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 This paper is concerned with the sensor fault detection in mini UAVs quadrotor. We propose 

a detection algorithm based on the behavior of the Extended Kalman Gain Norm (EKGN) 

when a fault in the measurement occurs. The goal of the proposed algorithm is monitoring of 

an additive fault in the Inertial measurement unit (IMU) based on the parameter variation in 

the Kalman gain matrix. This proposed technique of sensor fault detection could be extended 

to some cases of multiplying fault. Model drawn from experimental tests of the X3D-BL 

quadrotor from Ascending technology is considered. The results show a good triggering of the 

alarm when a fault is applied on one accelerometer.  During the tests, rough (step) and slow 

(slope) drift are spotted. 
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1. INTRODUCTION 

 

Regarding safety, the tolerance to an onboard sensor fault 

becomes crucial matter when the Unmanned Aerial Vehicle 

(UAV) application is tending to spread in civilian missions. 

Model-based fault detection and isolation (MB-FDI) is very 

widely applied for the diagnosis and tolerance purposes. 

The MB-FDI is designed to trigger an alarm when the fault 

is detected based on the well-known residuals generation 

principle. The outputs signal of this process are often 

evaluated directly and compared with a given threshold.  

Ideally, the residuals must keep on close to zero in fault-free 

case and different from zero after the fault occurrence. 

Unfortunately, and due to disturbances and model errors, 

residuals involve an extra deviation out of zero range even in 

sensor fault free operating. In practical case, the system could 

show an unstable functioning due to some false alarms 

generated by residuals as a result of disturbances or model 

errors. 

Efforts to design an efficient residual function and new 

solutions were extensively discussed in previous researches 

[1-4], and Frank and Ding’s [1] study is one of the earlier 

surveys in last decade. Authors in this survey recommended, 

when designing the function, to eliminate the effects of the 

process input signals, the effect of disturbances and the model 

uncertainty on the residual generation. However, full 

elimination of the effect of disturbances and model 

uncertainties on the residuals is not always possible.  

To decide whether a fault situation is present or not, one 

would require an evaluator able to minimize false alarms. The 

residual evaluator could be achieved by selecting a suitable 

evaluation function and determining the threshold. These 

residuals have to satisfy a compromise between a maximum 

sensitivity to the faults and a minimum sensitivity to the 

disturbances (modeling errors or measurement noises).  

Looking back in the past papers devoted to sensor fault 

detection have used Kalman filter to estimate the output to be 

used by detection process [5-9]. The basic idea behind the 

observer or filter-based approach was to estimate the outputs 

of the system from the measurements with a use of either 

Luenberger observer(s) in a deterministic setting or Kalman 

filter(s) in a stochastic setting. 

For instance, a bank of estimators has been implemented, 

residuals are evaluated through the computation during 

intervals of the uncertainty envelop of the residual [10]. The 

uncertainty envelop of the residual includes zero in fault free 

case in order to avoid false alarms. Luenberger observers, 

Kalman filters, banks of observers and Kalman filters and 

neural networks have been used for observer generation [5]. 

Liu et al. [6] established the diagnosis of actuator and sensor 

faults in autonomous helicopters through an evaluation of any 

significant change in the behavior of the vehicle with respect 

to the fault-free behavior, which is estimated by using 

observers.  

As far as we know the analysis of the fault situation using 

the Kalman filter gain during the fault scenario have not yet 

been investigated. 

In this paper, authors are considering the Kalman gain 

behavior during the fault free and the faulty case in one sensor 

of the IMU. The proposed algorithm is applied on a model of 

experiment tests of the quadrotor X3-BDL from Ascending 

technology. This established model has shown a good 

estimation of the states in fault free case by checking the 

outputs using an accurate Motion tracker Laboratory (MTLab) 

and will be used here for the sensor fault scenario. 

The outline of the paper is as follows. In section II we 

present the model adopted for the quadrotor, section III is 

devoted to the Extended Kalman filter dedicated to the IMU-

driven where, the input is the IMU outputs instead of the 

controller Outputs.  
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In section IV the fault detection approach using the gain 

norm of the Kalman filter will be explained with further details. 

Results are discussed in section V followed by the conclusion 

in the last section. 

 

 

2. DESCRIPTION OF THE MINI-UAV UNDER STUDY 

 

The version used in this paper is the X3D-BL a quadrotor 

from Ascending technology, set with the Research Pilot 

firmware which enables serial communication with the 

quadrotor. In principle, this quadrotor can be regarded as the 

composition of two PVTOL (Planar Vertical Take Off and 

Landing) whose axes are orthogonal, allowing a movement of 

six degrees of freedom [10, 11]. Four kinds of maneuvering 

could be achieved: 

Roll (φ)  [rotation around OX axis] measured by the 

Gyrometer Gy, Pitch (θ) [rotation around OY axis] measured 

by the Gyrometer Gx, Thrust (z) [translation (Lift) on the OZ 

axis], Yaw  (Ψ) [rotation around OZ axis] measured by the 

Gyrometer Gz. Where: [φ θ Ψ]: are the Euler angles of the 

platform (quadrotor). 

 

2.1 Onboard sensors 

 

The onboard “Inertial measurement Unit” (IMU) is a set of 

three orthogonal accelerometers for the acceleration 

measurement and three gyrometers for the angular rate 

measured, all referred to the body frame. In this approach it is 

possible to read out sensor measurements and send commands 

over a digital interface. 

The Global Positioning System (GPS) for position and 

translation velocity, and the magnetometer for the attitude are 

substituted by a Motion tracker Laboratory. This alternative is 

very efficient in indoor tests to avoid other likely disturbances.  

 

2.2 Motion Tracker Lab 

 

The Motion Tracker Lab (MTLab) is a 5x6 m room with 7 

cameras mounted on the walls and connected through gigabit 

network to a system called Vicon-MX system, capable to 

process the captured video in real time and track the target. 

The cameras record the position of reflectors mounted on the 

object. These reflectors reflect the infrared light sent out by the 

cameras. In the Vicon-MX software an object is defined on the 

basis of the position of the reflectors. The position and 

orientation of this object is then transmitted on the ordinary 

network when a connection is made from a client computer 

running Matlab/Simulink. The Vicon-MX MX system is 

currently capable of sending this information with an update 

rate of 100 Hz. 

 

2.3 The Vicon-MX Simulink block 

 

Supplied by the MTLab outputs position, the orientation in 

a 3-2-1 Euler rotation, the orientation in a quaternion and the 

orientation in the direct cosine matrix (earth to body rotation).  

 

2.4 Coordinate and reference frame 

 

Two frames references are considered. One fixed to the 

earth and referred to earth frame used by the Motion tracker 

Laboraory (MTlab), the second reference frame, used in IMU 

measurements, is fixed on the center of gravity of the 

quadrotor ś body and refers to body frame. Proper 

transformations from one frame to another will be applied 

when fusing the IMU measurements with the Vicon-MX 

system outputs. 

 

Table 1. Summary of the extend Kalman filter equations 

 
Estimation model: 

 

𝑥𝑘 = 𝜙𝑘−1(𝑥𝑘−1) + 𝜔𝑘−1                                                 (1) 

  𝜔𝑘 ∼ 𝒩(0, 𝑄𝑘)                                              

 

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝑣𝑘                                                                (2) 

  𝑣𝑘 ∼ 𝒩(0, 𝑅𝑘)  
 

𝛷𝑘−1
[1]

≈
𝜕𝜙𝑘

𝜕𝑥
⃒𝑥=𝑥𝑘−1

+                                                             (3) 

 

𝐻𝑘−1
[1]

≈
𝜕ℎ𝑘

𝜕𝑥
⃒𝑥=𝑥𝑘

−   

Prediction model: 
 

�̂�𝑘
− = 𝜙𝑘−1(�̂�𝑘−1

+ )                                                             (4) 
 

𝑃𝑘
− = 𝛷𝑘−1

[1]
𝑃𝑘−1

+ 𝛷𝑘−1
[1]𝑇

+ 𝑄𝑘−1                                            (5) 

Update model: 
 

𝐾𝑘 = 𝑃𝑘
− 𝐻𝑘

[1]𝑇
[𝐻𝑘

[1]
 𝑃𝑘

− 𝐻𝑘
[1]𝑇

+ 𝑅𝑘]
−1

                            (6) 

 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑘
[1]

 �̂�𝑘
−)                                           (7) 

 

𝑃𝑘
+ =  (𝐼 − 𝐾𝑘𝐻𝑘

[1]
)  𝑃𝑘

−                                                    (8) 

 

 

3. KALMAN MODEL AND STATES ESTIMATION 

 

Along within the present paper, an Extended Kalman Filter 

(EKF) is used for filtering the noises issued from 

measurements.  All the essential EKF equations are listed in 

Table.1 and can be divided into three major steps: Estimation 

model, prediction and update [12]. 

The indices k and k − 1 indicate the current sample and the 

previous sample. 𝛷[1], H[1] denote the 1st order linear Taylor 

approximation of a nonlinear function. Example: 𝛷
[1]

(𝑋) is a 

linearization of 𝛷(𝑋) . The + and - indicate a priori or a 

posterior estimate respectively. That a variable is an estimate 

is also indicated by the (^). By this definition x̂k is the priori 

estimate of the state vector at the k  sample. 𝑃𝑘  is the 

estimation covariance, K: Kalman gain, X: the state matrix, Z: 

the sensors outputs matrix. 

The chosen EKF is based on an IMU-driven estimator 

which was previously proposed by Jun et al. [13] and 

successfully used to estimate the states of a birotor helicopter 

[12]. The basic idea is to use the measured acceleration and 

angular velocity issued from the IMU as the input to the model 

instead of the control signal. This filter yields to a simple 

kinematic model driven by the measured rates for attitude 

estimation and a simple rigid body dynamic model driven by 

the measured accelerations for position and velocity 

estimation [12]. In the case of the quadrotor this leaves only 

the rigid body kinematic and dynamics of the system. With 

such model, the errors caused by battery discharging and 

slightly off input scaling would have no effect. Therefore, it is 

estimated that the prediction will be more accurate than with 

the control signal as an input as used in a many reference. 
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3.1 Quadrotor state matrix 

 

It is convenient to describe this state-space vector not only 

in the earth frame, but also in a rotating local body frame. The 

earth fixed is the inertial frame seen through the Vicon-MX 

system and the body frame is assumed as the rotating frame 

following the attitude of the quadrotor (seen by the IMU 

sensors). 

This form is also required in calculating the model based 

controllers. Where: the state 𝑋 = [𝑃 𝑞 𝑉   𝜔]𝑇, P: position 

in earth frame, q: the orientation represented by the quaternion 

( earth frame), V: translatory velocity (body frame), 𝜔 : 

angular velocity (body frame).  

Saripoalli et al. [14] suggest to append the model state with 

six extra states to estimate the offset of the gyrometer and 

accelerometer to compensate for these in the model.  

The equivalent state vector now contains:  the bias on 

angular velocity (in the body frame) (𝜔𝑏 ) and the bias on 

acceleration (in the body frame) (𝑎𝑏). The state matrix could 

be then written as: 

 

𝑥 = [𝑃  𝑞   𝑣  𝜔    𝜔𝑏   𝑎𝑏  ]
𝑇                              (9) 

= [𝑥 𝑦 𝑧  𝑞0 𝑞1𝑞2𝑞3  𝑣1𝑣2𝑣3𝜔1𝜔2𝜔3 𝜔𝑏1𝜔𝑏2𝜔𝑏3𝑎𝑏1𝑎𝑏2 𝑎𝑏3 ]
𝑇 

 

 

4. MODEL VALIDATION 

 

The main reason to use Helicopters instead of fixed wing 

version is their capabilities to hover around a chosen area. This 

assumption makes that a quadrotor is usually required to be 

stabilized around hover in his most operational journey. Thus, 

a linear state space model around the hovering operating point 

is set up by the identification of the nonlinearity and using the 

first order Taylor approximation. For the tracking purpose, an 

LQR controller is applied in tests (Figure 1). 

 

 
 

Figure 1. EKF-IMU Driven with the sensors fusion for the 

quadrotor closed loop control 

 

In this paragraph we would like to show how the adopted 

model was able to estimate successfully the state matrix based 

on the IMU sensors and the motion tracker updating. The 

following results are based on the recorded data during the 

indoor flight. The scenario for the present trajectory starts 

from the origin ((x,y,z)=(0,0,0)). For the tests, three steps 

references are sent to the quadrotor: At the moment (t=0), it is 

desired to reach the position z= -1m. The sign minus here 

indicate that the reference in the earth frame is pointed from 

the body to the ground. This is why the z position is always 

seen negative during the navigation. The following references 

are translations made on X-axis from 0 to -0.5m then to +1m 

respectively during the instants (t=3sec, x=-0.5m/ t=3.5second 

x=+1m).  

In Figure 2, it is depicted that the model is well tracking the 

real position measured by the Vicon-MX system. During the 

transient phases some drifts in the estimation are noticed and 

corrected immediately during the update estimation with the 

Vicon-MX system. 

 

 
 

Figure 2. X3D-BL quadrotor Model validation: Simulation 

vs. Measurements made by the Vicon MX for a set of 

references on OX, OY, OZ 
 

  

5. KALMAN GAIN MATRIX BEHAVIOR DURING 

SENSOR FAULT OCCURRENCE 

 

In this section, this model issued from experiment tests is 

adopted to generate the model based residuals function under 

a sensor fault occurrence. Therefore, the corresponding 

operating-point will be kept near hover to exclude the 

changing due to the model nonlinearity. We would like here to 

generate a residual function capable to trigger the fault alarms 

whenever one sensor of the IMU is subject of fault situation.  

A special focus is given herein to the Kalman Gain Matrix 

(KGM) during the sensor fault scenario. The changes in this 

matrix are evaluated during the healthy navigation (as a 

reference) to compare it later with the new matrix generated 

with respect to the faulty situation in the IMU. 

In Table I, the matrix 𝒁𝒌 gathers the measurements from the 

Vicon-MX system and from the Inertial measurement unit 

(IMU),  

 

𝑍 = [𝑃𝑣𝑖𝑐𝑜𝑛   𝑞𝑣𝑖𝑐𝑜𝑛  𝑎𝐼𝑀𝑈  𝜔𝐼𝑀𝑈   ]𝑇       

     =  [𝑥 𝑦 𝑧  𝑞0 𝑞1𝑞2𝑞3  𝑎1𝑎2𝑎3   𝜔1𝜔2𝜔3  ]
𝑇      (10) 

 

Combined with the estimated state 𝒙𝒌
+  in (7) & (9), the 

kalman gain matrix is then:  
 

𝑲 = [

k1,1 … k1,13

⋮ ⋱ ⋮
k19,1 … k19,13

]        (11) 

569



 

Each state measured in 𝒁𝒌 is linked to a column of the KGM. 

Thus, the matrix could be seen as: 

 

𝐾  = [𝐾𝑃𝑣𝑖𝑐𝑜𝑛    𝑘𝑞𝑣𝑖𝑐𝑜𝑛  𝐾𝑎𝐼𝑀𝑈
 𝐾𝜔𝐼𝑀𝑈

  ]
𝑇
             (12) 

 

where, also: 𝐾𝑃𝑣𝑖𝑐𝑜𝑛 =  [𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒙 𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒚 𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒛]
𝑇

 are 

the Kalman gains related to the x,y,z position measured by the 

Vicon-MX system and: 

 

𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒙 =

[
 
 
 
 
k1,1

k2,1

⋮
⋮

k19,1]
 
 
 
 

  𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒚 =

[
 
 
 
 
k1,2

k2,2

⋮
⋮

k19,2]
 
 
 
 

 

𝑲𝑷𝒗𝒊𝒄𝒐𝒏,𝒛 =

[
 
 
 
 
k1,3

k2,3

⋮
⋮

k19,3]
 
 
 
 

     (13) 

 

Thirteen columns are generated on the KGM over nineteen 

rows in each according to the estimated state matrix (Figure 3). 

 

 
 

Figure 3. Extraction of the Kalman gain Matrix for 

evaluation during the estimation process 

 

5.1 Update time slots of the state matrix 

 

The Motion Tracker LAB is substituting the constellation of 

satellites such as the global positioning system (GPS). The 

updating measurements (from the Vicon-MX measurements) 

are sent once a specific time slot. Between two updating points, 

the estimated states are based only on the IMU sensors and the 

prior estimation (Figure 4). 

The estimations come very close to the measurements at the 

steady state and then the gain matrix will be also steady and 

close to an operational matrix [15]. During the Vicon-MX 

updating, the drift due to the noise in the IMU measurements 

is compensated. This will keep the quadrotor inside a cube of 

certainties and avoids the growth of errors due to the IMU 

noise.  

However, the Vicon-MX measurements will cause a jump 

in the K matrix parameters if there is a difference between the 

last estimated state based on the IMU and the new updating 

based on the Vicon-MX. This correction is also seen as a low 

frequency updating of the Kalman gain. Usually, with a good 

model of the system and after the transient state, this variation 

in the KGM is inside a band with narrowness depending on the 

updating time slot. 

 

 
 

Figure 4. Time slot updating of the estimated states 

 

5.2 Sensor fault scenario 

 

During the sensor fault in the IMU scenarios. 

The error in measurement will drive the quadrotor out of his 

planned journey with the thought that the overall platform is 

well following its trajectory. A fault in the measurements 

could be seen as a new 𝑍𝑘 matrix. This matrix will be denoted 

as 𝑍(𝑓)𝑘 and will substitute 𝑍𝑘 in (7). The resulting matrix of 

the sensor fault is the new form of measurement during the 

fault scenario and depends essentially on the fault type.  The 

new state equation will be then: 

 

�̂�(𝑓)𝑘
+ = �̂�(𝑓)𝑘

− + 𝐾𝑘(𝑧(𝑓)𝑘 − 𝐻𝑘
[1]

 �̂�(𝑓)𝑘
− )             (14) 

 

Along with this situation, the controller is following the 

false measurement believing that the references are well 

tracked. When a new updating of the Vicon-MX is received, a 

visible difference is noticed between the updated states and the 

new estimations.  

Let ś note 𝐾𝑣𝑖𝑐: the Kalman gain augmented to comply with 

the updating states under a sensor fault situation. 

 

[1]
( ) ( ) (  )k k f k fvic vicon update kx x K z H x

+ − −

= + −       (15) 

 

To comply the actual situation, the second term of (14) 

involving the false measurements tends to be corrected 

through a new Kalman Gain evaluation in (15). 

The controller now receives the real state and will struggle 

to correct his trajectory. 

 

During the next interval:  

The outputs from the Vicon-MX system are absent and the 

measurements are only drawn from the IMU sensors, the 

controller receives again the false measurements.  

Fortunately and thanks to the integration of the false 

measurement, the estimated positions and attitudes will be 

pushed gradually and not roughly to the wrong states since the 

positions (x, y, z) and the attitudes (𝜑, 𝛳, 𝜓) are the second 

and first integration of the accelerations 𝑎𝑥,𝑦,𝑧  and angular 

velocity 𝜔 = [�̇�, �̇�, �̇�]  respectively. As a result, the new 

evaluated positions will not drift to wrong values 
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spontaneously.  

 

Kalman gain behavior. 

During the updating of the measurement the new estimated 

state is calculated again from (7) and, the new residuals will 

induce a new covariance matrix 𝑃𝑘
− . 

Looking to the updating matrix of the Kalman gain (6), one 

could deduce that the new available data from the covariance 

matrix 𝑃𝑘
− will stimulate a rough variation on some Kalman 

gains relatively to the state under sensor fault effect. When the 

estimation process switches to the faulty IMU, (14) will be 

active. The new estimations are then based on the false 

measurements. The fact that the fault is in the accelerometers 

or the Gyrometers, the resulting estimated states of the 

position (x, y, z) and attitude (𝑞0, 𝑞1 𝑞2 𝑞3)are changing in an 

integration rate manner (gradually). As a result, the 

corresponding Kalman gain will also receive a slow change. 

After few updating of the state matrix, with a quick impact 

of the Vicon-MX and slow impact of the sensor fault in the 

IMU, the system will be corrected gradually in an equivalence 

to a new system model. Consequently, the overall Kalman gain 

matrix is carried to the new steady state around the uncorrected 

state.  

 

 

6. COLUMN NORM-2 OF THE KGM 

 

The non-linear form of the Kalman gain matrix typically 

results in a matrix being highly changing over a small time 

interval. Therefore, one should look for a function to evaluate 

its behavior in fault free and fault evolution (in one or more 

sensors) according to the overall changes and based on the 

instantaneous variations. It is noticed from (12) and (13) that 

the gains of the same column are linked to the same sensor, 

therefore we propose to fuse together the columns of KGM in 

the root square of the absolute column sum 2-norm. as: 

 

𝒩𝑝𝑗 = ‖𝑘𝑖,𝑗‖𝑖=1:𝑛
= √∑ 𝑘2𝑛

1 𝑖,𝑗

2
         j=1:m         (16) 

 

In this manner, the calculated norms 𝒩𝑝𝑗
will show an 

overall description of the gains linked to each specific column 

corresponding to the related sensor, no matter the direction or 

the sign of each gain. 

We wish to employ this matrix norm in the residual function 

based on the KGM behavior. 

However, due to the high frequency changes of this matrix, 

the absolute column sum 2-norm is also a high frequency 

changing (Figure 5). 

 

Overall Gain tendency. 

To filter this new function, it is more convenient to check a 

set of gain data along with a sufficient time interval. The 

influence of sample variability in the KGM may seriously 

affect the calculated norms 𝒩𝑝𝑗
, and generate an overpassing 

spikes that could deteriorate the decision of the alarm against 

any malfunctioning.  

To avoid these undesirable spikes in the Kalman gain norm, 

one could notice that the very hard changes are originally 

coming from the updating through the GPS (or the Motion 

tracker) during the fault free estimation. Therefore, we choose 

the updating time interval for the absolute column sum 2-norm 

filter similar to the updating time of the navigation. The mean 

value over the updating interval will suppress the high 

frequency variability in the KGM-Norm and shows an overall 

tendency of the absolute column sum 2-norm function. In fact, 

this mean value evaluation is a kind of low pass filtering that 

describes the tendency of the system model without 

considering the instantaneous responses.  
 

Alarm triggering process: 

𝒩𝑝𝑗
̅̅ ̅̅ ̅ notes the mean value of the absolute column sum 2-

norm function. The change in 𝒩𝑝𝑗
̅̅ ̅̅ ̅ reflects an overall change 

in the system and may trigger the fault alarm in case of over 

passing of the threshold. The initial data of 𝒩𝑝𝑗
̅̅ ̅̅ ̅corresponding 

to the healthy system will be stored in memory as reference for 

the health checking. Due to the low frequency evaluation of 

the Norm 𝒩𝑝𝑗
̅̅ ̅̅ ̅, the variation in 𝒩𝑝𝑗

̅̅ ̅̅ ̅ is assumed as the residual 

function  𝒩𝑝𝑗
̅̅ ̅̅ ̅ . These residuals are to satisfy a desirable 

compromise between a maximum sensitivity to the faults and 

a minimum sensitivity to the disturbances (measurement 

noises, GPS update). 

 

 
 

Figure 5. The Norm-2 of the Kalman gain KP relative to the 

measured positions (X) 
 

 

7. TESTS AND RESULTS 

 

In the present section, the Norm Kalman gain 𝒩𝑝𝑗
̅̅ ̅̅ ̅ is 

evaluated during a fault free flight then compared to the same 

evaluation during a sensor fault occurrence in one of the 

Inertial Measurement Unit.  

To check the effectiveness of the method, the following 

cases are considered: 

a) Changes in the input references and check the changes in 

𝒩𝑝𝑗
̅̅ ̅̅ ̅: 

a-1 step change in reference in position X 

a-2 slope change reference in position X 

b) A fault occurrence in one accelerometer (on X-axis 

as an example) in an additive fault: 

b-1 step additive fault (rough variation in the measurement) 

b-2  a slope additive fault (smooth variation in the 

measurement) 

 

7.1 Test 1. Navigation sensor fault free  

 

7.1.1 Step variation in command reference 

We would like to inspect the behavior of this function 𝒩𝑝𝑗
̅̅ ̅̅ ̅ 

when the quadrotor moves from one hovering point to another.  

With respect to 𝑍 matrix elements in (10). 

𝒩𝑝1..3
̅̅ ̅̅ ̅̅ ̅ are the mean value of the norm- (MVN) related to all 

the changes due to the (x, y, z)-positions 𝒩𝑝4..7
̅̅ ̅̅ ̅̅ ̅ are the MVN 

related to the quaternion (attitude seen in the quaternion 
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representation). 

𝒩𝑝8..10
̅̅ ̅̅ ̅̅ ̅̅ ̅and 𝒩𝑝11..13

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ are respectively the MVN related to the 

gyrometers (𝜑, 𝛳, 𝜓) and the accelerometers (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧). 

To display the results and due to the number of resulting 

figures (up to 13), only 𝒩𝑝1..3
̅̅ ̅̅ ̅̅ ̅ and 𝒩𝑝4..7

̅̅ ̅̅ ̅̅ ̅ will be considered. 

 

Flight scenario: 

a)At t=0 from the origin (x,y,z)=(0,0,0) a step for the thrust 

is send as Zref to the controller, to take off from z=0m to z=-

1m (seen in the earth frame).  

At:  t= 3sec a reference sent to X as Xref= -0.5m 

At:  t=3.5 sec a reference sent to X as Xref= +1m  

At:  t=50sec a reference sent to X as Xref= -1m 

 

Results:   

After the first transient interval [0sec 8sec] when the 

quadrotor moves from the ground to the hovering position (z=-

1, y=0, x=1) (Figure 6), the changes in 𝒩𝑝𝑗
̅̅ ̅̅ ̅ are due to the 

transient states when the UAV follows the references from the 

ground position to the desired hovering position (Figure 7). 

These will disappear as soon as the quadrotor reaches his 

steady state.  

 

 

 

 
 

Figure 6. Time response of the quadrotor on the Cartesian 

positions for a step variation on the X reference from X
ref

 

=+1m to X
ref

 =+2m at time t=100sec 

 

It is clear that all the 𝒩𝑝𝑗
̅̅ ̅̅ ̅ elements become almost fixed in 

constant values after this transition (Figure 7). A new 

reference to the x position from +1m to -1m is set at the 

moment t=50sec, another transient response reflecting this 

difference between the reference and the actual position will 

come into sight on 𝒩𝑝𝑗
̅̅ ̅̅ ̅. 

When the Kalman gain reaches again his steady state, we 

notice again that 𝒩𝑝𝑗
̅̅ ̅̅ ̅ becomes steady and tends again to the 

same values seen before. This is an interesting result that all 

norms of the Kalman gain matrix will come back again to the 

old values. 

 

 

 

  

 
 

Figure 7. Test.1.a. Kalman gain matrix behavior against a 

step variation on a reference of command   

 

7.1.2 Smooth variation in command reference 

The impact on 𝒩𝑝𝑗
̅̅ ̅̅ ̅  is considered when the quadrotor is 

moving between two points out of hovering navigation case. 

For constant velocity a slope reference will be applied to the 

controller from t=50sec with a slope variation of 0.2m/sec.  

 

Result:  

For convenience, only three among thirteen curves are 

shown (Figure 8). First in the top left corner of Figure 8, the 

time response of the Cartesian position OX for a smooth 

reference slope equal to 0,02m/s on X-axis at t=50sec to reach 

X=2m in 50sec. then, the Norm -2 of the Kalman gain relative 

to the measured positions (X,Y,Z). It is noticed one more time 

that 𝒩𝑝𝑗
̅̅ ̅̅ ̅ is not affected by the navigation. 

As a result, the effect of the moving from one hovering 

position to another and the translation cases (which reflect the 

general case) does not affect the norm of this matrix. 

0 50 100 150 200
20

22

24

26

28

30
Kalman Gain Norm- 1

temps [Sec]

K
G 1

0 50 100 150 200
20

22

24

26

28

30
Kalman Gain Norm- 2

temps [Sec]

K
G 2

0 50 100 150 200
20

22

24

26

28

30
Kalman Gain Norm- 3

temps [Sec]

K
G 3

0 50 100 150 200
0

2

4

6
Kalman Gain Norm- 4

temps [Sec]

K
G 4

0 50 100 150 200
0

2

4

6
Kalman Gain Norm- 5

temps [Sec]

K
G 5

0 50 100 150 200
0

2

4

6
Kalman Gain Norm- 6

temps [Sec]

K
G 6

0 50 100 150 200
0

2

4

6
Kalman Gain Norm- 7

temps [Sec]

K
G 7

572



 

 
 

Figure 8. Test.1.b. Time response of the cartesian position 

OX and The mean Norm -2 of the Kalman gain relative to the 

measured positions (X,Y,Z) 

 

7.2 Test 2. Quadrotor navigation under sensor fault 

occurrence 

 

Since the KGM is insensitive to the references change for a 

full operation in different maneuvers. We are going to inspect 

here the effect of a sensor fault on the gain matrix (KGM). 

 

7.2.1 Additive fault in stepHere, an additional portion is 

introduced into the measured acceleration on the X-axis as an 

additive fault. 𝑎𝑐𝑐𝑥𝑒𝑟𝑟𝑜𝑟 = + 1𝑚/𝑠2 to provoke a sensor fault 

at the moment t=100sec during the hovering of the quadrotor. 

Figure 9 illustrates the mean value of the norm on each 

column with respect to(𝑃 , 𝑞 ) in the KGM and its behavior 

during the sensor fault case. As depicted from Figure 9, it can 

be seen that the mean value of the 𝐾𝐺1 and 𝐾𝐺3  are clearly 

affected by the fault occurrence where the  𝐾𝐺2  has less 

reaction to the fault. This is very close to be true since the x-

accelerometer would affect the updating state on X position 

and vey less effect on Y-axis. But why 𝑘𝐺3 is affected?  

During the hovering flight, the lifting force is on Z-axis and 

the thrust becomes steady to keep the platform around the 

hovering -position. When a translation on X-axis is sensed due 

to the wrong measurement, the controller develops an adverse 

pitch angle to correct the quadrotor flight. This manoeuver will 

affect the total force vector and the thrust will assign a portion 

to the translator movement. Therefore, the lifting force 

becomes less to keep Z-position near to the reference and the 

estimation of the Z-position is seen as going less than the 

desired reference. At this moment, the controller starts again 

to correct this z position by pumping more thrust to the rotors. 

During the Vicon-MX update, the controller receives the real 

state of z-position which was affected by the additional pitch 

angle and then tends to correct it again. Thus, the z-position 

state is swinging also between two limits, one due to the X-

accelerometer extra portion issued from the fault on the sensor 

and the other due to the Vicon-MX updating. In the same 

manner, some changes that reflect the occurrence of the fault 

on the considered sensor are depicted also on the Mean value 

of the KGM with respect to the quaternion, Figure 9. 

When applying a similar faults on the other two 

accelerometers on Y-axis and Z-axis, the KGM shows also a 

sensitivity to the sensor fault.  

 

  

  

   

 
 

Figure 9. Mean Norm-2 of Kalman gain matrix evaluation 

(columns 1 to 7) during a sensor fault in Acc on x-axis at 

t=100sec 

 

7.2.2 Additive fault in slope 

In Figure 10 when applying a slow deviation in the 

accelerometer measurement, 𝒩𝑝𝑗
̅̅ ̅̅ ̅ start also to sense this false 

measurement with the same shape of the deviation.  

It is a very interesting property that the Kalman gain matrix 

norm is responsive to the additive fault in a sensor of the IMU. 

We applied a similar tests on the rest of the sensors and 𝒩𝑝𝑗
̅̅ ̅̅ ̅ 

present a good sensitivity to the fault occurrence in a sensor 

and less sensitivity to the normal navigation conditions. This 

technique exploits only the change in the Gain matrix when an 

abnormal behavior occurs during the navigation no matter the 

nature of the fault. It is completely independent of the kind of 

the fault in the sensor. Therefore, this property could be 

extended to other types of faults such as the multiplicative 

fault or stack in point fault where the sensor is planted to a 

specific measurement even the real states are changing. 
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Figure 10. Mean Norm-2 of Kalman gain matrix evaluation 

(columns 1 to 7) during a sensor fault in slope variation of 

0.02m/s in Accelerometer on x-axis at t=50sec 

 

 

8. CONCLUSION 

 

The fact that the changes in Mean values of Kalman Gain 

Norm-2 (𝒩𝑝𝑗
̅̅ ̅̅ ̅) are steady with very less variation, the use of 

this property as residual function to detect changes or 

malfunctioning in the sensors will yield a decision to trigger 

the alarm free of the disturbances effect. The Kalman Gain 

Matrix could be then used as a new alternative to detect the 

sensor fault occurrence. Unlike the residuals based on a set of 

Kalman filters used extensively, this proposed function will 

benefit from the set of Kalman gains of only one Kalman filter 

to detect the sensor fault. This reduction yields to a 

considerable minimization of both, time of calculation and the 

onboard memory size. Assuming that the mean values of 

Kalman Gain Norm-2 𝒩𝑝𝑗
̅̅ ̅̅ ̅during the healthy sensors case as 

the references in the residual generation, this low frequency 

analysis will return in residuals where, the effects due to the 

high frequency disturbances and sensor noise are attenuated.  

The future work will consider an analysis of different 

behaviors of each Kalman gain related to a set of scenarios of 

possible sensor faults in the inertial measurement unit so as to 

establish an algorithm capable to isolate the faulty sensor. 
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NOMENCLATURE 

𝑎𝑏. The bias on acceleration (in the body frame) 

𝐇𝑘: Matrix connect the states to the to the 

measurement 

K: Kalman gain,  

𝐾𝑃𝑣𝑖𝑐𝑜𝑛  : The Kalman gains related to the x,y,z 

position measured by the Vicon-MX system. 

𝐾𝑣𝑖𝑐: The Kalman gains related to quaternion 

attitude measured by the Vicon-MX system. 

𝑘 and 𝑘 − 1: The indices  indicate the current sample and 

the previous sample respectively 

P: Position in earth frame,   

𝐏𝑘|𝑘−1: Error covaiance from k-1 to k  

𝑃𝑘 The estimation covariance, 

q: The orientation represented by the 

quaternion   

𝐐𝑘: Noise covariance matrix 

X: The state matrix,   

x̂k: The priori estimates of the state vector  

𝒙𝒌
+: The estimated state vector at the k sample 

�̀�𝑘|𝑘−1  Residuals between the real and estimation 

states 

V: Translatory velocity (body frame),  

Z: The sensors outputs matrix 

𝒁𝒌: Measurement matrix at k sample 

𝑍(𝑓)𝑘: Fault in the measurements 

Greek symbols 

φ: Rotation angle around OX axis 

θ Rotation angle around OY axis 

Ψ Rotation angle around OZ axis 

[φ   θ   Ψ]  The Euler angles. 

𝜔: Angular velocity (body frame). 

𝜔𝑏: The bias on angular velocity (in the body 

frame)  

𝑤𝑘 ∼ 𝒩(0, 𝑄𝑘)  Gaussian noise with zero mean value and 𝑄𝑘  

covariance 

𝛷(𝑋) : Evolution matrix of the state X 

𝛷
[1]

(𝑋) : Linearization of 𝛷(𝑋).   

𝒩𝑝𝑗
̅̅ ̅̅ ̅: The mean value of the absolute column sum 

2-norm function of the Kalman matrix.

𝒩𝑝𝑗
̅̅ ̅̅ ̅: The residual function of the variation in 𝒩𝑝𝑗

̅̅ ̅̅ ̅.

Subscripts 

+ and -: Indicate a priori or a posterior estimate 

respectively 

([1]) Denotes the 1st order linear Taylor 

approximation of a nonlinear function. 
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