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 The point clouds provide responsive geometric representation on many applications. The 

classification of objects through point clouds is one of the popular subjects of recent years. In 

this study, we introduce the potential of the 3D Zernike Moment approach for the object 

classification on the 3D point cloud. Zernike Moment (ZM) has utilized as a feature extractor 

of point clouds. This paper presents a comparative study of the state-of-the-art classification 

methods with respect to machine learning algorithms and PointNet which have been developed 

for classification by Stanford University. Object classification has been applied to a dataset 

with labeled 3D Zernike Moment features inferences obtained from the 3D point cloud. The 

performance of the developed method is verified by comparing the experimental results on the 

Washington RGB-D Object Dataset which consists of forty-five different household objects 

as point cloud data. Fine Gaussian SVM gives the best results in accuracy (96.0%) according 

to the results obtained with built-in cross-validation results. The results of the proposed 

classification of 3D Point Clouds on the 3D Zernike Moment features have significantly higher 

accuracy. The classification of 3D Zernike Moments on point cloud compared to directly point 

cloud classification is efficient and effective and lower complexity computation is obtained. It 

is emphasized that the 3D Zernike Moment features can be optimized for classification. In 

general, the comparative validation results have been reached a high accuracy in the proposed 

method. In the future, 3D Zernike Moment feature extractions are emphasized for the usability 

of classification operations on 3D data. 
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1. INTRODUCTION 

 

The three-dimensional (3D) point cloud obtained with built-

in sensors such as a laser scanner, time-of-flight camera, or 

stereographic systems provides a reliable and convenient 

source of information for computer graphics [1]. Point cloud 

needs to be processed as a basic step in many applications such 

as segmentation and classification of objects, identification of 

uncertain areas, and completion of missing parts [2, 3]. Point 

cloud generation has become easier with the developed 3D 

scanners being modular and the improvement of positioning 

systems [4, 5]. Point cloud collection with high accuracy is 

generally examined in surveying, investigation, and 

autonomous scene searching and object inventory [6]. The 

qualified results obtained from these studies are used to create 

3D object models for applications such as visualization and 

simulation. 

Many researchers have discussed the object classification 

with specific segmentation algorithms using data 

characteristics [7]. A number of new studies have been 

demonstrated on the voxel structure of the point clouds of 

scanned objects [8]. A variety of machine learning techniques 

have been applied to classify 3D point clouds [9]. In addition, 

supervised machine learning is utilized by presenting pre-

labeled examples to obtain useful predictive models that can 

be applied to new data [10, 11]. Especially in the last few years, 

neural networks have been the basis of the methods used by 

advanced computer vision algorithms in many areas such as 

classification [12], segmentation [13] and target detection [14]. 

Generally, the data processed by the neural networks 

referenced in these applications are two dimensional. However, 

although the modeling obtained by reconstruction in the 3D 

graphics area allows capturing a large amount of data, the costs 

of operating this data in neural networks cannot be reduced [15, 

16]. 

In previous studies, researchers have explored deep learning 

as well as using state-of-the-art machine learning algorithms 

to classify over point cloud clusters [17]. PointNet is a 

preliminary method that can work and process directly on 

point sets [18]. PointNet’s basic working logic is to learn the 

spatial coding of each point and then to collect all individual 

point features in a global point cloud signature [17]. In 

addition, a hierarchical neural network called PointNet ++ is 

provided, where many points can be processed in a 

hierarchical manner [17]. However, the cost of time and space 

between both deep learning methods has increased 

dramatically compared to introduced Zernike based state-of-

the-art methods. 

Moments are used in many studies on subjects such as 

computer vision, image processing, pattern recognition, and 

multifunctional analysis. In some of these studies, Zernike 

Moments have been used on orthogonal polynomials [19]. 

Zernike Moment is independent of the rotational movements 

on the images of objects and is a commonly used tool in the 

fields of shape recognition and classification. Similarly, the 

amplitudes of 3D Zernike Moments use this feature in three-
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dimensional image structures [20]. With the help of sensor 

cameras, which have become widespread in recent years, it has 

become possible to take three-dimensional images of various 

scenes. Zernike Moments are calculated in the whole image 

and can give successful results in object recognition and 

identification. However, Zernike Moment is not definitely 

successful in subjects such as an object classification, where 

image information is more important than image. 

For this reason, instead of calculating the moments on the 

whole image, a new principle calculation of point cloud 

Zernike Moment around each and every neighbor has been 

used. The moments of a point set may express the formal 

characteristics of the distribution of this cluster, such as the 

center of gravity, variance, skewness, and kurtosis. In this case, 

voxel data can also be considered as a set of points and the 

formal properties of its distribution can be evaluated over the 

moments. As a result, 3D Zernike Moment results of voxel 

data can be followed by using a parsing result of object 

classification. 

As an application environment, Matlab software has 

included the Statistics and Machine Learning toolbox, which 

includes a large number of machine learning algorithms [21]. 

The Classification Learner Application Toolbox provides 

quick access to supervised learning methods. The methods in 

the toolbox are used in many different real-world applications, 

such as object classification [21].  

 

 
 

Figure 1. Demonstration of the proposed classification method which represents by feature extraction of 3D Zernike moments on 

point clouds 

 

In this paper, a comparative study of all machine learning 

methods in the Classification Learner App for object 

classification is proposed with 3D Zernike Moments derived 

from point clouds. For this purpose, Washington Object 

Dataset with 45 different object datasets has been used for 

object classification [22]. Classification results have been 

compared with 22- state-of-the-art classification method and 

PointNet in terms of computation times and predictive 

performance. Specifically, it has been constructed over several 

3D point clouds of different structures for analysis. Figure 1 

shows the flowchart of the proposed method. 

Figure 1 shows comparing the classification of a used data 

set that consists of 45 different small objects using traditional 

machine learning and deep learning-based classification 

results. Each point clouds cluster of objects contains three-

dimensional numeric information stored in the .ply (Polygon 

File Format or the Stanford Triangle Format) file in floating 

point type. Each dataset is augmented by the 3D 

Transformation process using the original data to calculate the 

Zernike Moments. In this respect, the data is fixed and is the 

x, y, z (3D information) stored in the file. 3D Zernike Moment 

calculation is performed on all data which have 360 features 

extractions results for objects classification. In this respect, the 

results of the proposed classification of 3D Point Clouds on 

the 3D Zernike Moment features have significantly higher 

accuracy. In particular, the comparative results of the 22 most 

advanced machine learning methods and the deep learning-

based PointNet and PointNet++ 3D point cloud classification 

methods have been evaluated. It is emphasized that the 3D 

Zernike Moment feature can be optimized for classification. In 

general, the comparative validation results have been reached 

a high accuracy in the proposed method. 

Washington RGB-D Object Dataset is used in the article. 

The dataset contains the 3D point clouds of views of each 

object, in .pcd file format readable with the Point Cloud 

Library (PCL). There is a part of the dataset available 

containing cropped images of the objects for extracting visual 

features, and another part of the dataset containing the full 

640x480 images from the sensor. As it is known, since point 

cloud data are numerical coordinate values, they are not 

affected by environment variables (light, shadow, reflection 

etc.). 

The structure of the paper is as follows: In the second 

section of the paper, the Materials and Methods section 

includes 3D transformation, 3D Zernike Moment computation, 

classification learner apps and PointNet deep learning for 

object classification. Then, experimental results are analyzed 

in section three. Finally, the conclusions offer a discussion. 

 

 

2. MATERIALS AND METHODS 
 

The reconstruction, classification, segmentation, clustering 

and recognition processes of 3D objects have been important 

research subjects for the last decade [23]. Studies in this area 

have benefited from the capabilities of 3D moment invariants 

as a 3D object shape descriptors [24, 25]. 2D Zernike Moment 

has been used in various studies such as edge detection [26], 

image retrieval [27], recognition applications [28], and 

biometrics [29] in computer graphic fields. The classical 2D 

Zernike polynomials aim at the orthogonal strengthening of 

non-orthogonal moments by making 3D. In some studies, 

several theoretical aspects of the derivation of moments and 

polynomials of 3D Zernike have been discussed [20]. 

The reconstruction of a group of 3D Zernike Moment with 

Point Clouds is a simple and efficient process. In addition, the 
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3D Zernike Moment is capable of collecting global 

information about the 3D shapes of objects without needing to 

specify closed boundaries. It is important to extraction the 

structure-function relationships of 3D objects through 

improving shape analysis techniques. 

 

2.1 3D Point cloud transformation 

 

In this study, the full data set of Washington RGB-D Object 

consisting of 45 independent objects has been examined. 

There are 45 different .pcd files for each object in this data set. 

First of all, the data set is converted into a .ply format file 

containing ASCII numeric values. 3D affine transformation is 

implemented with x, y, z coordinate values of 3D point clouds. 

Firstly, the entire set of 3D point clouds is shifted to the central 

origin for 3D geometric transformation. The 3D affine 

transformation is then applied to all data. The data set for each 

object is transformed one degree. In total, 360 different 

datasets are obtained for the 360-degree transformation of the 

same object. As a result, a data set containing 360 sets of 3D 

point clouds is obtained for each data set of 45 objects. 

Transform operations are applied to each set of 3D point 

clouds in .ply format. As a result of the transformation, the 

object particles and their relative distances are maintained [8]. 

 

2.2 3D Zernike moment computation 

 

3D Zernike Moment calculation step is applied to 360 

different data sets of each object. The entire dataset consists of 

45 different objects. Since a 3D Zernike Moment result has 

been obtained from each data set, a totally 45x360 data cluster 

has emerged. Three-dimensional Zernike polynomials on 

point cloud during the calculation of classical Zernike Moment 

are defined as Zl,m,n, orthogonal polynomials [30]; 

 

𝑍𝑙,𝑚,𝑛(ℜ) = 𝑅𝑙,𝑚(𝑟)𝜰𝑚,𝑛(𝜃, 𝜙),                 (1) 

 

where, l ϵ [0, Max], m ϵ [0, l], and n ϵ [-m, m]. The (l - m) must 

be selected from integers with positive values. The maximum 

order is defined as a max-term during the calculation 

operations. 𝑅𝑙,𝑚(𝑟)  and 𝜰𝑚,𝑛(𝜃, 𝜙)  are referred to as radial 

functions and spherical harmonics with real numerical value. 

As described in Eq. (2), 3D Zernike can be expanded using the 

polynomials defined in a unit ball of any function 𝑓(ℜ); 

 

𝑓(ℜ) = ∑ ∑ ∑ Ω𝑙,𝑚,𝑛𝑍𝑙,𝑚,𝑛(ℜ)𝑚
𝑛=−𝑚

𝑙
𝑚=0

∞
𝑙=0 .        (2) 

 

Ω , which is the coefficient of expansion in Eq. (2), 

represents 3D Zernike Moment. Then the complex conjugate 

of polynomials as in Eq. (3) is generated. 

 

Ω𝑙,𝑚,𝑛 = ∫ ∫ ∫ 𝑍𝑙,𝑚,𝑛(ℜ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝜋

0

2𝜋

0

1

0
𝑓(ℜ)(𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃𝑑𝜙)  (3) 

 

The transformation between 3D spherical and cartesian 

coordinates is formulated with 3D Zernike polynomials as 

follows; 

 

[
𝑥
𝑦
𝑧

] = [

𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙
𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙

 𝑟 𝑐𝑜𝑠𝜙
].                      (4) 

 

3D Zernike polynomials are defined as follows; 

 

𝑍𝑙,𝑚,𝑛(𝑋) = ∑ 𝒬𝑘,𝑚,𝑣|𝑋|2𝑣𝑒𝑚,𝑛(𝑋)𝑘
𝑣=0 ,           (5) 

 

where, 𝑘 = (𝑙 − 𝑚)/2, is an integer value in the interval of  

0 ≤ 𝑣 ≤ 𝑘. So the coefficient of 𝒬𝑘,𝑚,𝑣 is defined as; 

 

𝒬𝑘,𝑚,𝑣 =
(−1)𝑘

22𝑘 √
2𝑚+4𝑘+3

3
(

2𝑘
𝑘

) (−1)𝑣
(

𝑘
𝑣

)(2(𝑘+𝑚+𝑣)+1
2𝑘

)

(
𝑘+𝑚+𝑣

𝑘
)

  (6) 

 

The formulas given above implements the calculation of 3D 

Zernike Moments with very fast and low complexity using 

voxels of point clouds. 3D Zernike Moments are expressed as 

the mathematical calculation of 3D monomial terms over 

digital point cloud voxels. The 3D Zernike Moment 

calculation of the point clouds of the original data in the .ply 

format for each object in the data set is performed in less than 

one second. In this respect, the 3D Zernike Moment feature 

extraction step calculated in milliseconds has no additional 

cost to the classification process [31]. 

3D Zernike descriptors are generally used to compare to 

similar structures and the vectors, whereas the independent 3D 

Zernike Moment is used for feature computation in object 

classification. In this way, 360 3D Zernike Moment feature 

results of 45 different objects have labeled to be executed in 

classification learner application. The definition of a set of 

suitable features for the high accuracy classification of the 3D 

point cloud is an issue that directly affects success [32]. In this 

study, the higher performance is obtained with the 

classification of 3D Zernike Moment features rather than the 

direct classification of 3D point clouds. 

 

2.3 The classification learner application 

 

In this paper Classification Learner app in the Statistics and 

Machine Learning toolbox is used. The state-of-the-art 

supervised machine learning classification algorithms 

incorporated into the toolbox through this application provide 

automated training of the dataset used. Subsequently, the 

trained classifiers can be exported to the Matlab workspace, 

where they can be used to compute predictions of new input 

data using the predictFcn function of the Matlab software. The 

Matlab software contains 22 popular classifier types and 5 

different major classification algorithms in the Classification 

Learner app toolbox [33]. In following some analyze method 

has explained: 

• Decision Tree: The basic principle is based on the division 

of the input data into groups by means of a clustering 

algorithm. In this respect, different classes are predicted by 

selecting all branches starting from root to leaf nodes in a tree 

structure. The clustering process continues in depth until all 

the elements of the group have the same class label. There are 

three different types of decision trees in the application, they 

called: Fine, Medium, and Coarse. 

• Discriminant analysis: It is a discriminatory analysis 

aiming to evaluate the adequacy of classification by 

characterizing the classes belonging to group members and 

aiming to find combinations of features that different 

characteristics between multiple groups. This method is 

particularly useful for problems with a large number of classes. 

There are two different types: Linear and Quadratic. The LDA 

is highly interpretable because it allows reduction 

dimensionality. It is also possible to model non-linear 

relationships with QDA. QDA is a regular discriminant 

analysis technique that is particularly useful for a large number 
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of features. It is often useful to perform regularized 

discriminant analysis for many features. 

• Support vector machine (SVM): It is one of the most 

effective and simple methods used in classification. It works 

with the logic of separating the boundaries between different 

groups in a plane for classification by drawing with 

mathematical functions. The point at which this boundary is to 

be drawn should be chosen at the furthest distance from 

members of different groups. SVM determines how to draw 

this limit. SVM has six different types: Linear, Quadratic, 

Cubic, Fine Gaussian, Medium Gaussian, and Coarse 

Gaussian. 

• K nearest neighbors (KNN): is one of the easiest to 

implement supervised learning algorithms. It is used for 

solving both classification and regression problems. In this 

algorithm, data from a sample set with certain classes are used. 

The distance of the new data to be included in the sample data 

set according to the existing data is calculated and its nearest 

neighbor is examined. KNN has six different types: Fine, 

Medium, Coarse, Cosine, Cubic, and Weighted. 

• Ensemble classification: is a combination of two or more 

independent classification methods to improve their individual 

training performance. Five different types are available: 

Boosted Trees, Bagged Trees, Subspace Discriminant, 

Subspace KNN, and RUSBoosted Trees. 

 

2.4 Pointnet and PointNet ++ deep learning 

 

PointNet is a pioneering study that can handle the 

classification of 3D point cloud clusters directly with deep 

learning [18]. The basic idea of PointNet is to learn a spatial 

encoding of each point and then aggregate all individual point 

features to a global point cloud signature [17]. In design, CNN 

regularly receives a series of data as input and can 

progressively capture features at increasing scales throughout 

a high-resolution hierarchy. The neurons have smaller receptor 

fields at low-resolution levels while larger the receiving fields 

at the higher-resolution levels. Taking advantage of the 

abstraction ability of local patterns, it is possible to generalize 

the unseen cases throughout the hierarchy.  

As the second version of the PointNet study, researchers 

have introduced a hierarchical neural network model called 

PointNet ++ [17]. The basic approach in PointNet ++ is to 

divide the set of points into the measure of the distance 

between the overlapping local regions and the underlying 

space. Local features that capture fine geometric structures 

from small neighborhoods are extracted by CNN logic; such 

larger local features are grouped into units and processed to 

produce superior features. This process is repeated until the 

features of the entire 3D point cloud cluster used are obtained. 

 

 

3. EXPERIMENTAL RESULTS  

 

This section is about the analysis of the comparative results 

of the classification of 3D point clouds belonging to a set of 

45 different objects with all machine learning algorithms using 

the classification learner app. At the same time, using Python 

programming language for the same dataset, classification 

results of 3D point clouds belonging to PointNet and 

PointNet++ have been compared. In particular, the results 

obtained by using 22 state-of-the-art classification algorithms 

have compared in terms of predictive performance and 

computation times. A computer with an Intel Core i7 processor 

with 2.3GHz and 8GB RAM has used to obtain all 

experimental results. 

The predictive performance criterion of the experimental 

results has determined as the accuracy of the classification 

algorithms. The accuracy value is calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  100.
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (7) 

 

In Eq. (7), TP, TN, FP, and FN express the true positive, 

true negative, false positive, and false negative numbers 

respectively. Computation time (t) and prediction accuracy 

(Acc) obtained from 3D point clouds by using Cross-

Validation (with q = 5 fold) options of each machine learning 

algorithm are shown in Table 1. The Acc values are obtained 

using the confusion matrix provided by the built-in validation 

of the application. In these experiments, two built-in validation 

options, Cross-Validation, and No-Validation produce similar 

Acc values. However, the Cross-Validation results are slightly 

more ideal than No-Validation. Table 1 depicts the results of 

cross-validation value of coarse 3D point clouds. 

 

Table 1. Cross-validation results of 3D point clouds 

 
# Group Predictive Model t (s) Acc (%) 

1 
 

A 

Fine Tree 5.3 55.8 

2 Medium Tree 3.6 41.8 

3 Coarse Tree 3.1 26.6 

4 
B 

Linear Discriminant 4.5 36.6 

5 Quadratic Discriminant 8.0 62.6 

6 

 

 

C 

Linear SVM 15202.0 56.5 

7 Quadratic SVM 30900.0 74.1 

8 Cubic SVM 52193.0 71.2 

9 Fine Gaussian SVM 1893.3 85.1 

10 Medium Gaussian SVM 3527.1 78.0 

11 Coarse Gaussian SVM 6449.1 67.5 

12 

 

 

D 

Fine KNN 6474.0 80.0 

13 Medium KNN 6474.4 83.1 

14 Coarse KNN 6484.6 77.7 

15 Cosine KNN 6712.7 53.2 

16 Cubic KNN 6723.9 83.2 

17 Weighted KNN 6728.8 80.6 

18 

 

 

E 

Boosted Trees 6891.4 46.7 

19 Bagged Trees 7018.2 85.2 

20 Subspace Discriminant 7079.7 35.1 

21 Subspace KNN 7144.4 45.0 

22 RUSBoosted Trees 7262.2 38.9 

 

In Table 1, the classification has evaluated on the 

Washington RGB-Dataset using machine learning 

classification techniques, which are sub-classification 

techniques divided into five main groups. According to Table 

3, the Bagged Trees algorithm of the Ensemble group has 

given the best result when accuracy is taken as reference. 

Although it is not very good in terms of time, the method is 

efficient because accuracy is taken as a reference in offline 

operations. However, although this method gives the best 

results on the data used, it is seen that it has much lower 

accuracy values compared to our proposed 3D Zernike 

Moment feature extraction classification method. In this 

respect, the superiority of the proposed method emerges. 

The computation time (t) and the accuracy (Acc) obtained 

from 360-degree 3D Zernike Moment feature results of the 45 

different objects using the Cross-Validation (with q = 5 fold) 

options of each machine learning algorithm are shown in Table 

2.  
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Table 2. Cross-validation results of 3D Zernike moment 

features on 3D point clouds 
 

# Group Predictive Model t (s) Acc (%) 

1 
 

A 

Fine Tree 8.1 95.4 

2 Medium Tree 6.6 66.7 

3 Coarse Tree 6.4 20.0 

4 
B 

Linear Discriminant 8.7 91.2 

5 Quadratic Discriminant 8.5 94.7 

6 

 

 

C 

Linear SVM 42.6 95.2 

7 Quadratic SVM 87.6 94.8 

8 Cubic SVM 112.1 94.4 

9 Fine Gaussian SVM 47.6 96.0 

10 Medium Gaussian SVM 72.7 95.4 

11 Coarse Gaussian SVM 82.9 94.9 

12 

 

 

D 

Fine KNN 73.9 93.8 

13 Medium KNN 73.8 95.3 

14 Coarse KNN 74.6 94.7 

15 Cosine KNN 77.5 8.0 

16 Cubic KNN 78.4 95.3 

17 Weighted KNN 78.9 93.9 

18 

 

 

E 

Boosted Trees 92.9 96.0 

19 Bagged Trees 91.2 93.9 

20 Subspace Discriminant 95.2 91.2 

21 Subspace KNN 98.2 93.8 

22 RUSBoosted Trees 105.1 66.7 

 

In Table 2, 3D Zernike Moments of 3D original point cloud 

data are obtained and classification is given in terms of time 

cost and accuracy values. Table 2 shows the highest accuracy 

of 96.0% of the Fine Gaussian SVM classification algorithm 

which is in the Support Vector Machines group. The highest 

accuracy value of Table 1 shows that the Bagged Trees 

algorithm of the Ensemble group yields 85.2%, while the 

proposed 3D Zernike Moment data classification method 

achieves a higher accuracy of 96.0%. In this respect, a relative 

improvement of 12.67% has been achieved. The value of the 

Bagged Trees algorithm, which produces the best accuracy 

results in Table 1 in terms of time cost, is 7018.2, while the 

value of the Fine Gaussian SVM method in Table 2 in the 

proposed 3D Zernike Moment data classification is 47.6. Thus, 

a significant improvement has been achieved in terms of time 

cost. From this perspective, it is better to work with 3D 

Zernike Moment values instead of working with raw 3D point 

clouds. In addition, our system is highly efficient in terms of 

both accuracy and time cost as shown in Table 2. 

 

Table 3. Comparison of average results of 3D point cloud 

and 3D Zernike moment classification accuracy values in 

five different state-of-the-art categories 

 

# Methods 
3D Point Clouds 

Acc (%) (avg) 

3D Zernike Moment 

Acc (%) (avg) 

A Decision Tree  41.4 60.7 

B 
Discriminant 

Analysis 
49.6 92.9 

C 
Support Vector 

Machines 
72.0 95.1 

D 
K-Nearest 

Neighbors 
76.3 80.1 

E Ensemble 50.1 88.3 

 

Table 3 is the generalized version of Table 1 and Table 2. 

In this generalization, classification algorithms are divided 

into five general groups. These groups are Decision Trees, 

Discriminant Analysis, Support Vector Machines, K-nearest 

neighbors, Community classification methods. The first 

column in Table 3 is the average of the accuracy values 

obtained with 3D raw point clouds and the highest result is 

76.3% of the KNN group. However, the highest column of the 

average values of the 3D Zernike Moment data and the 

classification results in the second column in Table 3 is 95.1% 

of the Support Vector Machines group. According to these 

values, it is seen that there is an improvement of 24.63%. 

The results of PointNet and its hierarchical learning 

architecture PointNet++ are compared with the Washington 

Object dataset in terms of accuracy and computation time. For 

this purpose, 3D point clouds in .ply format belonging to 45 

different objects have been first converted to .off (object file 

format) format. Then, the feature learning architecture has 

been implemented with CNN over Python software language. 

The evaluation of the network on 3D point clouds 

classification is given in Table 4. 
 

Table 4. Classification results of 3D point clouds 

 
# Methods t (s) Acc (%) 

1 PointNet (for 3D point cloud) [16] 29488.5 89.3 

2 PointNet++ (for 3D point cloud) [15] 41282.9 90.8 

3 Bagged Trees (for 3D point cloud data) 7018.2 85.2 

4 Fine Gaussian SVM (for 3D Zernike 

Moment) 

47.6 96.0 

 

When Table 4 is analyzed, the results of PointNet and 

PointNet++ methods developed at Stanford University for 

direct classification through point clouds have given higher 

accuracy compared to the Bagged Trees machine learning 

algorithm which obtained the best accuracy value in Table 2, 

but they have worse accuracy values than Fine Gaussian SVM 

classification algorithm obtained with 3D Zernike Moments. 

In contrast to the Fine Gaussian SVM accuracy of 96%, the 

accuracy of PointNet and PointNet++ algorithms is 89.3% and 

90.8%. When all these results are considered, it is seen that the 

data obtained with 3D Zernike Moments in terms of 

classification of point clouds reached higher accuracy values. 

PointNet unified network takes data as input and output. 

These data are about the classes label and point segment. 

PointNet uses max pooling. This framework work on Python 

programming language. The network takes input points as 

features, finally an output is classification scores for k classes. 

As activation functions, RELU (Rectified Linear Unit) is used. 

In the Classification application, the predictive accuracy of the 

training model has implemented by the cross-validation 

method. In this method, data is selected by dividing q into 

discrete sets. Only one set is used to validate the model, while 

the other q - 1 is used for training. This process is repeated q 

times and the confusion matrix is obtained as the result of the 

arithmetic mean of the iteration results. Here, q = 5 is set by 

default. 

The innovative aspect of this paper is the classification of 

point clouds with 3D Zernike Moment feature extractions, 

which outperforms 22 state-of-the-art machine learning and 

the trend over recent years of deep learning-based PointNet 

algorithms. Point clouds are a structure that contains a lot of 

data. Therefore, it has an inefficient process in terms of time 

cost when used directly in the classification process. Likewise, 

PointNet, which is used directly in the deep learning-based 

classification process of point clouds, has not provided an 

improvement in time cost. In this respect, the superiority of the 

proposed method in Table 2 is shown in seconds, especially 

when compared to time cost with Table 1 and Table 4. 
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Moreover, the proposed method obtained experimental results 

with higher accuracy compared to both machine learning and 

deep learning-based methods. The most innovative aspect of 

the proposed method is the use of 3D Zernike Moments 

derived from the point cloud, rather than using all points in the 

classification of point cloud data. Thus, the classification 

process is isolated from unnecessary point cloud crowds and 

the process is shortened in terms of time cost. 

 

 

4. CONCLUSIONS 

 

In this paper, traditional machine learning and deep 

learning-based classification methods are compared to a 

dataset consisting of 45 different small objects. In this respect, 

the results of the proposed classification of 3D Point Clouds 

on the 3D Zernike Moment features have significantly higher 

accuracy. In particular, the comparative results of the 22 most 

advanced machine learning methods and the deep learning-

based PointNet and PointNet++ 3D point cloud classification 

methods have been evaluated. It is emphasized that the 3D 

Zernike Moment feature can be optimized for classification. In 

general, the comparative validation results have been reached 

a high accuracy in the proposed method. The computation time 

of PointNet and PointNet++ has taken a long time in contrast 

to the machine learning algorithms such as Cubic SVM. In 

particular, the highest accuracy value has been achieved in 

Support Vector Machine and discriminant analysis methods. 

The highest accuracy of 96.0% has been obtained with Fine 

Gaussian SVM, a Support Vector Machine algorithm. Higher 

accuracy has been obtained in the state-of-the-art machine 

learning algorithms except Medium Tree, Coarse Tree, Cosine 

KNN, and RUSBoosted Trees.  

The classification algorithms used in future studies are 

planned to be implemented on a GPU-based parallel system. 

Thus, real-time studies will be emphasized with faster and 

more accurate results. 
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