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This paper aims to solve the multi-objective decision-making for the optimal configuration of 

multi-type new retailing terminals. First, the distribution of consumer demand for convenience 

stores (CSs) and unmanned retail terminals (URTs) was investigated in different scenes. Then, 

the author set up an optimization model for the configuration of multi-type terminals, aiming 

to maximize the daily mean profit of the retailer, maximize consumer satisfaction in multiple 

dimensions, and minimize the number of terminals. To solve the model, the genetic algorithm 

(GA) and particle swarm optimization (PSO) were combined into a hybrid algorithm, based 

on elite recombination and directed optimization (directed elite search). The proposed model 

and algorithm were proved valid through empirical analysis. The results show that the retailer 

can achieve better profit and consumer satisfaction by deploying multiple types of retail 

terminals, and arranging different terminals at different scenes; moreover, the three 

optimization objectives can be achieved by improving the attraction of terminals, cautiously 

analyzing consumer rationality and properly setting the courier fee. The research findings lay 

theoretical basis for terminal configuration in new retailing and provide an important guide for 

new retailing operations. 
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1. INTRODUCTION

Online consumption is an emerging driving force of world 

economy. According to Deloitte’s Global Powers of Retailing 

2019, the global retail sales totaled USD 26.51 trillion in 2018, 

11.4% (USD 3.02 trillion) of which comes from e-commerce 

[1]. Both the lifestyle and mindset of consumers are changing 

disruptively, forcing retailers to speed up change and 

innovation. The key to the shift towards the “new retail” lies 

in the deep integration between online and physical stores, 

relying on big data and advanced logistics techniques. 

New retailing emphasizes the real-time interaction between 

people, goods and venues [2]. The venues refer to the places 

that directly offer goods and consumer experience. The type, 

number, location and service model of venues must be 

optimized. Concerning different types of terminals, Grewal et 

al. [3] suggested that unmanned retail terminals (URTs) are the 

focus and representative form of new retailing, thanks to its 

convenience, intelligence, and online-offline linkage. Janjevic 

et al. [4] analyzed the applicable environment of automatic 

unmanned delivery lockers and service outlets. Castillo et al. 

and Iwan et al. [5, 6] discussed the logistics cost and consumer 

service level under such model as delivery box, courier box, 

and pick-up station, respectively. Wollenburg et al. [7] 

identified the key factors that affect the design of the logistics 

network, as traditional retailers transform to the omnichannel 

model. Johannes et al. [8] investigated how and why different 

fulfillment options can help to steer customers across channels. 

Xu and Cao [9] proposed an optimal ordering and allocation 

policy for a store replenishment decision in the context of an 

omnichannel retailer in a franchise network. 

The location and number of terminals are often determined 

based on the site selection model. The model could be 

constructed with a single objective or multiple objectives. On 

single-objective modelling, Liu et al. [10] attempted to satisfy 

the online demand with facilities of a limited capacity in a 

multi-channel supply chain, with the aim to minimize the total 

cost incurred in handling the online demand. Chen et al. [11] 

considered the uncertainty in site selection, aiming to 

minimize the cost of expected regret. Aboolian et al. [12] 

created a competitive site selection model that maximizes the 

market share.  

Compared with single-objective model, multi-objective 

model is closer to enterprise operations, yet difficult to solve 

[13]. Taking the minimal total cost and maximal logistics 

network response as the goals, Pishvaee et al. [14] constructed 

a comprehensive logistics network model with both forward 

and reverse logistics, and designed a multi-objective memetic 

algorithm to solve the model. Pasandideh et al. [15] fully 

considered the economics, balance, and service level of the 

logistics network, and developed a bi-parameter tuning 

heuristic algorithm, coupling the genetic algorithm (GA) and 

simulated annealing (SA) algorithm. In the light of cost, 

environmental impact and social responsibility, Govindan et 

al. [16] presented a sustainable reverse logistics network with 

multiple levels, cycles and objectives, and designed an 

individualized multi-objective particle swarm optimization 

(PSO) algorithm through fuzzy mathematical programming.  

The above analysis shows that the existing studies on new 

retailing terminals mainly focus on the network optimization 

of a single type of facility. The research on multi-type 

terminals stops at the applicable scope and influencing factors. 

There is no report that quantifies the decision-making of the 

configuration of multi-type terminals. In the operations of new 
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retailing, enterprises often resort to the interaction between 

multi-type terminals, hoping to fulfil personalized needs of 

consumers more quickly and efficiently. Therefore, this paper 

probes deep into the demand for multi-type terminals, 

examines the features of new retailing scenes, and discusses 

the discrepancy in consumer demand in different scenes. On 

this basis, the author put forward an optimization strategy for 

the configuration of multi-type terminals. 

The remainder of this paper is organized as follows: Section 

2 analyzes the scenes of new retailing, and quantifies the 

demand with multi-type terminals; Section 3 sets up a multi-

objective optimization model for the configuration of new 

retailing terminals; Section 4 designs a hybrid PSO-GA based 

on elite recombination and directed optimization (hereinafter 

referred to as directed elite search); Section 5 verifies the 

proposed model and algorithm through example analysis; 

Section 6 sums up the research findings. 

 

 

2. SCENE-BASED DEMAND ANALYSIS FOR MULTI-

TYPE TERMINALS 

 

The features of new retailing depend on the specific scene. 

In different scenes, the consumers have vastly different types 

of demand, and also enjoy various options to fulfill their 

demand (Figure 1). New retailing offers two main kinds of 

terminals to satisfy consumer demand, namely, convenience 

stores (CSs) and unmanned retail terminals (URTs). The 

consumers choose between the terminals mainly based on their 

utilities [17]. 
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Figure 1. The scenes and types of consumer demand and service models and channels in new retailing  

 

2.1 Scene-based demand analysis for CSs 

 

As shown in Figure 1, the CSs mainly satisfy the consumer 

demand for “buy in store” and that for “buy online, in-store 

pickup”. Let I be the set of all consumers, J be the set of all 

CSs, and K be the set of all types of goods. Then, the demand 

of consumer i for type k goods can be denoted as 𝑑𝑖𝑘.  

Here, two decision variables are defined, namely, 𝑥𝑗 and 𝑦𝑖𝑗 . 

Both decision variables are either 0 or 1. If a consumer decides 

to buy in CS j, then 𝑥𝑗 = 1; otherwise, 𝑥𝑗 = 0. If consumer i 

decides to buy online and pick up the goods buy in CS j, then 

𝑦𝑖𝑗 = 1; otherwise, 𝑦𝑖𝑗 = 0. 

According to the concave-convex coverage function 𝑎𝑖𝑗  

proposed by Ghossoub et al. [18], the attraction between 

consumer i and CS j can be expressed as: 

 

 𝑎𝑖𝑗 =

{
 

 
1 𝑟𝑖𝑗 ≤ 𝐿𝑠

𝑐  

1 − (
𝑟𝑖𝑗−𝐿𝑠

𝑐 

𝑈𝑠
𝑐−𝐿𝑠

𝑐 
)
𝜂𝑖
 𝐿𝑠
𝑐  < 𝑟𝑖𝑗 < 𝑈𝑠

𝑐  , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

0 𝑟𝑖𝑗 ≥ 𝑈𝑠
𝑐  

     (1)  

 

where, 𝑟𝑖𝑗  is the distance between consumer i and CS j; 𝐿𝑠
𝑐  and 

𝑈𝑠
𝑐 are the minimum and maximum coverage distances of CSs 

in scene s, respectively; 𝜂𝑖  is the distance sensitivity of 

consumer i. 

Then, the multinomial logit (MNL) model [19] was 

introduced to represent the random selection of consumers. 

The probabilities for consumer i to choose “buy in store” 𝑤𝑖𝑗  

and “buy online, in-store pickup” 𝑤𝑖0  can be respectively 

expressed as: 

 

𝑤𝑖𝑗 =
𝑒
𝜆𝛽𝑖𝑗𝑎𝑖𝑗𝑥𝑗

1+∑ 𝑒𝜆𝛽𝑖𝑚𝑎𝑖𝑚𝑥𝑚𝑚𝜖𝐽
 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽              (2) 

 

 𝑤𝑖0 =
1

1+∑ 𝑒𝜆𝑢𝑖𝑚𝑥𝑚𝑚𝜖𝐽
 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                 (3)  

 

where, 𝛽𝑖𝑗  is the attraction of CS j to consumer i; λ is 

rationality degree of consumers. Thus, the total demand 𝐷𝑗
𝑐  

fulfilled by CS j is the sum of the consumer demand for “buy 

in store” and that for “buy online, in-store pickup”: 

 

𝐷𝑗
𝑐 = ∑ 𝑑𝑖𝑘(𝑤𝑖𝑗 + 𝑤𝑖0𝑦𝑖𝑗)𝑖𝜖𝐼,𝑘𝜖𝐾  ∀𝑗 ∈ 𝐽           (4) 

 

2.2 Scene-based demand analysis for URTs 

 

The URTs only partly fulfil the consumer demand for “buy 

in store”, due to the limited goods available on each terminal.  
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Here, a decision variable is defined, namely, 𝑧𝑗𝑘 . The 

decision variable is either 0 or 1. If URT j provides type k 

goods, then 𝑧𝑗𝑘 = 1; otherwise, 𝑧𝑗𝑘 = 0. 

Suppose URT j can fully meet the demand of consumer i for 

type k goods. Then, the URT’s attraction to the consumer only 

depends on distance: 

 

 𝑎𝑖𝑗 =

{
 
 

 
 1 𝑟𝑖𝑗 ≤ 𝐿𝑠

𝑡  

1 − (
𝑟𝑖𝑗−𝐿𝑠

𝑡  

𝑈𝑠
𝑡−𝐿𝑠

𝑡  
)
𝜂𝑖

 𝐿𝑠
𝑡  < 𝑟𝑖𝑗 < 𝑈𝑠

𝑡  , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

0 𝑟𝑖𝑗 ≥ 𝑈𝑠
𝑡  

   (5) 

 

where, 𝑟𝑖𝑗  is the distance between consumer i and URT j; 𝐿𝑠
𝑡  

and 𝑈𝑠
𝑡 are the minimum and maximum coverage distances of 

URTs in scene s, respectively. 

According to the MNL model, the probability for consumer 

i to buy type k goods at URT j can be expressed as: 

 

𝑊𝑖𝑗𝑘
𝑒 =

𝑒
𝜆𝛿𝑖𝑗𝑘𝑎𝑖𝑗𝑧𝑗𝑘

1+∑ 𝑒𝜆𝛿𝑖𝑚𝑛𝑎𝑖𝑚𝑧𝑚𝑛𝑚𝜖𝐽,𝑛𝜖𝐾
 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾     (6) 

 

where, 𝛿𝑖𝑗𝑘 is the attraction of URT j, which provides type k 

goods, to consumer i. 

If URT j fails to satisfy the demand of consumer i, the 

consumer may give up the purchase or buy alternative goods. 

Let (1-𝜋) be the proportion of consumers giving up the 

purchase, i.e. the consumer loss ratio. For the remaining 

consumers (𝜋), the attraction from URT j, which provides type 

k goods, can be expressed as 𝜃𝑘𝑎𝑖𝑗, with 𝜃𝑘 ∈ (0,1) being the 

consumer satisfaction with the alternatives to type k goods. 

Hence, the probability 𝑊𝑖𝑗𝑘
𝑟  for consumer i to buy 

alternatives to type k goods at URT j can be expressed as: 

 

𝑊𝑖𝑗𝑘
𝑟 =

𝑒
𝜆𝛿𝑖𝑗𝑘𝜃𝑘𝑎𝑖𝑗𝑧𝑗𝑘

1+∑ 𝑒𝜆𝛿𝑖𝑚𝑛𝜃𝑛𝑎𝑖𝑚𝑧𝑚𝑛𝑚𝜖𝐽,𝑛𝜖𝐾
 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾   (7) 

 

Thus, the total demand 𝐷𝑗𝑘
𝑁  fulfilled by CS j is to sum of the 

consumer demand for desired goods (type k goods) and that 

for alternatives: 

 

𝐷𝑗𝑘
𝑁 = ∑ (𝑑𝑖𝑘𝑊𝑖𝑗𝑘

𝑒 + π𝑑𝑖�̂�𝑊𝑖𝑗𝑘
𝑟 )𝑖𝜖𝐼  ∀𝑗 ∈ 𝐽, 𝑘, �̂� ∈ 𝐾, �̂� ≠ 𝑘 (8) 

 

 

3. MULTI-OBJECTIVE MODEL FOR 

CONFIGURATION OF NEW RETAILING 

TERMINALS 

 

3.1 Hypotheses 

 

From the perspective of retailers, this paper focuses on 

optimizing the configuration of multi-type terminals in 

different scenes. The basic hypotheses were put forward as 

follows: 

Hypothesis 1: All types of terminals have been replenished; 

Hypothesis 2: The CSs have not capacity limit, fully satisfy 

consumer demand, and fulfil the demand for “buy online, in-

store pickup”; 

Hypothesis 3: The URTs have capacity limit, and the same 

type of goods are available on only one URT in the same scene; 

Hypothesis 4: The demands of different consumers are 

independent of each other, and the demand of the same 

consumer can be fulfilled by multiple different terminals. 

3.2 Objectives 

 

In new retailing, cost optimization is no longer the only 

pursuit of the configuration of the logistics network. The 

fulfilment of consumer demand is of equal importance to 

retailers [20]. Therefore, our model was established from three 

dimensions: daily mean profit, consumer satisfaction and the 

number of terminals. 

(1) Maximization of daily mean profit 

The daily mean profit TP equals the difference between 

daily revenue TR and daily cost TC. The retailer’s revenue 

consists of sales revenue and the courier fees paid by online 

shopping consumers; the retailer’s cost includes the inventory 

costs of CSs and URTs, the rent of CSs, the purchase and 

operating expenses of URTs, as well as the distribution costs 

incurred by online shopping consumers. Hence, the daily 

revenue TR can be expressed as: 

 

𝑇𝑅 = ∑ [𝑝𝑘
𝑠(𝐷𝑗

𝑐 + 𝐷𝑗𝑘
𝑁) + 𝑝𝑑𝑑𝑖𝑘𝑤𝑖0𝑦𝑖𝑗]𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾        (9) 

 

where, 𝑝𝑘
𝑠 is the price of type k goods; 𝑝𝑑 is the courier fees 

paid by online shopping consumers. 

Meanwhile, the daily cost TC can be expressed as: 

 

𝑇𝐶 = ∑ (
1

2
ℎ𝑗
𝐶𝐷𝑗

𝑐 +
1

2
ℎ𝑗𝑘
𝑁𝐷𝑗𝑘

𝑁 + 𝑐𝑖𝑗
𝑑𝑑𝑖𝑘𝑤𝑖0𝑦𝑖𝑗 +𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾

𝑜𝑗
𝐶𝑥𝑗 + 𝑜

𝑁𝑧𝑗𝑘)                             (10) 

 

where, ℎ𝑗
𝐶  and ℎ𝑗𝑘

𝑁  are the unit inventory costs of CS j and 

URT j, respectively; 𝑐𝑖𝑗
𝑑  is the unit distribution cost between 

CS j and consumer i; 𝑜𝑗
𝐶 is the daily mean rent of CS j; 𝑜𝑁 is 

the purchase and operating expenses of URT j. 

Therefore, the maximization of the retailer’s daily mean 

profit can be described as: 

 

𝑇𝑃 = max (𝑇𝑅 − 𝑇𝐶) 

= 𝑚𝑎𝑥 ∑ [𝑝𝑘
𝑠𝑑𝑖𝑘(𝑤𝑖𝑗 + 𝑤𝑖0𝑦𝑖𝑗) + 𝑝𝑘

𝑠(𝑑𝑖𝑘𝑊𝑖𝑗𝑘
𝑒 +𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾

π𝑑𝑖�̂�𝑊𝑖𝑗𝑘
𝑟 ) + 𝑝𝑑𝑑𝑖𝑘𝑤𝑖0𝑦𝑖𝑗 −

1

2
ℎ𝑗
𝐶𝑑𝑖𝑘(𝑤𝑖𝑗 +𝑤𝑖0𝑦𝑖𝑗) −

1

2
ℎ𝑗𝑘
𝑁 (𝑑𝑖𝑘𝑊𝑖𝑗𝑘

𝑒 + π𝑑𝑖�̂�𝑊𝑖𝑗𝑘
𝑟 ) − 𝑐𝑖𝑗

𝑑𝑑𝑖𝑘𝑤𝑖0𝑦𝑖𝑗 − 𝑜𝑗
𝐶𝑥𝑗 − 𝑜

𝑁𝑧𝑗𝑘] 

(11) 

 

(2) Maximization of consumer satisfaction 

In new retailing, the consumer satisfaction with terminal 

configuration mainly depends on the product quantity, service 

punctuality, product price and product attributes. Drawing on 

the method proposed by Hoseinpour and Ahmadi-Javid [21], 

the consumer satisfaction was measured by four indices: 

effectiveness satisfaction S1, time satisfaction S2, cost 

satisfaction S3 and product attribute satisfaction S4. The 

weights of the four indices, i.e. v1, v2, v3, v4, in consumer 

satisfaction satisfy v1+ v2+ v3+ v4=1. 

If a consumer chooses “buy in store” or “buy online, in-store 

pickup”, he/she can always find the desired goods within an 

affordable cost. His/her satisfaction is only affected by the 

time spent in shopping. The time satisfaction S2 is related to 

the distance between the consumer and the CS, and can be 

described by the attraction function 𝑎𝑖𝑗 . Thus, the overall 

satisfaction 𝑇𝑆𝐶 of this type of consumers can be expressed as: 

 

𝑇𝑆𝐶 = ∑ (𝑣1 + 𝑣2𝑎𝑖𝑗 + 𝑣3 + 𝑣4)𝑑𝑖𝑘𝑤𝑖𝑗𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾      (12) 
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If a consumer chooses “buy online, home delivery”, his/her 

satisfaction is influenced by the time and cost of shopping. The 

time satisfaction S2 can still be described by the attraction 

function 𝑎𝑖𝑗 . Meanwhile, the cost satisfaction S3 mainly hinges 

on the ratio of courier fee to product price: 𝑆3 = 𝑝𝑘
𝑠 𝑝𝑑⁄ . Then, 

the overall satisfaction 𝑇𝑆𝐷 of this type of consumers can be 

expressed as: 

 

𝑇𝑆𝐷 = ∑ (𝑣1 + 𝑣2𝑎𝑖𝑗 +
𝑣3𝑝𝑘

𝑠

𝑝𝑑
+ 𝑣4) 𝑑𝑖𝑘𝑤𝑖0𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾  (13) 

 

If a consumer accepts the service of URT and finds the 

desired goods, his/her satisfaction is only affected by the time 

spent in shopping. Hence, the overall satisfaction 𝑇𝑆𝑁𝑒 of this 

type of consumers can be expressed as: 

 

𝑇𝑆𝑁𝑒 = ∑ (𝑣1 + 𝑣2𝑎𝑖𝑗 + 𝑣3 + 𝑣4)𝑑𝑖𝑘𝑊𝑖𝑗𝑘
𝑒

𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾  (14) 

 

If a consumer accepts the service of URT but only finds the 

alternative goods, the indices affecting his/her satisfaction are 

S1=0, 𝑆2 = 𝑎𝑖𝑗 , 𝑆3 = 𝑝𝑘
𝑠 𝑝�̂�

𝑠⁄  and 𝑆4 = 𝜃𝑘 . The overall 

satisfaction 𝑇𝑆𝑁𝑟 of this type of consumers can be expressed 

as: 

 

𝑇𝑆𝑁𝑟 = ∑ (𝑣2𝑎𝑖𝑗 +
𝑣3𝑝𝑘

𝑠

𝑝
�̂�
𝑠 + 𝑣4𝜃𝑘) π𝑑𝑖�̂�𝑊𝑖𝑗𝑘

𝑟
𝑖𝜖𝐼,𝑗𝜖𝐽,𝑘𝜖𝐾  (15) 

 

To sum up, the maximization of the consumer satisfaction 

can be generalized as: 

 

𝑇𝑆 = max (𝑇𝑆𝐶 + 𝑇𝑆𝐷 + 𝑇𝑆𝑁𝑒 + 𝑇𝑆𝑁𝑟)         (16) 

 

(3) Minimization of the number of terminals 

In addition to cost, the deployment and operation of 

terminals face numerous constraints and uncontrollable factors. 

On the premise of satisfying consumer demand, the 

management pressure of the retailer can be greatly relieved by 

minimizing the number of terminals, i.e. maximizing the 

coverage of each terminal. The minimization of the number of 

multi-type terminals can be expressed as:  

 

𝑇𝑁 = 𝑚𝑖𝑛 ∑ (𝑥𝑗 + 𝑧𝑗𝑘)𝑗𝜖𝐽,𝑘𝜖𝐾                    (17) 

 

3.3 Multi-objective optimization model 

 

Through the above analysis, a multi-objective optimization 

model was constructed for multi-type terminal configuration 

in different scenes of new retailing: 

 

(P) {
Max TP
Max TS
Min TN

 

s.t. 

∑ 𝐷𝑗
𝐶

𝑗𝜖𝐽 + ∑ 𝐷𝑗𝑘
𝑁

𝑗𝜖𝐽,𝑘𝜖𝐾 ≥ ∑ 𝑑𝑖𝑘𝑖𝜖𝐼,𝑘𝜖𝐾            (18) 

 

𝐷𝑗𝑘
𝑁 ≤ 𝐴𝑘 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾                  (19) 

 

𝑥𝑗 ≥ 𝑦𝑖𝑗  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                     (20) 

 

𝑥𝑗 , 𝑦𝑖𝑗 , 𝑧𝑗𝑘 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾           (21) 

 

The objectives of the above model include the maximum 

daily mean profit of the retailer Max TP , the maximum 

consumer satisfaction  Max TS and the minimum number of 

terminals Min TN. Constraint (18) requires that the retailer’s 

daily supply should be greater than or equal to the daily 

consumer demand; Constraint (19) is the capacity limit of 

URTs, in which 𝐴𝑘  is the capacity for type k goods; 

Constraints (20) and (21) define the value intervals of different 

variables.  

 

 

4. HYBRID PSO-GA BASED ON DIRECTED ELITE 

SEARCH 

 

There are many ways to solve multi-objective optimization 

problems. The most common approach is to transform the 

model into a single-objective problem [22-24]. In our model, 

the objective function TN has a completely different structure 

from that of TP and TS, making it difficult to find a 

combinatory solution. Therefore, this paper presents a hybrid 

PSO-GA based on elite recombination and directed 

optimization (directed elite search). First, the initial solutions 

of the model were generated through optimum search in 

solution space. Then, the initial solutions were subjected to 

recombination and directional optimization by the hybrid 

PSO-GA, such as to iteratively approximate the global optimal 

solution of the model. 

 

4.1 Generation of initial solutions  

 

The two objectives TP and TS were combined into a single 

objective TPS, with the weights of ϕ1 and ϕ2, respectively. 

Then, the maximization of the TPS can be expressed as:  

 

Max TPS = 𝜙1𝑇𝑃 + 𝜙2𝑇𝑆                      (22) 

 

Since 
∂2TPS

∂𝑧𝑗𝑘
2 ≤ 0, there always exits a 𝑧𝑗𝑘that maximizes the 

TPS. Suppose  
∂TPS

∂𝑧𝑗𝑘
= 0, and we have: 

 

𝑧𝑗𝑘 =
(𝜙1𝑓3+𝜙2𝑔1)𝑑𝑖𝑘𝐸2𝑞2𝑞3

2+(𝜙1𝑓3+𝜙2𝑔3)π𝑑𝑖�̂�𝐸3𝑞3𝑞2
2−𝜙1𝑜

𝑁𝑞2
2𝑞3

2

(𝜙1𝑓3+𝜙2𝑔1)𝑑𝑖𝑘𝐸2
2𝑞3

2+(𝜙1𝑓3+𝜙2𝑔3)π𝑑𝑖�̂�𝐸3
2𝑞2

2  

(23) 

 

where, 𝐸2 = 𝑒𝜆𝛿𝑖𝑗𝑘𝑎𝑖𝑗 ; 𝐸3 = 𝑒𝜆𝜃𝑘𝛿𝑖𝑗𝑘𝑎𝑖𝑗 ; 𝑓3 = 𝑝𝑘
𝑠 −

1

2
ℎ𝑗𝑘
𝑁 ; 

𝑔1 = 𝑣1 + 𝑣2𝑎𝑖𝑗 + 𝑣3 + 𝑣4 ; 𝑔3 = 𝑣2𝑎𝑖𝑗 +
𝑣3𝑝𝑘

𝑠

𝑝
�̂�
𝑠 + 𝑣4𝜃𝑘 ;  𝑞2 =

1 + ∑𝑒𝜆𝛿𝑖𝑚𝑛𝑎𝑖𝑚𝑧𝑚𝑛; 𝑞3 = 1 + ∑𝑒
𝜆𝜃𝑛𝛿𝑖𝑚𝑛𝑎𝑖𝑚𝑧𝑚𝑛. 

From 
∂TPS

∂𝑥𝑗
= 0, we have: 

 

𝑥𝑗 =
𝑞1

𝐸1
−

𝜙1𝑞1
2𝑜𝑗
𝐶

(𝜙1𝑓1+𝜙2𝑔1)𝐸1
2𝑑𝑖𝑘

−
𝜙1𝑓2+𝜙2𝑔2

(𝜙1𝑓1+𝜙2𝑔1)𝐸1
𝑦𝑖𝑗        (24) 

 

where, 𝐸1 = 𝑒𝜆𝛽𝑖𝑗𝑎𝑖𝑗 ; 𝑞1 = 1 + ∑𝑒
𝜆𝛽𝑖𝑚𝑎𝑖𝑚𝑥𝑚 ; 𝑓1 = 𝑝𝑘

𝑠 −
1

2
ℎ𝑗
𝐶 ; 𝑓2 = 𝑝𝑘

𝑠 −
1

2
ℎ𝑗
𝐶 + 𝑝𝑑 − 𝑐𝑖𝑗

𝑑 ; 𝑔2 = 𝑣1 + 𝑣2𝑎𝑖𝑗 +
𝑣3𝑝𝑘

𝑠

𝑝𝑑
+

𝑣4. 

As shown in formula (24), the 𝑥𝑗 that leads to the optimal 

TPS is always related to 𝑦𝑖𝑗. Since 
∂TPS

∂𝑦𝑖𝑗
=

𝜙1𝑓2+𝜙2𝑔2

𝑞1
𝑑𝑖𝑘 is a 

constant, it is very difficult to identify the optimal solution 

directly. To overcome this difficulty, this paper puts forward 

an initial solution generation method based on optimum search 

in solution space. The workflow of the optimum search 
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algorithm is illustrated in Figure 2. First, a new optimization 

model was constructed with MinTN as the objective function. 

Taking the 𝑥𝑗 that leads to the optimal TPS as the independent 

variable, the corresponding 𝑧𝑗𝑘  and TN were solved by 

formula (23) and the constraints of the original multi-objective 

optimization model. Then, the TN was minimized by 

continuously adjusting the search range of 𝑥𝑗 . The 

corresponding 𝑥𝑗 and 𝑧𝑗𝑘are the initial feasible solutions that 

satisfy Min TN and Max TPS at the same time. 

The optimum search algorithm can be expressed as: 

(PC) MIN 𝑇𝑁 = 𝐿𝑍 + ∑ 𝜃𝑗𝑗𝜖𝐽  

s.t. formulas (18) -(21) 

𝐿𝑍 = ∑ 𝑧𝑗𝑘(𝜃𝑗)

𝑗𝜖𝐽,𝑘𝜖𝐾

 

𝑞1
𝐸1
−

𝜙1𝑞1
2𝑜𝑗

𝐶

(𝜙1𝑓1 + 𝜙2𝑔1)𝐸1
2𝑑𝑖𝑘

−
𝜙1𝑓2 + 𝜙2𝑔2

(𝜙1𝑓1 + 𝜙2𝑔1)𝐸1
𝑦𝑖𝑗 ≥ 𝐿𝑗

𝜎  

𝑞1
𝐸1
−

𝜙1𝑞1
2𝑜𝑗

𝐶

(𝜙1𝑓1 + 𝜙2𝑔1)𝐸1
2𝑑𝑖𝑘

−
𝜙1𝑓2 + 𝜙2𝑔2

(𝜙1𝑓1 + 𝜙2𝑔1)𝐸1
𝑦𝑖𝑗 ≤ 𝑈𝑗

𝜎  

 

 
 

Figure 2. Optimum search algorithm for initial solutions 

 

4.2 Search for global optimal solution 

 

The GA has been widely adopted to solve multi-objective 

models, thanks to its advantages of parallel search and 

adaptive adjustment. Nonetheless, this algorithm has problems 

like premature convergence and low operating efficiency [25]. 

To address these problems, this paper designs a hybrid PSO-

GA (Figure 3), which updates the swarm of the GA through 

rapid iterations of the PSO and restarts whenever the 

optimization process is stagnant. This hybrid algorithm can 

converge to high-quality solutions at a fast speed. 

The hybrid PSO-GA can be expressed as: 

 

𝑙 = 𝑙1 −
(𝑙1−𝑙2)

𝑇𝑚𝑎𝑥
𝑘                                    (25) 

 

𝑤𝑖
𝑘 = 𝑤𝑖

0 + 𝜀0
𝑓𝑖
𝑘−𝑓𝑚𝑖𝑛

𝑘 +𝛿0

𝑓𝑚𝑎𝑥
𝑘 −𝑓𝑚𝑖𝑛

𝑘 +𝛿1
∙
𝑇𝑚𝑎𝑥−𝑘

𝑇𝑚𝑎𝑥
             (26) 

 

𝑣𝑘+1 = 𝑤𝑖
𝑘𝑣𝑘 + 𝜀1(𝑏𝑝

𝑘 − 𝑝𝑘) + 𝜀2(𝑔𝑝
𝑘 − 𝑝𝑘)   (27) 

 

𝑝𝑘+1 = 𝑝𝑘 + 𝑣𝑘+1                        (28) 

 

where, 𝑙1 and 𝑙2 are the maximum and minimum of  the preset 

distance threshold , respectively; 𝑤𝑖
𝑘 is the inertia weight of 

particle i in the k-th iteration; 𝑤𝑖
0  is the preset weight of 

particle i; 𝑓𝑚𝑎𝑥
𝑘  and 𝑓𝑚𝑖𝑛

𝑘  are the maximum and minimum 

fitness of particles in the k-th iteration; 𝜀  and 𝛿  are factor 

adjustment coefficients, both of which are random numbers in 

[0, 1]. 
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Figure 3. The hybrid PSO-GA  

 

 

5. EMPIRICAL ANALYSIS 

 

To verify its effectiveness, the proposed strategy was 

applied to analyze the terminal configuration of a department 

store in a region, including such scenes as office, community, 

school, hospital and mall. Four types of URTs are involved: 

beverage snack machine, fresh food machine, intelligent food 

machine, and commodity vending machine. 

 

5.1 Parameter setting  

 

The consumer demand at each place is the product between 

population and consumption power index. The population is 

assumed to be evenly distributed across this region, and 

positively correlated with the building area at each place. 

Besides, the consumption power index changes from scene to 

scene. In office and community, the consumption power index 

depends on the selling price per unit area.  

The daily mean rent and operating expense of the CSs are 

related to the location and the type of surrounding scenes, and 

were obtained through surveys: 𝑝𝑘
𝑠 ∈ 𝑈[2,15], 𝑝𝑑 ∈ 𝑈[3,8], 

ℎ𝑗
𝐶 ∈ 𝑈[0.5,1.5], ℎ𝑗𝑘

𝑁 ∈ 𝑈[1,2], and 𝑂𝑁 ∈ 𝑈[20,30]. Different 

types of terminals vary in coverage distance. The minimum 

and maximum coverage distances of the CSs were set to 𝐿𝑠
𝑐 ∈

𝑈[0.3,0.6] and 𝑈𝑠
𝑐 ∈ 𝑈[1,1.3], respectively; the minimum and 

maximum coverage distances of the URTs were set to 𝐿𝑠
𝑡 ∈

𝑈[0.1,0.4] and 𝑈𝑠
𝑡 ∈ 𝑈[0.4,0.8], respectively. 

The other parameters were configured as follows: 𝜌 ∈
𝑈[0.1,0.3] , 𝜂 ∈ 𝑈[0.5,1.5] , 𝛽 ∈ 𝑈[1,5] , 𝛿 ∈ 𝑈[1,5 ], 𝜆 ∈

𝑈[4,6], 𝜃 ∈ 𝑈[0.3,0.8], 𝜋 ∈ 𝑈[0.4,0.6], 𝑣1 = 0.3, 𝑣2 = 0.2, 

𝑣3 = 0.3, 𝑣4 = 0.2, ϕ1= ϕ2=0.5, maximum number of searches 

in the solution space T=30, target deviation ε=0.01, the 

maximum number of iterations of the hybrid PSO-GA 

Tmax=100, the maximum number of restarts  

Nmax=20, the swarm size Q=100, the number of niche 

particle swarms m=5, and the number of steps of optimization 

stagnation 𝜋=5. 

 

5.2 Results analysis 

 

Through calculation, a total of 76 multi-type terminals were 

deployed in the region, including 14 CSs, 32 beverage snack 

machines, 7 fresh food machines, 12 intelligent food machines 

and 11 commodity vending machines. The location of each 

terminal is shown in Figure 4. 

(1) Influence of terminal type on decision-making 

The multi-type terminal model was compared with the CS-

only and the URT-only models in terms of their influence on 

decision-making. As shown in Table 1, the multi-type terminal 

model boasts the highest daily mean profit, surpassing that of 

the CS-only model and the URT-only model by 13.7% and 

39.1%, respectively. By contrast, the consumer satisfaction 

and number of terminals in the multi-type terminal model were 

on the medium levels, lower than those of the URT-only model. 

If the retailer vigorously pursues profit, the multi-type terminal 

model is the best option; if the retailer stresses on service 

quality, it should increase the number of URTs in demand-

concentrated places. 
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Figure 4. Configuration of multi-type terminals based on scenes 

 

Table 1. Comparison between terminal configuration models 

  

 Multi-type terminals CS-only URT-only 

TP 39,550 34,796 28,441 

TS 165 124 186 

TN 76 22 105 

 

(2) Influence of scene on decision-making 

Three URT configuration strategies were compared to 

disclose the influence of scene on decision-making: only 

beverage snack machines are deployed in each scene (single 

strategy), different URTs are deployed in different scenes 

(differentiated strategy), and all four types of URTs are 

deployed in each scene (complete strategy). As shown in Table 

2, the differentiated strategy outperformed the single strategy 

in both daily mean profit (>20.2%) and consumer satisfaction 

(>47.3%). Compared with the complete strategy, the 

differentiated strategy achieved a low consumer satisfaction 

(<5.2%) but a very high daily mean profit (>53.4%). Overall, 

the differentiated strategy, which fully considers the scenes, 

reduces the profit loss caused by short supply, and also lowers 

the cost and management difficulty resulted from idle 

terminals.  

 

Table 2. Comparison between different URT configuration 

strategies 

 

 
Differentiated 

strategy 

Single 

strategy 

Complete 

strategy 

TP 39,550 32,890 25,788 

TS 165 112 174 

TN 76 68 138 

5.3 Sensitivity of key parameters 

 

Sensitivity analysis aims to reflect how optimization 

objectives change with the parameter values. Considering the 

difference in metric unit between the three objectives, the 

variation in each objective was calculated by adjusting the 

values of key parameters, with the optimal configuration was 

taken as the benchmark. 

Figure 5 and Figure 6 illustrate how the three objectives 

correlate with the attractions 𝛽 and 𝛿 of the CSs and the URTs  

to consumers, respectively. It can be seen that the greater the 

attraction, the higher the daily mean profit; the attraction of the 

CSs is negatively correlated with the total number of terminals, 

but unrelated to consumer satisfaction; the attraction of the 

URTs has a positive correlation with consumer satisfaction. As 

a result, any retailer looking for profit and consumer 

satisfaction should improve the attraction of retail terminals, 

especially the URTs, to consumers. 

Figure 7 presents the influence of consumer rationality on 

the three objectives. With the growing rationality of 

consumers, the retailer needs fewer and fewer terminals to 

fulfil the consumer demand, while daily mean profit and 

consumer satisfaction did not exhibit a clear trend. Thus, the 

retailer should cautiously analyze the rationality of regional 

consumers, before making the optimal decision on the 

configuration of retail terminals.  

Among the cost parameters, rent and inventory cost are 

inevitable expenditures for the retailer, while the courier fee is 

controllable by the retailer. As shown in Figure 8, with the 

growth in the courier fee, the consumer satisfaction decreased, 

the number of terminals needed increased, while the daily 
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mean profit first increased, then declined and eventually 

stabilized. To strike a balance between profit and consumer 

satisfaction, the retailer must find the optimal balance point in 

the courier fee. 

 

  
 

Figure 5. The relationship between the three objectives and 

the attraction of the CSs to consumers 

 

 
 

Figure 6. The relationship between the three objectives and 

the attraction of the URTs to consumers 

 

  
 

Figure 7. The relationship between the three objectives and 

consumer rationality 

 
 

 

Figure 8. The relationship between the three objectives and 

courier fee 

 

 

6. CONCLUSIONS 

 

Retail terminals are close to consumers, and directly satisfy 

their demand. In new retailing, these terminals are the key 

nodes in the last-mile service network. The type, number, 

location and coverage of retail terminals have a direct bearing 

on the service quality and profit level of the retailer. Therefore, 

this paper probes deep into the multi-objective decision-

making model for the optimal configuration of multi-type 

terminals based on scenes, and designs a hybrid PSO-GA 

based on directed elite search to solve the decision-making 

model. Empirical results demonstrate the feasibility of our 

model and algorithm. It is concluded that the retail terminals 

should be configured by improving their attraction, cautiously 

analyzing consumer rationality and properly setting the courier 

fee. 
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