Therefore, enough TSV should be installed to maintain the low temperature in LCO₂ recirculating line. In the case of CO₂ storage tanks, if accidents such as a rupture, an overpressure, a low pressure, and an overcharge occur, they can cause great damage due to large amount of CO2 leakage, they can cause great damage due to large amount of CO2 leakage. Therefore, PSV, level gauge and alarm, and ESDV should be installed to properly manage the dangerous situation. The CO₂ intermediate storage terminal has not yet been installed and operated in the world. However, it is very likely to be introduced if CCS technology is commercialized in the future. Therefore, PHA of this study can be a good reference to develop safe CO₂ transportation technology. #### **ACKNOWLEDGEMENTS** This research is supported by a grant from Endowment Project of "Acquisition and Application of Reliability Assessment Key-Technologies for Offshore Plant Package/Module" funded by the Korea Research Institute of Ships & Ocean engineering (PES8930). #### REFERENCES - [1] IEA, Energy technology perspectives 2015, 2015. - [2] Ministry of Maritime Affairs & Fisheries, *Development of Technology for CO2 Offshore Geological Storage*, 2016 (in Korean). - [3] Noh, H., Kang, K., Kang, S.G. & Lee J.G., Strategy for development of HSE management framework for offshore CCS project in Korea. *Journal of Korean Society for Marine Environment and Energy*, 20(1), pp. 26–36, 2017 (in Korean). https://doi.org/10.7846/jkosmee.2017.20.1.26 - [4] Rausand, M., *Risk assessment: theory, methods, and applications*, John Wiley & Sons, Inc., Hoboken, NJ, 2011.