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In this paper, a novel system is proposed for automating the process of brain tumor 

classification in magnetic resonance (MR) images. The proposed system has been validated 

on a database composed of 90 brain MR images belonging to different persons with several 

types of tumors. The images were arranged into 6 classes of brain tumors with 15 samples for 

each class. Each MR image of the brain is represented by a feature vector composed of several 

parameters extracted by two methods: the image entropy and the seven Hu's invariant 

moments. These two methods are applied on selected zones obtained by sliding a window 

along the MR image of the brain. The size of the used sliding window is 16x16 pixels for the 

first method (image entropy) and 64x64 pixels for the second method (seven Hu’s invariant 

moments). To implement the classification, a multilayer perceptron trained with the gradient 

backpropagation algorithm has been used. The obtained results are very encouraging; the 

resulting system properly classifies 97.77% of the images of the used database.  
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1. INTRODUCTION

Computer-aided diagnosis and medical image processing 

are efficient tools for solving a large number of problems in 

medicine and have made significant advances in the preceding 

decade [1-5]. The two research areas are among the most 

important and offer new ideas and improve diagnostic 

procedures and treatment decisions for large varieties of 

diseases and abnormalities, particularly brain tumors. 

Presently, the use of the medical image processing to study 

this type of abnormality is not an easy task. Many studies have 

been performed to detect the existence of brain tumors, their 

nature and their exact locations [6], and most of these studies 

are based on the use of the powerful tool of magnetic 

resonance (MR) imaging of the brain [6-10]. This imaging 

type is generally used in medicine to collect and visualize 

details of the internal body structure. The amount of 

information contained in an MR image is extremely large 

compared to all other types of imaging, and MR imaging is 

becoming a very efficient tool for the diagnosis of several 

diseases, especially when dealing with brain tumor detection 

and cancer imaging, and the ideal method for evaluating the 

patients having signs of brain tumors. The high performance 

of MR imaging arises from this technique being characterized 

by a multiplanar capability, a superior contrast and a high 

image resolution that allows it to efficiently assess tumor 

location.  

In order to improve the results obtained in the study that we 

presented in the 2nd International Conference on Advanced 

Systems and Electrical Technologies (IC_ASET'2018) [10], 

we propose a novel system of detection and classification of 

brain tumors. In the study [10], the feature vector used to 

represent the MR image of the brain is composed of a set of 

parameters extracted using the central moments of order 1, 2 

and 3 of histograms of zones obtained after sliding a window 

of size 16x16 pixel on the MR image of the brain, while the 

parameters of the feature vector used in this study is based on 

the calculation of the entropy and the seven Hu’s invariant 

moments of each zone selected by sliding a window along the 

brain image. Note that for some reasons that depend on the 

computation time and the available memory space, the size of 

the used sliding window is not the same for both methods. On 

this basis, the sliding window used for entropy calculation is 

16x16 pixels, while the size of that used for the calculation of 

Hu’s invariant moments is 64x64 pixels. We will explain the 

reasons that prompted us to change the size of the sliding 

window for calculation of Hu’s invariant moments in detail in 

one of the following paragraphs of this paper. The 

classification is achieved by a multilayer perceptron trained 

with the gradient backpropagation algorithm. The proposed 

system has been validated on a database composed of a set of 

brain MR images belonging to different persons with several 

types of tumors. The proposed system can produce four 

different answers: a recognized brain tumor, an ambiguous 

brain tumor, a rejected brain tumor and a wrong brain tumor. 

Therefore, for the evaluation of the proposed system the 

following rates were calculated: Recognition Rate (R_R), 

Ambiguity Rate (A_R), Rejection Rate (RJ_R) and Error Rate 

(E_R). The values of various rates clearly show that the 

obtained results are very encouraging and very promising; the 

system is able to properly classify 97.77% of brain images of 

the used database. 

This paper is organized as follows: the next section presents 

some related studies in the field of brain tumors classification. 

The database used to validate the proposed method is 

described in section 3. The different parts of the proposed 

system and the used methodology are exposed in section 4. 

The obtained results of this study are shown in section 5. 

Traitement du Signal 
Vol. 36, No. 6, December, 2019, pp. 483-491 

Journal homepage: http://iieta.org/journals/ts 

483



 

Finally, the most relevant conclusions are recorded in section 

6. 

 

 

2. RELATED STUDIES 
 

Ruan et al. [11] proposes a method based on the use of 

partial volume modeling for brain tissue classification in MR 

images. The researchers consider two classes in a brain dataset. 

The first is called the pure class, and is composed of the three 

main types of brain tissue: gray matter, white matter, and 

cerebrospinal fluid. The second is called mixed class, and is 

composed mainly of mixtures. The proposed method proceeds 

in two steps, both of which are based on the use of Markov 

Random Field (MRF) models. The first step consists of 

segmenting the brain into pure classes and mixed class, while 

the second consists of reclassifying mixed class into pure 

classes using some knowledge of the obtained pure classes. 

This method has been evaluated on simulated and real-world 

brain MR images. 

The method proposed by Bauer et al. [12] has been tested 

on the BRATS2012 database [13] composed of simulated and 

clinical images. The main objective of this method is not only 

to separate healthy tissues from the pathologic tissue but also, 

on one hand, to classify healthy tissues into three components: 

gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF), and on the other hand, to classify pathologic tissue into 

the following components: necrotic, active and edema. 

According to the authors, convincing results have been 

obtained (the average Dice coefficient equal to 0.73 for tumor 

and 0.59 for edema) within an acceptable computation time 

(approximately 4 to 12 minutes). 

Cobzas et al. [14] propose a variational segmentation 

algorithm for brain tumors by using a high-dimensional 

feature set calculated from MRI data and registered atlases. 

The learning of the statistical model for tumor and normal 

tissue is implemented by using manually segmented data. 

According to the authors, the use of the conditional model to 

discriminate between normal and abnormal regions 

significantly improves the segmentation results compared to 

those of the traditional generative models. 

The objective of the study proposed by Iftekharuddin et al. 

[15] is to develop a new technique for brain tumor 

segmentation. The authors use information extracted from the 

multiresolution texture data that combines fractal Brownian 

motion (fBm) and wavelet multiresolution analysis, and the 

proposed technique has been evaluated on pediatric brain MR 

images from St. Jude Children’s Research Hospital. Both the 

pixel intensity and the multiresolution texture features are 

exploited to obtain a segmented tumor. In the next step, the 

presence of tumor in an MR brain image is statistically 

validated by using the feedforward (FF) neural network as a 

classifier. 

The main objective of the study proposed by Zhang et al. 

[16] is the development of an accurate system for detection of 

brain pathologies from MR images of the brain. The proposed 

method is based on the use of entropy of the wavelet and the 

Hu’s moment invariants for feature extraction, while the 

classification is performed first by the generalized eigenvalue 

proximal support vector machine (GEPSVM); afterwards, to 

improve the results of classification, the authors use the 

popular radial basis function (RBF) kernel. According to the 

authors of this study, the results obtained show that the 

proposed method is effective and can be used in real-world 

applications. 

In the context of brain tumor classification, Chaplot et al. 

[17] have proposed a new method of classifying brain MR 

images for either normal or abnormal cases. The study is based 

on the comparison of results obtained by using the classifiers 

in two steps: first, neural network self-organizing maps and 

second, the support vector machine. Note that the authors have 

used wavelets for the input of the two classifiers. The proposed 

method has been tested on fifty-two brain MR images; 

according to the authors, the obtained results are very 

encouraging, and the classification rate of the support vector 

machine classifier is observed to be higher than that obtained 

by using the self-organizing maps classifier. 

 

 

3. USED DATABASE 

 

To validate the proposed method, we have used a set of 

clinical MR images extracted from the “Radiopaedia” website 

[18]. According to the absence or presence of a tumor and its 

location in the brain, the MR images are arranged in six (6) 

classes with fifteen (15) different samples for each class. 

These classes are defined as follows: 

• Class 01 includes brain MR images that do not 

present any abnormality (i.e., images of healthy 

persons). 

• Class 02 includes brain MR images characterized by 

a tumor in the lower right part of the brain. 

• Class 03 includes brain MR images characterized by 

the existence of a tumor in the lower left part of the 

brain. 

• Class 04 contains brain MR images characterized by 

a tumor in the upper left part of the brain. 

• Class 05 contains brain MR images characterized by 

the existence of a tumor in the upper right part of the 

brain. 

• Class 06 includes all the brain MR images 

characterized by a tumor in the center of the brain. 

Figure 1 shows brain MR images of several samples of each 

class of the used database 
 

 

4. PROPOSED SYSTEM 

 

The proposed system is composed of three essential steps 

(see Figure 2), namely, preprocessing, feature extraction and 

brain tumor classification. The role of and various methods 

and techniques used for each step are described as follows: 

 

4.1 Preprocessing 

 

The only preprocessing operation we consider necessary in 

this study is image resizing; this operation is performed due to 

the nature of the feature extraction methods in the next step 

that are only applied to normalized images. As brain images 

have variable sizes, the preprocessing step consists of resizing 

all images of the database to all images of the database to 

128x128 pixels in size. Note that the choice of the size 

128x128 pixels as a normalized size for the images of the used 

database is related to the nature of the feature extraction 

methods used in this study. Resizing MR images to a size of 

128x128 pixels allows us to obtain an appropriate number of 

zones selected by the sliding window used for each method. 
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Figure 1. Several samples of each class of the used database: a) Samples of class 01, b) Samples of class 02, c) Samples of class 

03, d) Samples of class 04, e) Samples of class 05, f) Samples of class 06 

 

 
 

Figure 2. General schema of the proposed system 

 

4.2 Feature extraction 

 

In this paper, the feature vector is composed of several 

parameters extracted from the brain MR image by two 

methods, the first based on the calculation of image entropy, 

and the second consisting of the calculation of the seven Hu’s 

invariant moments; the both methods are applied on each zone 

selected by sliding a window over the brain MR image. For 

reasons involving computation time and required memory, the 

sizes of the sliding windows used for the two methods are not 

the same; the size of the sliding window used for the entropy 

method is 16x16 pixels, while the size used for Hu’s invariant 

moments method is 64x64 pixels. Note that we have used 

sample 01 of class 02 and sample 03 of class 03 as examples 

to explain the principle of these two methods and to show the 

obtained features or parameters.  

As it was requested in paper [18], the sources of these two 

samples are as follows:  

• Sample 01 of class 02: Case courtesy of A.Prof Frank 

Gaillard, Radiopaedia.org, rID: 22205 

• Sample 03 of class 03: Case courtesy of Dr. Ian 

Bickle, Radiopaedia.org, rID: 50807 

4.2.1 Image entropy 

The notion of entropy has been widely used for brain 

pathology classification [16, 19-23] and can be defined as the 

concept of the spread of states a system can be in. A system 

that occupies a small number of such states is characterized by 

low entropy, while a system that occupies a large number of 

states is characterized by high entropy. 

In the case of an image, interpreting the preceding entropy 

definition leads us to consider the states as the grayscale levels 

an individual pixel can have. In particular, there are 256 states 

for a grayscale image when the pixels are represented using 8 

bits. 

 The entropy of the image reaches the maximum value if the 

spread of the states is maximized, this holds if all such states 

are equally occupied, as they are in an image that has been 

perfectly histogram-equalized. On the other hand, if the image 

has been processed using a threshold, then only two states are 

occupied, and consequently the entropy is low. If all the pixels 

have the same value, the entropy of the image is zero. In 

conclusion, the entropy of an image varies proportionally to its 

information content. The entropy changes from high entropy 

of a full grayscale image to low entropy of a threshold binary 
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image and to zero entropy of a single-valued image.  

The entropy E of an image is defined as 

 
1

2

0

log ( )
M

k k

k

E P P
−

=

= −                               (1) 

 

where, M is the number of grayscale levels, and Pk is the 

probability associated with grayscale level k. 

 

4.2.2 Seven Hu’s invariant moments 

Invariant moments have been widely applied to image 

processing [16, 22] and have proven useful in a variety of 

applications due to their invariance with respect to image 

translation, scaling and rotation. They were first introduced by 

Hu [24], who derived six absolute orthogonal invariants and 

one skew orthogonal invariant based upon algebraic invariants, 

which are independent not only of position, size and 

orientation but also of parallel projection. Invariant moments 

have been proven to be the adequate measures for tracing 

image patterns affected by image translation, scaling and 

rotation under the assumption of noise-free images with 

continuous functions. The quantities used to construct the 

invariant moments are defined in the continuous form, but for 

practical implementation they are computed in the discrete 

form. For a two-dimensional continuous function f(x,y), the 

moment (sometimes called the "raw moment") of order (p +q) 

is defined as 

 

( , )p d

pqM x y f x y dxdy
 

− −
=                          (2) 

 

Mpq is a two-dimensional moment of function f(x,y), where 

the indices p and q are both natural numbers. Adapting this to 

a grayscale image with pixel intensities I(x,y), the raw 

moments Mpq become 

 

( , )p q

pq

x y

M x y I x y=                        (3) 

 

One should note that the Mpq moments are not invariant 

with respect to f(x,y) changing by translation, rotation and 

scaling. The moment that is invariant to translation can be 

obtained by calculating the moment of order (p+q) called 

central moment and given by the following equation: 

 

( ) ( ) ( , )
p q

pq x x y y f x y dxdy
 

− −
= − −             (4) 

 

where, 𝑥̅ and 𝑦̅ are the coordinates of the gravity center of the 

image, calculated using Eq. (3) and given by 
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In the case of a grayscale image with intensity I(x,y), Eq. (4) 

becomes 

 

( ) ( ) ( , )
p q

pq

x y

x x y y I x y = − −              (6) 

 

The central moments can be extended to be both translation- 

and scale-invariant by using the following equation: 
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The obtained moments are called the normalized central 

moments. To enable rotation invariance, based on the above 

moments (normalized central moments), Hu introduced the 

seven invariant moments given by the following equations: 
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4.3 Brain tumor classification  

 

In this study, the classification is achieved using a neural 

network composed of three layers; namely, the input layer 

whose number of neurons is equal to the size of the used 

feature vector (N_IL=92); the output layer whose number of 

neurons is equal to the number of brain tumor classes to be 

recognized (N_OL=6), and one hidden layers whose number 

of neurons is experimentally chosen equal to fifty-five (55) 

(N_HL=55). The initial connection weights are randomly 

chosen in the range of [-1, 1]. The transfer function used is the 

familiar sigmoid function. The large use of the back 

propagation training method for a great number of pattern 

recognition problems and its simplicity encouraged us to use 

it for training the neural network. The principle of this method 

is based on the gradient descent algorithm, the learning rate is 

experimentally chosen and it allows the algorithm to converge 

more easily if it is properly chosen by the experimenter. In our 

case, we have opted for a rate η= 0.8. 

 

 

5. RESULTS AND DISCUSSION 
 

5.1 Entropy values 

 

In this study, the image entropy is one of methods we have 

used to characterize brain images; the method consists of 

calculating the entropy only for selected zones of a brain 

image instead of the entire image. The principle is to slide a 

window of size 16x16 pixels along the brain MR image and to 
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calculate the entropy for each selected zone using equation (1). 

Since the size of the brain image is 128x128 pixels, this 

method allows us to obtain 64 (sixty-four) zones, and therefore 

64 (sixty-four) values of entropy. Figure 3 shows sixty-four 

zones obtained after sliding a window of size 16x16 pixels 

over sample 01 of class 02 and sample 03 of class 03, while 

entropy values (E) for each zone (Z) for the same samples are 

shown in a graphical form in Figure 4 and in the numeric form 

in Table 1 and Table 2. 

 

 

 
 

Figure 3. Sixty-four zones obtained after sliding a window of size 16x16 pixels over the MR image: (a) sample 01 of class 02; 

(b) sample 03 of class 03 

 

 
 

Figure 4. Entropy values of sixty-four zones: (a) sample 01 of class 02; (b) sample 03 of class 03 

 

Table 1. Numeric values of entropy of sixty-four zones for sample 01 of class 02 

 
Z E Z E Z E Z E 

01 0 17 5.682 33 6.876 49 3.521 

02 3.275 18 5.747 34 4.973 50 6.503 

03 6.097 19 4.489 35 3.976 51 5.929 

04 6.499 20 5.247 36 4.805 52 5.611 

05 6.580 21 5.216 37 4.825 53 6.631 

06 5.891 22 4.468 38 5.115 54 6.266 

07 2.579 23 5.768 39 4.603 55 6.381 

08 0 24 4.908 40 6.466 56 3.960 

09 2.886 25 6.739 41 6.725 57 0 

10 6.508 26 4.482 42 5.194 58 3.267 

11 5.569 27 4.571 43 4.655 59 6.555 

12 5.422 28 4.744 44 5.297 60 6.875 

13 5.356 29 4.318 45 6.466 61 6.816 

14 5.418 30 4.181 46 6.441 62 6.450 

15 6.518 31 4.071 47 4.960 63 3.474 

16 1.979 32 6.359 48 6.617 64 0.036 
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Table 2. Numeric values of entropy of sixty-four zones for 

sample 03 of class 03 

 
Z E Z E Z E Z E 

01 1.286 17 5.841 33 6.369 49 2.838 

02 3.529 18 5.062 34 4.702 50 6.541 

03 6.101 19 4.461 35 6.518 51 4.591 

04 5.810 20 4.218 36 6.390 52 4.032 

05 6.135 21 5.099 37 5.210 53 3.934 

06 6.042 22 4.319 38 4.550 54 4.150 

07 3.663 23 4.852 39 3.947 55 5.754 

08 1.223 24 6.033 40 6.213 56 3.754 

09 3.031 25 6.405 41 5.852 57 0.971 

10 5.996 26 3.945 42 5.207 58 2.788 

11 4.378 27 5.367 43 5.008 59 5.750 

12 4.508 28 3.334 44 5.599 60 6.241 

13 4.699 29 5.376 45 4.995 61 6.196 

14 4.230 30 3.840 46 4.799 62 5.924 

15 6.179 31 4.395 47 4.436 63 3.388 

16 3.171 32 6.007 48 6.008 64 0.950 

 

5.2 Seven Hu’s invariant moments values 

 

In this work, the seven Hu’s invariant moments are also 

used to characterize the brain image. The idea is to slide 

another window of size 64x64 pixels along the brain MR 

image and, for each selected zone, calculate the seven Hu’s 

invariant moments by using Eqns. (8-14), which will allow us 

to obtain twenty-eight (28) features. Note that the use of a 

window of size 16x16 pixels for the entropy calculation allows 

us to obtain sixty-four (64) parameters, while the use of the 

same window for the calculation of seven Hu’s invariant 

moments allow us to obtain four hundred and forty-eight (448) 

parameters. Comparatively, this is indeed a large number, 

which will consequently increase the computation time and 

reduce available memory. This is the main reason for choosing 

a window size of 64x64 pixels instead of 16x16 pixels for Hu’s 

invariants moment calculation.  

The four zones obtained after sliding a window of size 

64x64 pixels on sample 01 of class 02 and sample 03 of class 

03 are shown in Figure 5, while the values of the Hu’s 

invariant moments for the same samples are shown in a 

graphical form in Figure 6 and in the numeric form in Table 3 

and Table 4. 

 

5.3 Used feature vector 

 

It is the features vector used to characterize the brain image, 

and with which, we will nourish the recognition module, its 

size is equal to ninety-two (92) parameters; it is composed of 

sixty four (64) parameters obtained by the image entropy 

method and twenty-eight (28) parameters obtained by Hu’s 

invariant moments method. The feature vectors of several 

samples of the used database are shown in a graphical form in 

Figure 7. 

 

5.4 The learning step 

 

The learning of the neural network was realized using only 

sixty (60) samples (ten samples of each class). The network 

learning process is stopped only when the sum of the mean 

square error reached a value equal to 0.0001. Figure 8 shows 

the evolution of the mean square error during the learning step.  

 

5.5 The test step 

 

During this phase, all samples of the database (i.e., ninety 

(90) samples) are successively presented at the system input, 

and for each sample the system makes a decision to assign it 

to one of the possible classes. The response of the system can 

be one of the following: 

• Recognized brain tumor: the system correctly 

classifies the input brain MR image. 

• Ambiguous brain tumor: the system associates the 

input brain MR image with more than one class. 

• Rejected brain tumor: the system is unable to assign 

the input brain MR image to any class. 

• Wrong brain tumor: The system incorrectly assigns 

the input brain MR image to one of the possible 

classes. 

 

 

 
 

Figure 5. Four zones obtained after the application of the sliding window of size 64x64 pixels: (a) Sample 01 of class 02; (b) 

Sample 03 of class 03 
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Figure 6. Four zones obtained after the application of the sliding window of size 64x64 pixels: (a) Sample 01 of class 02; (b) 

Sample 03 of class 03 

 

 
 

Figure 7. Feature vectors of several brain MR images: (a) Feature vector of sample 01 of class 02; (b) Feature vector of sample 

03 of class 03 

 

  
 

Figure 8. Evolution of the mean square error during the learning step: (a) after 1045 epochs, (b) after 1958 epochs, (c) after 6600 

epochs, (e) reaching the desired value after 17402 epochs 
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Table 3. Numeric values of Hu’s invariant moments of the 

four zones: sample 01 of class 02 

 
 Zone1 Zone2 Zone3 Zone4 

Ф1 0.3474 0.3476 0.3008 0.2563 

Ф2 0.1326 0.1789 0.1468 0.1128 

Ф3 5.0378 5.3441 2.9579 1.3022 

Ф4 0.1916 0.2409 0.0316 0.0376 

Ф5 -2.7579 -2.4828 0.2300 0.1816 

Ф6 -0.2759 -0.0027 0.0640 0.0571 

Ф7 0.5179 4.7159 -0.0994 -0.1963 

 

Table 4. Numeric values of Hu’s invariant moments of the 

four zones: sample 03 of class 03 

 
 Zone1 Zone2 Zone3 Zone4 

Ф1 0.4369 0.4038 0.3905 0.4142 

Ф2 0.1019 0.0964 0.0382 0.1394 

Ф3 5.5322 3.6032 5.9701 3.6256 

Ф4 0.4032 0.2582 0.4730 0.0944 

Ф5 10.4721 3.4144 -9.8067 1.2369 

Ф6 -0.1780 0.2559 -0.1710 0.1470 

Ф7 -8.7078 1.8764 14.0988 -0.3329 

 

5.6 Obtained rates 

 

It should be noted that the evaluation of the performance of 

the implemented system has been done using all samples of 

the database (i.e., ninety (90) samples), and according to the 

four types of possible responses of the proposed system, four 

types of rates can be defined, namely, Recognition Rate (R_R), 

Ambiguity Rate (A_R), Rejection Rate (RJ_R) and Error Rate 

(E_R). The system's response can take many forms, among the 

ninety (90) samples, it correctly associates eighty eight (88) 

samples to their classes, accordingly, the Recognition Rate is 

equivalent to 97.77%, for other samples, the system doesn’t 

take any wrong decision of classification, this means that the 

Error Rate is equal to 0%, but it proposes an assignment of one 

sample to more than one class, and it doesn’t make any 

classification decision for another sample, this means that the 

Ambiguous Rate and the Rejected Rate are both equivalent to 

1.11%.  

The different obtained rates as well as the comparison of the 

method used in this study to those that adopted in previous 

studies of the same field are respectively shown in Tables 5 

and 6. The results presented in the two tables clearly show the 

importance of the proposed method compared to other 

methods in the same field, this importance lies in the following 

points: 

The proposed method is the only method that considers the 

calculation of Rejection, Ambiguity and Error rates. The 

calculation of these rates is very important, it allows us to have 

an idea about the nature of difficulties encountered by the 

system to correctly classifies the brain MR image and 

consequently to propose the necessary solutions to improve 

the recognition rate. 

The results of the proposed method are much better than 

those obtained by other methods adopted in previous studies, 

this is due to the technique of the sliding window that we used 

to extract the features from the brain image, this technique is 

completely novel and it allowed us to have features not from 

the whole brain image, but from multiple zones of it, therefore, 

the information provided by applying this technique is more 

consistent than that provided if the feature extraction was 

performed on the whole image of the brain. 

Table 5. Obtained rates 

 

Rate  Value (%)  

Recognition rate (R_R)  97.77  

Ambiguity rate (A_R)  1.11  

Rejection rate (RJ_R)  1.11  

Error rate (E_R)  0.00  
 

Table 6. Comparison of the proposed method to those that 

adopted in previous studies. 

 

Study 
Number 

of images 

Recognition rate 

(R_R) % 

[8] 33 85 

[8] 57 96.6 

[8] 65 94.28 

[10] 60 88.333 

[20] 64 92.60 

The proposed 90 97.77 

 

 

6. CONCLUSION 

 

This study explores the subject of automating the process of 

detection and classification of brain tumors from brain MR 

images. The importance of this type of study is due to solutions 

they propose to overcome multiple difficulties that have thus 

far prevented the implementation of a universal system for 

detection and automatic classification of brain tumors, such 

difficulties being mainly due to variability in tumor size and 

location in the brain. This study proposes a novel method for 

the classification of brain tumors by interpreting brain MR 

images. The main objective was to improve the results 

obtained in the study that we presented in the 2nd International 

Conference on Advanced Systems and Electrical 

Technologies (IC_ASET'2018) [10]. The proposed method is 

completely novel and it based on using of a new feature vector 

composed of several parameters obtained by applying two 

methods: the calculation of image entropy and Hu’s seven 

invariant moments. The first method consists of the calculation 

of entropy of each zone selected by sliding window 16x16 

pixels in size, while the second method consists of the 

calculation of Hu’s seven invariant moments of each zone 

selected by other sliding window 64x64 pixels in size. The 

obtained results are very encouraging and they are better than 

those obtained in the work [10]. The system correctly 

classifies 97.77% of images of the used database, achieving an 

attractive recognition rate that can encourage further research. 

The results can be further improved by analyzing the images 

that have given the system difficulties when assigning them to 

their proper classes. This analysis will allow the identification 

of the reasons for misclassification and thus the proposal of 

necessary solutions for each stage of the system. 
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