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 This paper attempts to develop a unified theoretical model to describe the size dependence of 

the Curie temperature for materials of different sizes. To this end, the size-dependence model 

of glass transition temperature was expanded into a size-dependence model of the Curie 

temperature Tc of uniform low-dimensional ferromagnetic materials, based on energy theory 

and thermodynamics. The proposed model focuses on the critical size and the material shape, 

and has no adjustable free parameter. The model was used to predict the effect of material size 

on the Curie temperature, revealing that the Tc value decreases with the material size. This 

result agrees well with the experimental results and the prediction by other theoretical models. 

The research findings make up for the gap in the previous research on the Curie temperature. 

 

Keywords: 

low dimension, crystal, curie temperature 

 

 

 
1. INTRODUCTION 

 

With reduced symmetry, ferromagnetic nanometals have 

different properties from bulk metals. The size of these 

materials has direct impacts on local surface properties like 

valence band structure and membrane shape. In return, these 

properties can serve as sensitive functions of material size and 

growth conditions [1].  

In terms of application, a nanocrystal can be divided into 

two categories, namely, a thin membrane less than 10nm in 

thickness [2-3] and a bulk material consisting of nanoparticles 

or nanocrystals [4]. In recent years, much research has been 

done on the magnetic properties of membranes, especially the 

temperature of magnetic phase transition, i.e. the Curie 

temperature [2-3], revealing that the Curie temperature 

changes with the material size. On this basis, some theoretical 

models have been developed to describe the variation of Curie 

temperature with sizes [1-3]. 

One of these models is grounded on magnetic pole coupling. 

For a thick membrane, the Curie temperature satisfies: 

 

Tc/Tc0  1-[(n0+1)/2n]                                                          (1) 

 

where Tc0 is the Curie temperature of the bulk crystal; λ∈[1, 

1.59] [2] is a constant dependent on the magnetic pole 

coupling; n=S/h is the number of deposited membrane layers 

(MLs), with S being the membrane thickness and h being the 

layer spacing (i.e. atomic diameter). If the membrane thickness 

becomes sufficiently small n0, there will be a linear 

relationship between the Curie temperature and the material 

size: 

 
𝑇𝑐

𝑇𝑐0
=

𝑛−1

2𝑛0
                                                                               (2) 

 

The above model predicts that Curie temperature decreases 

with the membrane thickness, which has been validated by 

experimental results. 

Another model, created on the sequence, length and strength 

of keys [5], can also accurately depict the Curie transition of 

ferromagnetic membranes. 

Meanwhile, the unique physical-chemical properties of 

ferromagnetic particles have also attracted attention in basic 

and applied research. For these particles, the Curie transition 

is essentially the shift of magnetic domains from disordered 

alignment to ordered alignment. The shift takes place right 

after the decline in particle size D, a.k.a. particle/grain 

diameter. To our knowledge, there is no theoretical model on 

the size dependence of the Curie temperature of ferromagnetic 

particles, which differs from that of membranes [2]. Thus, it is 

necessary to develop a unified theoretical model for particles 

with various sizes d.  

The previous studies have shown the dependence of Curie 

transition on the material shape and size [2]. As a result, the 

physical nature of the transition should be fully considered in 

both theory and application. 

In addition, the Curie transition is a secondary phase 

transition. Its features can be derived from those of other 

secondary phase transitions like glass transition. For glass 

transition, the size-dependence of the transition temperature Tg 

has been obtained for various low-dimensional materials by 

extending the size-dependence model of the melting 

temperature [6-7]. 

In this paper, the size-dependence model of glass transition 

temperature is expanded to examine the size dependence of the 

Curie temperature for magnetic materials in different sizes. 

Special attention was paid to determining the critical size D0, 

i.e. the size of a single-domain particle/domain. The 

determination requires different methods for different material 

sizes. Several experiments were carried out on Fe, Co and Ni 

membranes as well as Ni nanoparticles and Ni nanowires. The 

prediction of our model was found to be consistent with the 

experimental results. 
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2. MODELLING 

 

Replacing the glass transition temperature Tg and bulk 

material transition temperature Tg0 with the Curie temperature 

Tc and bulk material Curie temperature Tc0 [6-7], the glass 

transition temperature Tg model can be modified as: 

 

𝑇𝑐

𝑇𝑐0
= 𝑒𝑥𝑝 (−

2𝛥𝐶𝑝

3𝑅

1

(
𝐷

𝐷0−1)

)                                                     (3) 

 

where, ΔCp is the specific heat difference of the ferromagnetic 

body at the Curie temperature Tc0; R is the ideal gas constant; 

D0 is the critical size of the material that induces the Curie 

transition.  

The critical size D0 is usually defined as the diameter of all 

atoms on the surface of a low-dimensional material. If the 

dimension k of a spherical particle is zero, then the critical size 

D0 equals six times the atomic diameter h; if k=1 (i.e. the 

material is a nanowire), then the critical size equals four times 

the atomic diameter; if k=2 (i.e. the material is a membrane), 

then the critical size equals twice the atomic diameter. 

The material size D directly bears on the magnetic transition 

of low-dimensional magnetic materials. The magnetic 

transition takes place when the temperature reaches a critical 

value Tc, turning the ferromagnetic body into paramagnetic 

body. In other words, the magnetic domains change from 

ordered alignment to disordered alignment. The magnetic 

transition is reversible. If the temperature decreases, the 

paramagnetic body will change back into ferromagnetic body, 

and the magnetic domains will become more orderly. Here, 

2D0 is defined as the minimum material size for magnetic 

domains to remain orderly.  

With low magnetic permeability and high coercive force, 

single-domain particles have a great influence on material 

properties and critical size estimation. These particles can only 

be magnetized rotationally, due to the absence of domain walls, 

and cannot be easily magnetized or demagnetized without 

external field or external force.  

The critical size is the division point between the single-

domain and other domain structures. Thus, the energy of the 

critical size of the single-domain structure is comparable to 

that of the simplest adjacent multi-domain structure. The two 

structures will have equal energy if both are at the critical size. 

Thus, the critical size of a single domain can be identified 

using the comparability [8]. 

The domains in ultrafine particles are spherical. For such a 

spherical domain, the total energy can be calculated as 

ET=Ew+EH+Ed, where E is the domain wall energy, EH is the 

magnetostatic energy, and EH is the demagnetizing energy Ed 

[9]. Without external magnetic field, there is naturally no 

magnetostatic energy. The demagnetizing energy can be 

neglected because the domain surface only has a weak 

magnetic pole. Hence, the total energy of a spherical domain 

without external magnetic field is equivalent to the domain 

wall energy [9]: 

 

ET = E = Sσ/2                                                                      (4) 

 

where, S=πD2 and σ are the area and the energy density of the 

domain wall, respectively; D is the diameter of the domain. 

The energy density varies from domain wall to domain wall.  

For the 90° domain wall in cubic crystals, 𝜎  equals 

𝜋√𝐴1𝐾1/2; for the 180° domain wall in uniaxial crystals, 𝜎 

equals 4√𝐴1𝐾1  [10]. Here, A1 is the exchange integral 

constant and K1 is the magnetic anisotropy constant.  

For single-domain crystals, the magnetocrystalline 

anisotropy energy is minimized when the magnetic moments 

are arranged in parallel along the easy magnetization axis. In 

the absence of external magnetic field and internal stress, 

neither the magnetostatic energy nor magnetoelastic energy of 

the external field needs to be considered. Coupled with the 

lack of energy exchange, it is only necessary to consider the 

demagnetizing energy. Hence, the total energy of a single-

domain crystal can be expressed as [10]: 

 

ET = Ed = μ0VNMs
2/2                                                            (5) 

 

where, μ0 is the magnetic constant or a vacuum permeability; 

Ms is the saturation magnetization intensity; V=πD3/6 is the 

volume of the domain; N is the demagnetization factor. Here, 

N=Naαa
2+Nbαb

2Ncαc
2, with αi (i=a, b, c, the three major axes of 

the crystal) being the direction cosine of the saturation 

magnetization intensity Ms, and Na, Nb and Nc being the 

demagnetization factors along the three axes (Na+Nb+Nc =1), 

respectively. For spherical particles, the major axes are equal 

in length (a=b c) such that Na=Nb=Nc. Thus, the 

demagnetization factor N of a spherical particle equals 1/3 [10]. 

According to formulas (2) and (3), the critical size D0 can be 

derived as: 

 

𝐷0 =
9𝜎

𝜇0𝑀𝑆
2                                                                             (6) 

 

The size dependence of the Curie temperature for magnetic 

nanoparticles can be obtained from formulas (3) and (6). It can 

be seen from the formulas that the Curie temperature increases 

exponentially with the reduction in particle size. 

For wires and membranes, the ferromagnetic coupling is 

sufficiently strong to make the magnetic momentum parallel 

to the membrane direction [1], when the wire/membrane 

thickness n (the number of atomic layers) is greater than 20~30. 

Therefore, the size dependence of the Curie temperature Tc for 

the wire/membrane can be predicted directly by formulas (3) 

and (6).  

If n is smaller than 20~30, most ferromagnetic membranes 

will change from 2-dimension to quasi-1-dimension [11]. In 

this case, the membranes exist as an island-like deposition on 

the substrate, and the critical size D0 should be recalculated. 

For these membranes, the domain size is no longer the 

membrane thickness, but the diameter of island-like 

membrane.   

By first-order approximation, the shape of island-like 

membrane can be viewed as a flat sphere or a spherical crown. 

Then, we have S=πD't, V=π(D')2t/4, with D' and t being the 

diameter and thickness of the flat spherical domain, 

respectively. As discussed above, D'0 equals 2σ/(μ0NMs
2) if 

Eω=Ed. The island-like membrane can be considered as a 

quasi-1D system, because it is an intermediate form between 

particle (0D) and thin membrane (2D) [94]. Then, the 

demagnetization factor N of the island-like membrane equals 

the arithmetic mean (2/3) of the demagnetization factor 

(N=1/3) of the particle and the demagnetization factor (N=1) 

of the membrane. 

The relationship between D' and D can be determined 

according to the Gibbs free energy difference ΔG between the 

island-like membrane and the normal membrane [94].  
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Here, a square membrane (side length: L; thickness: D; 

volume: V=L2D) is cited as an example for the calculation of 

ΔG. Under a certain temperature T, the membrane will 

transform into a flat spherical particle of the same volume. In 

this case, the Gibbs free energy difference ΔG can be 

calculated as VΔP0+(γ2S2 -γ1S1), where, ΔP0=P1 − P0 is the 

pressure difference between the island-like membrane and the 

normal membrane; S2 = π(D')2/4+π(D')2/4+πD't is the sum of 

the surface area of the island-like membrane and the area of 

the interface between the membrane surface and the substrate; 

S1 = L2+L2+4LD is the sum of the surface area and the interface 

area before the formation of the island-like membrane; γ1 and 

γ2 are the surface energies (interface energies) before and after 

the transition, respectively. Note that P1 refers to the pressure 

difference between the inside and outside of the membrane 

resulted from the surface curvature of the island-like 

membrane. According to the Gibbs–Thomson equation, P1 

equals 2f/D', with f being the surface stress of the crystal [12]. 

For the normal membrane, P0 equals zero as the surface is flat 

with no curvature. In addition, the first and second terms in S2 

represent the surface area of the upper portion and the interface 

area between the lower portion and the substrate, respectively. 

Thus, it can be derived that ΔG=V(2f/D'+γ/t+γ'/t+4γ/D'-γ/D-

γ'/D-4γ/L), where γ is the surface energy of the crystal; γ' is the 

solid interface energy between the membrane and the substrate. 

Considering the material difference across the interface 

between the membrane and the substrate, the value of γ' can be 

computed by calculating the solid interface energy between 

the same materials and taking the arithmetic mean as the solid 

interface energy between two different materials. The values 

of f and γss can be calculated as [13]: 

 

𝑓 = ±
7

2(
𝑇𝑚
𝑇+6)

√3ℎ2𝑆𝑣𝑖𝑏𝐻𝑚/(𝜅𝑅𝑉𝑚)                                      (7) 

 

𝛾𝑠𝑠 =
196ℎ𝑇2𝐻𝑚𝑆𝑣𝑖𝑏

3𝑅(𝑇𝑚+6𝑇)
2𝑉𝑚

                                                               (8) 

 

where Tm is the melting point of the material; h is the atomic 

diameter; Hm is the melting enthalpy; Svib is the vibrational 

entropy in the melting entropy Sm (SvibSm for metals [63]); R 

is the ideal gas constant; Vm is the molar volume; =1/B is the 

compression factor, with B being the bulk modulus. 

Once the membrane thickness is reduced to a certain extent, 

the uniform membrane will spontaneously transform into the 

island-like membrane if the Gibbs free energy difference ΔG0 

between the two membranes is below zero. Mathematically, 

the spontaneous transition will take place if ΔG  0. Since 

V=L2D=π(D')2t/4 and L=D' at the critical point, it is possible to 

deduce that D = πt/4. Then, the transition condition can be 

written as D'/D8f/[(4-π)(γ+γ')]. Assuming that D'/D=C, we 

have: 

 

C=8f/[(4-π)/(γ+γ')]                                                                (9) 

 

Substituting D'/D=C into D'0=σ/(μ0NMs
2), we have: 

 

𝐷0 =
3𝜎

𝜇0𝐶𝑀𝑠
2                                                                        (10) 

 

 

3. RESULTS AND DISCUSSION 

 

The Tc curve of Ni particles and wires is illustrated in Figure 

1, where the solid line depicts the Tc curve of Ni particles and 

wires obtained by formulas (3) and (6), the solid dot stands for 

the experimental results of Ni particles [4], and the hollow dots 

and plus sign represent the experimental results of Ni wires 

[14, 15]. 

Considering the 90° domain walls of Ni particles and wires, 

the value of 𝜎 must be 𝜋√𝐴1𝐾1/2. For large nanowires, the 

size dependence of the Curie temperature can also be 

theoretically obtained from formula (3), after redefining D as 

the diameter of the nanowire [14]. As shown in Figure 1, both 

the theoretical and experimental results agree that Tc decreases 

with the particle size D. 

 

 
 

Figure 1. The Tc curve of Ni particles and wires 

 

 
 

Figure 2. The Tc curves of Fe, Co and Ni membranes 
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The Tc curves of Fe, Co and Ni membranes deposited on 

different substrates with coherent interfaces are shown in 

Figure 2, where the solid lines stand for the results predicted 

by formulas (3) and (10); the dash lines reflect the results 

predicted by formulas (1) and (2); the solid boxes represent the 

experimental results for Fe [23]; the solid dots, hollow dots 

and plus sign jointly describe the experimental results for Co 

[24]; the solid up arrows, hollow boxes, solid left arrows, solid 

down arrows and solid boxes joints represent the experimental 

results for Ni [25-27].  

Considering the 180° domain walls of the membranes, the 

value of  𝜎  must be 4√𝐴1𝐾1 . As shown in Figure 2, the 

theoretical predictions on the Tc of Fe, Co and Ni membranes 

agree well with the experimental results, indicating that the 

material size changed from 2-dimension to quasi-1-dimension 

with the reduction in membrane thickness. Since the magnetic 

order relies on material size, it is concluded that the 

dimensional transition has a certain impact on the ordering of 

magnetic domains. In addition, the Tc of membranes declined 

much faster than that of large particles and wires. This is 

because the island-like membrane has a much smaller D0 than 

particles.  

Compared with the model based on spin interaction 

(formulas (1) and (2)), formula (3) can predict the theoretical 

value of Tc excellently using the unified Tc equation only. 

Moreover, that formula (3) has no free parameter, while both 

n0 and  are fitting parameters in formulas (1) and (2). 

Our model also discloses the relationship between 

membrane shape and membrane thickness from the angle of 

thermodynamics. The low surface-to-volume ratio was found 

to be the primary cause for the membrane to change from a 

uniform 2-dimension material to an island-like membrane. 

The model can also reveal the size dependence of ferroelectric 

transitions, after redefining 2D0 as the transition limit [28]. 

 

Table 1. Parameters and data in Figures 1 and 2 

 
 Fe Co Ni 

Tc0 (K) [18] 1042 1395 631 

A1 (10-11J/m) [18] 1.21 1.5 0.67 

K1 (J/m3) [18] 4.8×104 4.3×104 -4.5×103 

Ms (A/m) [16] 1.712×106 1.422×106 4.85×105 

ΔCp (Jg-atom-1 K-1) [19] 15.24 10.9 5.06 

h (nm) [20] 0.344 0.334 0.324 

Vm (cm3mol-1) [20] 7.1 6.7 6.59 

Hm (KJ mol-1) [20] 13.80 16.19 17.47 

Tm (K) [20] 1809 1768 1726 

Sm (J mol-1 K-1) 7.63 9.16 10.12 

ĸ (10-12Pa-1) [21] 5.889 5.510 5.640 

f (J/m2) 3.69 4.56 3.984 

γ (J/m2) [22] 2.43 2.78 2.01 

γss (J/m2) 0.275 0.407 0.491 

γ' (J/m2) 0.249 0.364 0.406 

C 12.80 13.52 15.39 

 

The relevant parameters in Figures 1 and 2 are listed in 

Table 1, where the magnetic constant μ0=4π×10-7 H/m [16]; 

For metals, Svib  Sm=Hm/Tm [17]; =1/B, with B being the bulk 

modulus [12]; The f and γss were computed by formulas (7) 

and (8) with T = 298K; the value of γ' was calculated with the 

γss values of the substrate being 0.222J/m2 and 0.320J/m2 for 

Ag and Cu, respectively [12]. 

 

 

4. CONCLUSIONS 

 

Considering the critical size and material shape, this paper 

puts forward a size-dependence model of the Curie 

temperature Tc of uniform low-dimensional ferromagnetic 

materials, based on energy theory and thermodynamics. The 

proposed model, with no adjustable free parameter, was used 

to predict the effect of material size on the Curie temperature, 

revealing that the Tc value decreases with the material size. 

This result agrees well with the experimental results and the 

prediction by other theoretical models. 

 

 

ACKNOWLEDGEMENT  

 

This paper is made possible thanks to the support from the 

National Natural Science Foundation of China (Grant No.: 

51878316). 

 

 

REFERENCES 

 

[1] Shen J, Kirschner J. (2002). Tailoring magnetism in 

artificially structured materials: The new frontier. 

Surface Science 500(1-3): 300-322. 

https://doi.org/10.1016/S0039-6028(01)01557-6 

[2] Zhang R, Willis RF. (2001). Thickness-dependent Curie 

temperature of ultrathin magnetic films: effect of the 

range of spin-spin interactions. Physical Review Letters 

86(12): 2665-2668. 

https://doi.org/10.1103/PhysRevLett.86.2665 

[3] Zhong WH, Sun CQ, Tay BK, Bai HL, Jiang EY. (2002). 

Curie temperature suppression of ferromagnetic 

nanosolids. Journal of  Physics: Condensed Matter 

14(23): L399-L405. https://doi.org/10.1088/0953-

8984/14/23/101 

[4] Du YW, Xu MX, Wu J, Shi YB, Lu HX, Xue RH. (1991). 

Magnetic properties of ultrafine nickel particles. Journal 

of Applied Physics 70: 5903-5905. 

https://doi.org/10.1063/1.350101 

[5] Huang H, Sun CQ, Hing P. (2000). Surface bond 

contraction and its effect on the nanometeric sized lead 

zirconate titanate. Journal of Physics: Condensed Matter 

12(6): L127-L132. https://doi.org/10.1088/0953-

8984/12/6/111 

[6] Jiang Q, Shi HX, Li JC. (1999). Finite size effect on glass 

transition temperature. Thin Solid Films 354(1-2): 283-

286. https://doi.org/10.1016/S0040-6090(99)00537-4  

[7] Zhang Z, Zhao M, Jiang Q. (2001). Glass transition 

thermodynamics of organic nanoparticles. Physica B 

293(3-4): 232-236. https://doi.org/10.1016/s0921-

4526(00)00564-0 

[8] Kittel C. (1949). Physical theory of ferromagnetic 

domains. Review of Modern Physics 21(4): 541-583. 

https://doi.org/541.10.1103/RevModPhys.21.541  

[9] Needs RJ, Godfrey MJ. (1990). Surface stress of 

aluminum and jellium. Physical Review B 42(17): 

10933-10939. 
https://doi.org/10.1103/PhysRevB.42.10933 

[10] Jiang Q, Liang LH, Zhao DS. (2001). Lattice contraction 

and surface stress of fcc nanocrystals. The Journal of 

Physical Chemistry B 105(27): 6275-6277. 
https://doi.org/10.1021/jp010995n 

98

https://doi.org/10.1016/S0040-6090(99)00537-4
https://doi.org/10.1016/S0040-6090(99)00537-4


[11] Suzuki T, Harada K, Honda N, Ouchi K. (1999).

Preparation of ordered Fe-Pt thin films for perpendicular

magnetic recording media. Journal of Magnetism and

Magnetic Materials 193(1-3): 85-88.

https://doi.org/10.1016/S0304-8853(98)00407-7

[12] Jiang Q, Liang LH, Zhao DS. (2001). Lattice contraction

and surface stress of fcc nanocrystals. The Journal of

Physical Chemistry B 105(27): 6275-6277.

https://doi.org/ 10.1021/jp010995n

[13] Jiang Q, Zhao D S, Zhao M. (2001). Size-dependent

interface energy and related interface stress. Acta

materialia 49(16): 3143-3147.

https://doi.org/10.1016/S1359-6454(01)00232-4

[14] Sun L, Searson PC, Chien CL. (2000). Finite-size effects

in nickel nanowire arrays. Physical Review B 61(10):

R6463-R6466.

https://doi.org/10.1103/PhysRevB.61.R6463

[15] Valiev RZ, Vishnyakov YD, Mulyukov RR, Fainshtein

GS. (1990). On the decrease of Curie temperature in

Submicron-Grained nickel. Physica Status Solid 117(2):

549-553. https://doi.org/10.1002/pssa.2211170226

[16] Mansfield M, Needs RJ. (1991). Surface energy and

stress of lead (111) and (110) surfaces. Physical Review

B 43(11): 8829-8833.

https://doi.org/10.1103/PhysRevB.43.8829

[17] Jiang Q, Wang YW, Li JC. (1999). Thermodynamics of

formation of carbon nanotubes catalyzed by nickel. Appl.

Surface Science 152(3-4): 156-160.

https://doi.org/10.1016/S0169-4332(99)00327-X

[18] Buff FP. (1951). The spherical interface. I.

Thermodynamics. The Journal of Chemical Physics

19(12): 1591-1594. https://doi.org/10.1063/1.1748127

[19] Langmuir I. (1916). The constitution and fundamental

properties of solids and liquids. Journal of the American

Chemical Society 38(11): 2221-2295.

https://doi.org/10.1016/s0016-0032(17)90938-x

[20] Streitz FH, Cammarata RC, Sieradzki K. (1994).

Surface-stress effects on elastic properties. II. Metallic

multilayers. Physical Review B 49(15): 10707-10716. 

http://link.aps.org/doi/10.1103/PhysRevB.49.10707 

[21] Hoyt JJ, Asta M, Karma A. (2003). Atomistic and

continuum modeling of dendritic solidification.

Materials Science and Engineering: R: Reports 41(6):

121-163. https://doi.org/10.1016/j.cossms.2015.09.001

[22] Vitos L, Ruban AV, Skriver HL, Kollar J. (1998). The

surface energy of metals. Surface Science 411(1-2): 186-

202. https://doi.org/10.1016/S0039-6028(98)00363-X

[23] Qiu ZQ, Person J, Bader SD. (1993). Asymmetry of the

spin reorientation transition in ultrathin Fe films and

wedges grown on Ag (100). Physical Review Letters

70(7): 1006-1009.

https://doi.org/10.1103/PhysRevLett.70.1006

[24] Huang F, Kief MT, Mankey GJ, Willis RF. (1994).

Magnetism in the few-monolayers limit: A surface

magneto-optic Kerr-effect study of the magnetic

behavior of ultrathin films of Co, Ni, and Co-Ni alloys

on Cu (110) and Cu (111). Physical Review B 49(6):

3962-3971. https://doi.org/10.1103/PhysRevB.49.3962

[25] Schneider CM, Bressler P, Schuster P, Kirschner J.

(1990). Curie temperature of ultrathin films of fcc-cobalt

epitaxially grown on atomically flat Cu (100) surfaces.

Physical Review Letters 64(9): 1059-1062.

https://doi.org/10.1103/PhysRevLett.64.1059

[26] Huang F, Mankey GJ, Kief MT, Willis RF. (1993).

Finite-size scaling behavior of ferromagnetic thin films.

Journal of Applied Physics 73(10): 6760-6762.

https://doi.org/ 10.1063/1.352477

[27] Tischer M, Arvanitis D, Yokoyanma T, Lederer T,

Troger L, Baberschke K. (1994). Temperature dependent

MCXD measurements of thin Ni films on Cu (100).

Surface Science 307-309: 1096-1101.

https://doi.org/10.1016/0039-6028(94)91546-6

[28] Roelofs A, Schneller T, Szot K, Waser R. (2003).

Towards the limit of ferroelectric nanosized grains.

Nanotechnology 14(2): 250-253.

https://doi.org/10.1088/0957-4484/14/2/328

99

https://doi.org/10.1016/S0304-8853(98)00407-7
https://doi.org/10.1016/S0304-8853(98)00407-7
http://dx.doi.org/10.1016/S1359-6454(01)00232-4
http://dx.doi.org/10.1016/S1359-6454(01)00232-4
https://doi.org/10.1016/S0039-6028(98)00363-X
https://doi.org/10.1016/S0039-6028(98)00363-X
https://doi.org/10.1016/S0039-6028(98)00363-X
http://dx.doi.org/10.1063/1.352477
http://dx.doi.org/10.1063/1.352477
https://doi.org/10.1016/0039-6028(94)91546-6
https://doi.org/10.1016/0039-6028(94)91546-6



