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In this work, we studied an inventory model with a single-component preservation system and 

the replenishment schedule as decision variables. The system has characteristics with three 

distinct states. The productive items are maintained in the warehouse, the items are serviced 

on demand of the customers, any defective items are to be serviced if it serviceable or 

discarded. The system is monitored periodical intervals, and the warehouse system is 

maintained with frequent observations and inspections. Based on the request of the customer 

the products are serviced. If any defective product is serviced then the customer has the right 

to the returned product with a new item or amount paid. The defective items that are returned 

from the customers re-entered into the service system after repair or discarded as scrap. The 

key intention of the paper is to minimize the optimization of cost, minimal time service, and 

effective stock of the warehouse. The produced results show that effective improvement with 

existing metrics. Finally, we formulated an inventory model for the stochastic optimal 

performance measures of various parameters. 
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1. INTRODUCTION

Stochastic inventory models are addressed by many 

researchers in which the ordered product through online 

sources is not instantaneously delivered to the purchased 

customers in recent years [1-4]. The stocked items in the 

warehouse need time to process the product such as order 

collection, preparation, the package of the item, and dispatch 

to the customer. The time that takes to deliver a product for the 

ordered procurer is haphazard and a positive value. It leads to 

form a queue and inventory executive needs to monitor the 

waiting time to dispatch the product along with waiting 

ordered products, inventory size, product holding time and 

other factors to judge the system performance, to execute 

different strategies for ordered items [5-7]. An inventory 

management system handles a single inventory article to 

service the customer at a time in the service facility. In these 

papers, authors assumed that service rates, as well as demand, 

are considered to be deterministic and invariable. The ordered 

products form a queue for service in the later stage when the 

stock out in the stockroom [8, 9]. The key focus in these papers 

is to optimize the total cost rate with the optimal order quantity 

to generate maximum revenue [10, 11]. 

Inventory system with a return policy is the system, in 

which the defective products can be returned from the 

customers in a repairable state. Demand, service process is 

independent process and follows an exponential distribution. 

It is assumed that always demand and supply balanced [12, 13]. 

So that product is serviced in a stipulated time without extra 

cost [14]. Regarding the services, it is considered that the 

customers have the right to return the defective products that 

are ordered during the warranty time [15]. In this case, another 

new similar product will be delivered without cost-increasing. 

The returned products either enter into the service after repair 

or discarded and treated as scrap. 

Yadavalli examined two - product inventory system with 

general demand and joint ordered product into the service 

facility [16-18]. The service time to process orders follows 

exponential distribution where mean service rate always lesser 

to mean arrival time. The ordered products by the customers 

require one item at a time to serve in the inventory. For optimal 

policy under the mean cost of product and discarded item, both 

bounded and unbound time horizon time is revealed as a 

threshold in the ordering policy. A relatively logical model 

was developed by Schwarzet.al. [19], where the system is a 

Markovian production system, in which a single server 

processes the demands as a batch by taking the orders a unit 

size [20]. Giri and Bardhan [21] discussed a two-echelon 

supply chain dependent cost system with partially logging the 

products. 

In this paper, we studied an inventory control system for 

orders, returns and demands of the products with single-item 

inventory systems that are processed between warehouse and 

customers. Inventory control systems with various features 

such as order of the product, return policy, items repairable 

and most of these facilities are described in the form of a 

closed circular queues systems with sufficient size of the 

products inside the system. Non-feasible defected items that 

are returned by customers are allowed to discard from the 

system are addressed in these papers. The decision of disposal 

products and the validation of all items accepting for returns 

direct to a highly unpredictable inventory level and 

consequently leads to sky-scraping inventory price of the 

products [22]. To scale down the rebuff of the returned item 

cost, in some cases transshipment of returns is permitted 

between all inventory systems. Another side of the inventory 

systems, various models for remanufacturing and resurveying 

is developed in the papers and feedbacks with compliment 
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reviews along with recent advances associated topics are 

established. They focused on zero lead times with arbitrarily 

distributed service times and examined the system with 

bounded queuing size where orders of customers follow the 

Poisson process [23-25]. Models have been developed for 

optimal ordering quantity with a feasible cost structure to 

optimize long-run predicted cost in a unit cycle time. 

The rest of the paper is organized as follows. In section 2 

assumptions, nomenclatures and symbols that are commonly 

used in the development of the inventory system models are 

discussed. In section 3, an E-commerce sales problem for a 

single-item inventory model with a return policy is presented. 

The description of a mathematical model is studied in section 

4. The inventory model is further upgraded to the lateral 

transshipment of returns with a service facility. In section 5, 

we analyzed the results with optimal performance measures 

for the remanufacturing inventory system. Finally, in section 

6, summary and concluding observations are discussed. 

 

 

2. NOMENCLATURES AND ASSUMPTIONS 

 
2.1 Nomenclatures 

 
To develop the mathematical model and performance 

metrics the following nomenclatures, symbols are used in this 

manuscript.  

 

Hc - Holding price of the product per quantity in a periodic 

cycle time 

Sc - Shortage price of the product per quantity in a periodic 

cycle time 

Ec - Establishment cost of stock per order 

R - Demand price of the product 

K -Manufacturing price of the product 

t - Scheduling time period 

tp - prescribed scheduling time period 

z - Stock size 

D - Total demand  

q - Quantity that exists at the initial stage 

L -Lead time 

 

2.2 Assumptions 

 

Let the system services the products based on the demand 

and supply of the inventory model with a single product 

servicing mechanism. The service process may be in control 

state or beyond its service state. At the early stage, the system 

is considered to be an in-control state with non-defective 

products. If any serviced defective products to the customers 

may be returned to the service station. The failure products 

serviced if it is possible otherwise discarded with suitable 

probability rates. With the following assumptions a 

mathematical model is constructed: 

 

➢ The working environment is treated as deterministic. 

➢ The demand rate is proportionate to the service cycle and 

maybe fewer than the service rate. 

➢ The inventory item's decline is proportional to the 

invariable fraction and leads to constant in the on-hand 

inventory system. 

➢ The product purchaser ought to pay handling and 

shipping charges.  

➢ The deteriorating item cost is constant and vulnerable. 

➢ Shortage if exist is treated as minimal and negligible. 

➢ The elapsed time in the service process is a random 

variable and follows an exponential distribution. 

➢ The process is inspected at time intervals ti to refer to the 

state space.   

 

If the system is beyond control, the proposed method allows 

two possible states: 

Case I: The system is restored after optimal service whereas 

the system failure rate is unaffected. 

Case II: If the system is not enough to provide service after 

the first case then the replenishment is to be ceased. 

The service cycle ends its services if the system shifts to the 

second case or afterfirst case random checkup intervals 

whichever occurs first. If the system is beyond the service state, 

bad quality products are revoked without service and defective 

items that are possible to service enter into service after the 

repair, rest is discarded 

 

 

3. PROBLEM DESCRIPTION AND ANALYSIS 

 
In this section, we present an inventory cost model that is 

handled that process item with a continuous surveillance 

procurement policy and the development of mathematical 

solutions to find policy parametric. The key, to study state 

distributions is the usage of normal distribution random 

variables for net inventory many authors studied at various 

inventory models of various aspects of managing repairable 

products. This model mostly assumes failure at the product 

simultaneously generates the demand for the product, the same 

type. That is serviceable products and failure product return 

processes are perfectly correlated. 

The main aim of the seller under the present marketing 

tactic is to promote the products by persuading the customers 

to purchase the items by giving the facility to return the 

product if the customer is not satisfied in a stipulated time with 

the full amount as a refund or with replacement facility. As a 

result of this policy, offered by the wholesalers, most of the 

customers may take it as a privilege to purchase the items and 

they have to tackle all orders and a lot of returns. And most of 

the cases the returned items may be in fine condition and these 

items can be reentered into the market for sale by examining 

items after servicing and repacking. These models are either 

single – item or multi-items inventory control systems to 

handle return products is arranged in a queuing network [5, 11, 

14]. Demands and returns are two independent processes in the 

inventory system and pursue the Poisson process. The items 

returned by customers are reviewed for quality and serviced 

with standard testing tools. The repaired items entered into the 

service facility, items failed during the testing time are 

discarded as scrap. The time to repair products is assumed 

negligible. The inventory system is a continuous review policy 

controlled by a well-known (r, Q) model. A schematic view of 

single item service mechanism system can be observed in 

Figure 1. The solution of the model is analyzed by using the 

spectral expansion method to measure various performance 

measures of the system with steady-state probabilities.  

Transshipment of returns in two similar inventory systems 

from one level of inventory to another for service is presented 

in an irreducible continuous Markov process in two-

dimensional spaces. An analytical method by using a spectral 

method is given for this model and a robust solution of the 

system is developed for study state probability distribution. 
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Performance measures of stock movement, average running 

cost, and time required to process items can be computed for 

this joint inventory system with the help of fairly accurate 

probability distribution. Replenishment and inventory costs 

are the key focus in the system, since there is no loss of 

demands or accumulated orders where leading time is 

expected to be negligible or zero during order replenishment 

[17, 18]. The refusal rate of returned items is tremendously 

little and considerably declines in the transshipment inventory 

model when the size of re-ordering items (Q+1) become 

gigantic. A further model can be upgraded to an inventory 

system with multiple orders and returns with a single service 

warehouse station. It is particularly important when 

remanufacturer contains multiple recycling service places so 

that all locations can be interconnected with a fair network to 

exchange information. It leads to a great extent to the rate of 

clearance products.   

 

 
 

Figure 1. A schematic representation of the single – product inventory model 

 

Do not begin a new section directly at the bottom of the page, 

instead, move the heading to the top of the next page. 

The maximum inventory capacity in the system is Q with 

mean arrival rates σ and service rate µ respectively and follow 

Poisson processes. When the level of inventory system is Q, 

any arrived return immediately disposed of without further 

checking. And a returned product is thoroughly checked for 

re-service if repairable before sending it into the inventory 

system. It is assumed that an appropriate quantity of the 

products returned by customers is serviceable and remaining 

non-serviceable products treated as scrap. 

 

➢ σ - Mean demand rate of the product 

➢ µ - Mean return rate of the product 

➢ Returned product repairable chances probability 

➢ Q - Maximum products that can be handled in the 

inventory system 

➢ R - The cost incurred for the replenishment of the product 

 

Here, an (r, Q) inventory control policy is employed to study 

the system where lead time is supposed to be insignificant for 

replacement of the order. Without loss of generality, at the 

initial stage, it is assumed that r=0. In traditional, (0, Q) 

represents an inventory control policy where Q stands for the 

quantity of the items to replace during the inventory level 0. 

Arrived demands lead to the inventory level at most to Q.   

 

 

4. MATHEMATICAL MODELS 

 

A stochastic process is one of the rapidly growing research 

fields. In this work, a discrete-time model with a two-

dimensional Markovian process on a semi-infinite lattice strip 

is represented as alternating renewal process; with space states 

{0, 1, 2,….N}x{0, 1, 2,….L }. If the service process is large 

enough to deliver a product, then L can be treated as infinite 

size, so that all consumers will get their ordered product [22]. 

Further the two-state stochastic process X={X(t), t є T}; 

Y={Y(t), t є T} is represented in a two-dimensional lateral 

strip in the form. 

The system further represented with the help of transition 

probability matrixes Aj, Bj and Cj having the sizes of the order 

N +1, where Aj is a pure phase transitions matrix from state (i, 

j ) to state (k, j); Bj is one-step upward transition matrix from 

state (i, j ) to state (k, j + 1); Cj is one-step downward transition 

matrix from state (i, j) to state (k, j −1), where (0i, kN; j = 

0, 1, ...). It is observed that the Markov process doesn't exist 

for -1 and further the transition matrices shift to level-

independent for vertical strip jM.  

For further evaluation it is proposed the notations: pi, j: 

represents the steady-state probability for the state (i, j) 

 

𝑃𝑖,𝑗 = 𝑙𝑖𝑚
𝑡→∞

𝑃{𝑋(𝑡) = 𝑖, 𝑌(𝑡) = 𝑗}  (1) 

 

Now we have to compute these probabilities for the given 

inventory system in terms of known parameters. 

It is convenient to define all these probabilities in the form 

of a vector field as: 

 

𝑣𝑗 = {𝑃0,𝑗, 𝑃1,𝑗 , 𝑃2,𝑗 … … … 𝑃𝑁,𝑗}  (2) 

 

e: the column vector of (N + 1) elements each of which is 

equal to the unit value. 

Then the balance equations for the system can be expressed 

as: 

 

𝑉0[𝐷0
𝐴 + 𝐷0

𝐵] = 𝑉0𝐴0 + 𝑉1C1  (3) 

 

𝑉𝑗[𝐷𝑗
𝐴 + 𝐷𝑗

𝐵 + 𝐷𝑗
𝐶 ] = 𝑉𝑗−1𝐵𝑗−1 + 𝑉𝑗𝐵𝑗 + 𝑉𝑗∓1𝐶𝑗+1 (4) 

 

𝐷𝑗
𝐴, 𝐷𝑗

𝐵  𝑎𝑛𝑑 𝐷𝑗
𝐶  diagonal matrices, where leading elements 
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are the sum of respective rows of matrices generated by 

matrices Aj, Bj and Cj. The system becomes j –independent 

after threshold value M and the set of vector difference 

equations with constant coefficients becomes:    

 

𝑉𝑗[𝐷𝐴 + 𝐷𝐵+𝐷𝐶 ] = 𝑉𝑗−1𝐵 + 𝑉𝑗𝐴 + 𝑉𝑗+1𝐶; 𝑗 ≥ 𝑀  (5) 

 

It is observed that the total sum of all probabilities for any 

inventory system is 1. That is: 

 
∑ 𝑣𝑗

∞
𝑗=0 𝑒 = 1.0          (6) 

 

To compute performance measures of any system, first, we 

have to find out the study state probabilities. 

The balance equations that are discussed above in form 2 – 

4 can be expressed in the form of a homogeneous vector 

difference equation of order two with constant coefficients. 

 

𝑣𝑗𝐵 + 𝑣𝑗+1(𝐴 − 𝐷) + 𝑣𝑗+2𝐶 = 0;  j ≥ M           (7) 

 

where, D is a diagonal matrix with diagonal elements as the 

sum of all corresponding rows of matrices A, B, C.   

From this a characteristic polynomial is presented as:  

 

𝑄(𝜆)𝐴 = 𝐵 + (𝐴 − 𝐷)𝜆 + 𝐶𝜆2  (8) 

 

Let k represents eigen values that lie interior of the unit disk 

of the quadratic polynomial Q(λ). Concerning these 

eigenvalues there exits the same number of eigenvectors and 

denoted with uk. These eigenvalues and eigenvectors satisfy 

the determinant property of linear algebra. 

 

|Q( k )| = 0 , where | k | < 1,  for k = 1, 2,  …N       (9) 

 

This leads to the solution of a spectral method for the orders 

of inventory that form a queue and computational measures 

are presented as: 

 
1

1

N j

j k k kk
v u j M 

+

=
= 

 
 (10) 

 

And k, are N + 1 constants that are to be evaluated. 

Note that if any set of eigenvalues are not real values then 

the same size set of pairs of complex eigenvalues and their 

conjugates exist in the unit disk. 

 

 

5. RESULT ANALYSIS 

 

The spectral expansion method is applied to evaluate 

numerical various numerical experiments to discuss the 

inventory system. The system forms a queue when demand 

increases when the service of the product is unable to maintain. 

The system is a homogeneous system with the maximum size 

of the stock Q. The process services a single product and may 

have interruption from time to time. The Markov - modulated 

inventory system process is expressed in two-dimensional 

form Z={X(t), Y(t), t0}, where X represents orders of the 

products and Y is the number of orders presently existing the 

system. Transition matrixes A, B, C of the system that is used 

in the spectral method have similar elucidation defined the 

section 4. We can observe that a new order placed or when an 

order is processed from the system, the operational position 

does not alter unless there is a coincidental chance. Hence, 

only matrices A and Aj will alter operative states for the 

system, considering these possibilities, we have: 

The matrices A = Aj for all j=0, 1, 2,…. given by: 

 























−=

000

300)1(

200

000

2

12

12

1











t

ttn

tnt

t

A

 
 

The state X(t)=i, is assumed to order service of the products 

for service which is an independent Poison process.  

For all vertical lateral states j = 0, 1. . .the one-step upward 

transitions that represent orders of the inventory system and 

can be expressed in the form: 

 

B= Bj= diag[σ, σ, . . . , σ ] 

 

Similarly, one-step upward transitions which represent 

processing of the orders and can be expressed in the form: 

 





















 −−−

=









N

aNaa

C











000

0200

000

)1()1(2)1(0

 

 

Observe that only upward transition matrix Cj relays on j. 

The threshold value of the system that moves into the study 

state is M=N. 

   

5.1 Optimal feasible measures 

 

To maintain good relations with customers and to get profit, 

the management has to monitor the key factors such as 

availability of the stock, viable optimal cost of the product, the 

minimal time to deliver the product for the efficient and 

smooth running of the business affairs. In this section, it is 

projected to derive an economic model for optimal 

manufacturing quantity per unit cycle to minimize the normal 

variable cost in a stipulated time slot. 

 

➢ Always lead time is considered as zero 

➢ Demand is assumed to be uniform with rate R in any unit 

cycle 

➢ Rate of production is sufficiently large and instantaneous 

➢ Shortage of production is not permitted 

 

It can be observed that carrying cost and shortage cost are 

variable in inventory and are concerned if 0zq. Figure 2 

presents a graphical model for the inventory system, where the 

area of the first triangle indicates a failure to meet the required 

demand and is of the second triangle represents the inventory. 

In reality, it has to be maintained sufficient lot size q to 

maintain demand for time t, but the existing amount of the 

stock is organized to meet the demand for the time z/R and 

shortage of the amount q – z that arise for all running time t – 

z/R. Graphical representation of this is model can be observed 

in Figure 2. 
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Figure 2. Life cycle for economic order quantity model with a shortage 

 

The optimization cost for the inventory system is expressed 

as: 

 

1

3( )
2

qc R
c q c

q
= +                                     (11) 

 

On further simplifying, we have 

 

1

3

( )
( )

2

p

p

q z c R
c q c

q z

−
= +

−
  (12) 

 

The total cost c(q) is optimized, when both inventories 

carrying costs and yearly ordering costs balanced.  

 

1

3

( )

2

p

p

q z c R
c

q z

−
=

−
                       (13) 

 

This leads from algebraic theory 

 

2 2 3

1

2
2 0p p

Rc
q z zq

c
+ − − =

                 (14) 

 

On simplifying, the performance measure for inventory 

stock system is derived as: 

Lot size of a stock is

  

3

1

2p

c
z q R

c
= +

           (15) 

 

The optimal service time to deliver the product 

 

3

1

2
p

cz
t

R Rc
= 

                 (16) 

 

Hence optimization cost per unit cycle of the time is 

 

3 1( ) 2c q Rc c=
   (17)

 

 

 

5.2 Graphical presentations 

 

Results are presented in graphical form for the inventory 

model, discussed in this paper. Figure 3 presents the results for 

the effective cost of the product in the supply chain system 

with proportionate to the demand of the product. From this, it 

is observed that effective price increases with demand and 

tends to increases time. It is observed that the establishment 

cost to handle the products also affects the operative cost. 

Figure 4 is similar to the previous one, whereas it presents the 

result for order size. Here the size of the order for the products 

directs proportionate to the demand and increases with orders 

of the customers.  

 

 
 

Figure 3. Effective cost of the product vs. demand rate with 

fixed establishment cost in thousands 

 

Figure 5 represents the stock that is available in the 

warehouse concerning demand. From this, it is observed that 

if we can provide a better service then there is a flexibility to 

provide the service to the customers with minimum stock. It is 

clear evidence that the scheduling of the products can be 

processed instantly with better service rate, and can be seen in 

the Figure 6. The optimum service rate that is required to 

process stock can be determined from this result with different 

parameters. 
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Figure 4. Order size from the customers vs. demand rate 

with fixed holding cost 

 
 

Figure 5. Availability of the stock at warehouse with demand 

rate 

 

 
 

Figure 6. Schedules of the orders with service rate of the 

products 

 

Figure 7 presents the results for time that take schedule 

order with proportionate demand of the product. It 

exponentially decreases with the rate of the service of the 

product. Figure 8 illustrates that waiting to deliver products 

increases exponentially with increases in the orders. Here 

service capacities maintained with three different levels. 

Figure 9 presents the results for mean waiting to deliver the 

product to the customer with increases of the service by 

considering various sizes of mean arrivals. It is clear evidence 

that process time will not be impacted and tends to constant 

after with a suitable optimal service rate. Figure 10 shows that 

processing time for the orders increases exponentially with 

check out of the products. For the considerable stock size, 

sufficient time may not exist to deliver items to customers with 

bulk orders. Figure 11 shows that waiting time to deliver items 

increases with various shortage levels of the products. 

 

 
 

Figure 7. Process time of the order with its service time 

 
 

Figure 8. Waiting time to deliver the product with size of the 

orders 

 
 

Figure 9. Required time to deliver the product vs. service 

rate with fixed arrival orders 
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Figure 10. Process time of the item with checkout of the 

product 

 
 

Figure 11. Waiting time of the delivery of the product with 

order sizes 

 

 

6. CONCLUSIONS 

 

In this work, we developed a stochastic model to obtain 

parametric measures for a procurement policy with returns to 

a certain inventory system. The key use in this work is an 

exponential distribution to the steady-state inventory system 

which leads to the development of cost model. 

The procurement policy is always treated as a stationary 

policy in a single product model, represented as M/M/1 with 

an infinite size waiting time queuing system. The results 

produced in this model can be used for reductions in total 

expected costs. Further, we should know how the single 

product inventory model solution can be incorporated into an 

analytic algorithm and further can be upgraded to evaluate 

different product stock size levels with returns of the M-

echelon form of inventory control policy. 

A mathematical model for inventory system is formulated 

with time functionality to declining product orders and 

marginally partial backlogging, keeping in mind the amount 

spent by stakeholders in the maintenance of stock and the 

replenishment schedule taking as decision variables. The key 

intention of this work is to maximize revenue per capita per 

unit time and to minimize expenditure cost with various 

investment strategies for preservation technology and optimal 

replenishment. Numerical results are represented in graphical 

forms and analyzed to the proposed model. 
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