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 A novel Extreme learning Machine (ELM) algorithm based tuning of the parameters of the 

SVC FACTS controller was implemented in order to control voltage at various buses over a 

wide range. The ELM algorithm is a non-iterative method which forecasts the parameters of 

SVC FACTS controller quickly and effectively while Back Propagation Neural Network 

(BPNN) algorithm is an iterative method which takes a long time for training as well 

prediction of parameters. The load perturbation is one of the nonlinear disturbances which 

is considered to investigate the operational capability of the control methodology. Standard 

IEEE 5 and 30 bus systems are considered as test systems and operation of two models of 

SVC observed with the BPNN and ELM controllers.  The weakest bus is identified using L-

Index method which is the optimal location of the SVC FACTS. Results show that the novel 

ELM method expeditiously and efficiently tunes the parameters of the SVC FACTS 

controller online such that the voltage regulated to desired value when there is a perturbation 

in load. 
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1. INTRODUCTION 

 

The voltage stability improvement of the interconnected 

power system drawn significant importance over a few 

decades [1]. The key concern of the modern power systems is 

to transmit and supply the generated power effectively at high 

power quality. In practical operation of power systems many 

unwanted disturbances such as load variations, faults, 

unmodeled dynamics and, parametric uncertainties cause 

power quality issues. In general mismatch between reactive 

power generation and reactive power requirement leads to 

variation in voltage. 

In modern interconnected system, heavy loading leads to 

voltage dip which will affect the security and reliability of the 

system. The Load on the power system is continuously varies 

with respect to time so the reactive power, requirement also 

varying which leads to variation in voltage which is 

undesirable. The reactive power requirement may be supplied 

with local support thereby voltage can be maintained within 

the limits. Static VAR compensator is a power electronic 

based controller which can absorb or generate reactive power 

[2]. It can be used for voltage support, power oscillation 

damping, and stability improvement. 
Rahman et al. [3] proposed PID controller based SVC to 

enhance the voltage stability. The PID controller parameters 

are tuned using the Nichols- Ziegler method. A single machine 

connected to the infinite bus is considered as a test system and 

the operational capability of the proposed controller is 

observed with L-G and L-L fault. 

A Static VAR Compensator was developed by 

Priyadhershni et al. [4] to enhance the voltage profile of the 

standard IEEE 5 and 14 bus systems. In this paper SVC 

FACTS controller, the operational capability is observed with 

a perturbation in load. It was clearly observed that the 

proposed controller can effectively compensate the voltage 

variations caused by the various disturbances. The modern 

Static VAR System (SVS) designed by Pouyan et al. [5] SVSs 

was the combination of the capacitors with automatic 

switching and Static VAR Compensator. PG&E Bay area in 

San Francisco is considered as a test system. Two different 

areas are equipped with SVS controllers to enhance the 

dynamic and transient stability.  

Chang [6] optimally placed the SVC FACTS controller such 

that the loading margin was improved to required level and 

minimize the cost of expansion. Here a multi objective 

function is minimised to identify the optimal placement and 

cost of the controller. Model analysis is used to identify which 

bus require SVC installation. The implemented technique is 

validated on the IEEE 24 bus power system. 

Rahman et al. [7] developed a new SVC strategy which will 

operate in coordination with ULTC. SVC is a fast acting 

device where as ULTC is a slow acting control. Whenever 

there is a deviation in voltage SVC acts first and its maximum 

power limit violated it does not have control over active power 

and will act as a normal capacitor bank. Coordination 

operation was developed between SVC controller and ULTC.  

Hari Krishna et al. [8] designed the ANN based SVC 

FACTS controller which not only improves the voltage profile 

but also damp the rotor low frequency oscillations. The data 

obtained conventional controllers neural network will be 

trained. Simulation results shows that ANN based SVC 

damping controller provides better damping compared to the 

PID based SVC damping controller. 

Abood [9] modelled SVC controller to improve the voltage 
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stability. Neuro-PID controller is designed to enhance the 

response. The output of the developed controller is compared 

with the conventional PID based SVC controller output. The 

Neuro-PID SVC controller enhances the voltage at buses 

better than PID based SVC controller. 

In this paper SVC FACTS controller is included in Newton 

Raphson load flow method, optimal siting of FACTS 

controller is determined using the L-index method for IEEE 5 

and 30 bus systems.  Later BPNN and ELM algorithms are 

used to train the ANN for the prediction of parameters of SVC 

FACTS controller. The main drawbacks of the BPNN are 

network paralysis, local minima and slow convergence 

because it is using gradient descent method. The proposed 

method predicts the parameters quickly and effectively and 

eliminates the disadvantages in the BPNN. 

 

 

2. SVC FACTS CONTROLLER 

 

SVC [10] is the combination of Thyristor Controlled 

Reactor (TCR) and Thyristor Switched Capacitor (TSC) 

which is utilized for the dynamic compensation of 

transmission lines. It will likewise enhance the working 

adaptability and minimizes the losses in the power system. A 

basic SVC structure is as shown in Figure 1 which consists of 

three TSCs and one TCR. The quantity of TSCs required is 

principally relies upon working voltage, required most 

extreme power yield and current rating of the thyristor valves 

Inductive rating might be stretched out by including the 

number of TCRs dependent on the necessity. If the voltage is 

below the reference value TSC will act and create the required 

reactive power with the end goal that voltage takes back to 

reference level and if the voltage is more than reference value 

TCR will act. 

 

 
 

Figure 1. SVC FACTS controller 

 

 
 

Figure 2. V-I characteristics of SVC FACTS controller 

The Volt-Amp characteristics of the SVC FACTS controller 

are as shown in Figure 2. The SVC can also be used to enhance 

the voltage profile at the midpoint and at the end of the lines, 

Improvement of dynamic and transient stability and Power 

oscillation damping. 

 

2.1 Modelling of static VAR compensator 

 

SVC can be mathematically modelled using susceptance 

and firing angle model as given in 2.1.1 and 2.1.2. 

 

2.1.1 Susceptance method 

The equivalent circuit is used to obtain the SVC FACTS 

controller power equations and the equations required by NR 

method [11]. In this method susceptance is varied until the 

voltage return back to a reference level.  

The current drawn by the SVC is given at bus k is given as
   

 

. * *SVC kSVC
I j B V=

                           (1)  

                                                                                                                                    
 

The reactive power injected at bus k.
      

 

 
. 2 .*SVC k k SVCQ Q V B= = −

                      (2) 

                                                                 
 

The linearized equation is given by the following Eq. 3 
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2.1.2 Firing angle method 

In firing angle method 𝐵𝑆𝑉𝐶  is given by Eq. 4 
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In firing angle method reactive power generated at bus k is 

given as Eq. 5  
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From Eq. 5, the linearised SVC equation can be written as 

Eq. 6 
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3. METHODOLOGY TO IDENTIFY WEAK BUS 

 

Kessel [12] developed L-index which is a simple method 

and has been used as the indicator of the voltage stability of 

the transmission line. It will give online monitoring of voltage 

sensitivity at all load buses with sufficient accuracy.  It can be 

used for both static and dynamic situations of the power 
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system. It can also use to determine the weak points on the 

system, stability margin and different parameters of the 

voltage stability. Various algorithms developed to determine 

voltage sensitivity using static approach is laborious and does 

not provide voltage sensitivity in a dynamic way. L-Index 

changes somewhere in the range of 0 and 1 [13]. If it 

approaches to 0 at a particular bus, the bus is secure bus or if 

it approaches to 1, the particular bus is said to be the weak bus 

and is the optimal siting of the SVC FACTS controller. Let us 

consider a general system having number of buses out of 

which there is αG number of generator buses and αL number of 

load buses. The L-index value at the Jth bus can be calculated 

as given in Eq. 7.  
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== = −
                                (7) 

 

VJ= Complex voltage at Load J. 

CIJ=Elements of matrix C which can be determined using 

the Eq. 8. 
       

   
1

lgllC Y Y
−
 = −                                 (8) 

 

Sub matrices of YBUS matrix are [Yll ] and [Ylg] and it can 

be found using Eq. 9. 
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4. WEIGHT OPTIMIZATION OF ANN 

 

ANNs are developed to impersonate the characteristics of 

the human brain. ANN is a blend of different Artificial 

Neurons. A single neuron is a processing unit and like a 

summing unit. At each neuron the weighted sum is calculated 

and the output is determined by processing through activation 

function. The ANN has been extensively used for massive 

parallelism, fault tolerance distributed representation, 

generalization ability, adaptively, learning ability, inherent 

contextual information processing and Low energy 

consumption. Artificial Neural Networks also used for 

forecasting of some parameters or controlling of some other 

parameters. Most of the applications use MNNs rather than 

single layer Neural networks which will be trained using 

BPNN. 

 

4.1 Back propagation algorithm 

 

The architecture of MNN is as given in Figure 3 [14, 15]. It 

has an input, hidden and output layers with n,p and m number 

of neurons.  

The input vector X is applied to neurons in the input layer 

and the activation values at the hidden layer can be calculated. 

The activation value of the jth neuron is given by Eq. 10. 
 

  1

( * )
n

inj i ij

i

Z Voj X V−

=

= +                      (10)

  
 

The output of the jth hidden neuron can be calculated using 

sigmoidal activation function as given in Eq. 11. 

   Zj=f(Z-inj) =
1

1 injZ
e −+

                             (11) 

 
The hidden layer neurons output will be the inputs for each 

neuron in the output layer. The activation function at the kth 

neuron can be calculated using Eq. 12. 
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The response of the neuron in the kth output layer can be 

determined using sigmoidal activation function as given in Eq. 

13. 

  Yk=f(Y-ink) = 
1

1 inkY
e −+

                          (13)  

            

 
 

Figure 3. Multi layer Neural Network (MNN) 

 

The actual output of each neuron is compared with the 

expected output and squared error is determined. The weights 

are adjusted to decrease the squared error. Once outputs of the 

neurons in the output layer calculated, the error is calculated 

and the weights are adjusted to minimize the error. The 

updation of the weights are given as follows. 

The weights between the output and hidden layer, bias 

neuron can be updated as follows. 

 

Wjk
.(new)=Wjk

.(old)+ ΔWjk
., 

 Wok
.(new)=Wok

.(old)+ ΔWok                                (14) 
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The weights between the hidden and input layer, bias 

neuron will be updated as follows. 

 

Vij (new)=Vij
.(old)+ΔVij 

Voj
.(new) =Voj (old) + ΔVoj 

 

where, 

 

ΔVij= * δj*Xi 

ΔVok=alpha*δi                                                (16) 
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4.1.1 Methodology 

BPNN is a procedural method for training MNNs. It is a 

multilayer feed forward network using extended gradient-

descent based method for training which is popularly known 

as back propagation rule. It is a computationally efficient 

method for optimizing the weights in a feed-forward network. 

In this derivation of the squared error with respect to the 

weights is calculated and the weights are changed to minimize 

the squared error. So, the continuous activation functions are 

used which are differentiable.  Sigmoidal activation function 

is mainly used which is the continuous approximation of the 

step function.  The network is trained by supervised learning 

method. The aim of this algorithm is to train the multi layer 

neural network to achieve a balance between the output and 

expected output and ability to respond correctly to the input 

patterns that is used for training and the ability to provide 

better responses to the input that are similar. The BPNN 

Algorithm is as given below. 

Step 1: Initialize all weights to random values 

Step 2: Apply the deviation in voltage as input to the BPNN. 

Step 3: Calculate the outputs of the hidden and output layers 

in forward pass. 

Step 4: Determine the squared error which is to be 

minimised for better training. 

Step 5: Update the weights between output and hidden, 

hidden and input layers in the backward process. 

Step 6: Repeat the pocedure till the squared error is blow 

0.001. 

Several drawbacks in the Back propagation algorithm are  

i.  It converges slowly If learning rate is chosen 

small and becomes unstable if it is cho sen high. 

ii. It is agonized with local minima problem. 

iii. ANNs some times over trained so that learning 

algorithm gives worse generalization 

performance. 

iv. Gradient based algorithms ingest more time for 

most of the applications.  

 

4.2 Extreme learning machine algorithm 

 

The bottlenecks in the BPNN Algorithm, ELM is proposed 

[16]. ELM network is a single hidden layer feed forward NN 

as shown in Figure. In this network, input weights and biases 

are initialized randomly and the output weights are calculated 

analytically.  

Mathematically, let (xi, yi)i=1
N  are the patterns formulated to 

train ELM network. Where xi is input variable contains p 

number of attributes and yi is output variable contains q 

number of attributes. The mathematical model of ELM with h 

number of neurons and with activation function G(.) is 

expressed as: 

 

1
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h
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= + =          (17) 

 

where, c matrix is output weight matrix, a is input weight 

matrix and b is the bias matrix. 

The ELM network is depicted as shown in Figure 4. 

The Eq. (17) can be written in matrix notation as:  

                                                                                                                                                                                                                                                                                                                         

G C= Y                                   (18) 

 

where, G is matrix of outputs of hidden layer and Y is output  
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This can be compared similar to the cost function 

minimization in gradient based back propagation algorithm. 
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                   (20) 

 

For randomly assigned input weights and biases the output 

weight matrix elements are calculated as: 

 

C G Y+=                               (21) 

                                                                           

where, G+ is the Moore – Penrose inverse of G matrix, which 

is evaluated from Singular value decomposition.  

 

 
 

Figure 4. Layout of single hidden layer ELM network 

 

4.2.1 Methodology 

In this work, the voltage variation fed as input to the ELM 

network and the corresponding firing angle and susceptance is 

forecasted for SVC FACTS controller to bring back the 

voltage to the actual reference value. The implementation of 

ELM is given in following steps 

Step 1: The voltage variation at the busses is given as input 

for ELM network 

Step 2: Input weights and biases are generated randomly 

and the output weights are calculated analytically. 

Step 3: With the obtained output weights, the output firing 

angle or susceptance will be predicted. 

Step 4: Using the updated firing angle or susceptance the 

voltage profile of the system is improved. 

The ELM is having diverse assets when compared to the 

classical learning techniques in terms of high speed learning, 

greater generalization performance, uses non differential 

activation function, not suffered with over fitting, local 

minima and imprecision in learning. 
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5. RESULT 

 

For 5-bus and 30-bus L-index values are calculated. In 5-

bus system, it was observed that 5th bus is having highest L- 

index value i.e. 0.0774 which is the critical bus. In the 30-bus 

system, there is high L-index value, i.e. 0.142 at 30th bus, so 

it is the optimal location of the SVC FACTS controller. L-

index values for 5-bus and 30-bus are as given in Table 1 and 

Table 2 respectively. 

 

Table 1. L-Index values at load buses of 5-bus system 

 
Bus No. L-Index 

5 0.0774 

3 0.064 

4 0.0397 

 

The 30-bus power system with ANN based SVC FACTS 

controller is as shown in Figure 5. Whenever there is a change 

in load demand there will be voltage drop which is sensed by 

the ANN controller and generate necessary signals to an SVC 

FACTS controller such that voltage brings back to tolerance 

level.   

 

Table 2. L-Index values at load buses of 30-bus system 

 

Bus No. L-index Bus No. L-index 

30 0.142 23 0.0611 

3 0.1252 21 0.0577 

4 0.1038 26 0.0577 

29 0.0925 10 0.0568 

6 0.091 22 0.0564 

7 0.0889 14 0.0546 

19 0.0718 17 0.0533 

18 0.0677 16 0.0499 

15 0.0671 25 0.0461 

20 0.0664 27 0.0424 

28 0.0638 12 0.0384 

24 0.0614 9 0.0347 
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Figure 5. IEEE 30-bus system with ANN controller 
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Figure 6. Neural network to predict susceptance 
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Figure 7. Neural network to predict firing angle 
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Figure 8. 5-bus BPNN susceptance method 

 

 
 

Figure 9. 5-bus ELM susceptance method 

 

 
 

Figure 10. 5-bus BPNN firing angle method 

 

 
 

Figure 11. 5-bus ELM firing angle method 

 
 

Figure 12. 30-bus ANN susceptance method 

 

 
 

Figure 13. 30-bus ELM susceptance method 
 

 
 

Figure 14. 5-bus BPNN firing angle method 
 

 
 

Figure 15. 30-bus ELM firing angle method 
 

The Neural network designs for this particular problem is as 

given in Figures 6 & 7 for the two models considered. The 
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regression plots which indicates the effectiveness of the 

training for back propagation algorithm is given as in Figures 

8, 9, 10 & 11. 

The BPNN is an iterative method and the ELM is a non-

iterative method. So, the ELM method training is very low 

compared to BPNN. Approximately ELM is more than 1000 

time faster compared to BPNN. The training time of BPNN is 

very high when compared to the ELM. The training times of 

both the methods are as given in Table 3. 

The voltage improvement without and with BPNN, ELM at 

different loads tabulated in Table 4, Table 5, Table 6 and Table 

7. From the tables it was clearly observed that the ELM is 

outperforming the BPNN in terms of accuracy as well timing. 

The elapsed time taken by BPNN and ELM is tabulated and 

clearly indicates after training ELM predict parameters of the 

SVC FACTS controller quickly compared to the BPNN. The 

deviation in voltage should bring back to 1 p.u using the two 

intelligent methods. The effectiveness of the BPNN and ELM 

are as shown in Figure 12, Figure 13, Figure 14 and Figure 15 

(The statement will be below Table 3). 

 

Table 3. Training times of the BPNN and ELM methods 

 

S.No Method 
Training Time(sec) 

BPNN ELM 

1 5-bus susceptance 102.061 0.01355 

2 5-bus firing angle 847.897 00112 

3 30-bus susceptance 1016.194 0.0146 

4 30-bus firing angle 635.8188 0.0112 

 

Table 4. Comparison between ELM and BPNN methods with 5-bus SVC susceptance model 

 

S.No 

%of change 

in load 

Voltage at 

bus-5 

without SVC 

Bsvc Predicted Elapsed Time Voltage at bus-5 with SVC 

BPNN ELM BPNN ELM BPNN ELM 

1 5 0.9694 0.3479 0.3469 0.042848 0.006977 1.0267 1.0001 

2 10 0.9679 0.3636 0.363 0.037191 0.000316 1.0001 1.0000 

3 15 0.9663 0.3805 0.3803 0.039792 0.000245 1 1.0000 

4 20 0.9647 0.3977 0.3976 0.033675 0.000231 1 1.0000 

5 25 0.9631 0.4152 0.415 0.032102 0.000223 1 1.0000 

6 30 0.9615 0.4349 0.4347 0.037630 0.000278 1.0001 1.0000 

7 35 0.9599 0.4504 0.4499 0.034741 0.000411 0.9999 0.9999 

8 40 0.9582 0.4693 0.4685 0.036354 0.00026 1 0.9999 

9 45 0.9566 0.487 0.4861 0.022355 0.000332 1 0.9999 

10 50 0.9549 0.5058 0.5048 0.027799 0.000285 1.0011 0.9999 

 

Table 5. Comparison between ELM and BPNN methods with 5-bus SVC firing angle model 

 

S.No 
%of change 

in load 

Voltage at 

bus-5 

without SVC 

αsvc Predicted Elapsed Time Voltage at bus-5 with SVC 

BPNN ELM BPNN ELM BPNN ELM 

1 5 0.9694 135.9206 135.8965 0.020340 0.000067 0.9994 0.9993 

2 10 0.9679 136.2341 136.4445 0.017560 0.000058 0.9989 0.9996 

3 15 0.9663 136.5612 137.0244 0.020523 0.000048 0.9984 0.9999 

4 20 0.9647 136.8664 137.5968 0.013862 0.000046 0.9978 1.0001 

5 25 0.9631 137.1774 138.1616 0.017973 0.000045 0.9972 1.0003 

6 30 0.9615 137.5050 138.7206 0.018404 0.000045 0.9966 1.0004 

7 35 0.9599 137.8461 139.2719 0.000841 0.000045 0.9960 1.0005 

8 40 0.9582 138.2117 139.8493 0.016394 0.000046 0.9955 1.0005 

9 45 0.9566 138.5455 140.3855 0.01558 0.000047 0.9949 1.0004 

10 50 0.9549 138.8773 140.9452 0.017156 0.000045 0.9942 1.0004 

 

Table 6. Comparison between ELM and BPNN methods with 30-bus SVC susceptance model 

 

S.No 
%of change 

in load 

Voltage at 

bus-30 

without SVC 

Bsvc Predicted Elapsed Time Voltage at bus-30 with SVC 

BPNN ELM BPNN ELM BPNN ELM 

1 5 0.9919 0.0155 0.012 0.012967 0.00322 1.0025 1.0001 

2 10 0.9896 0.0174 0.0153 0.042654 0.000103 1.0014 1.0000 

3 15 0.9872 0.0195 0.0188 0.036138 0.000063 1.0005 1.0000 

4 20 0.9848 0.022 0.0222 0.031268 0.000058 0.9998 0.9999 

5 25 0.9823 0.0248 0.0258 0.034981 0.000058 0.9993 1.0000 

6 30 0.9798 0.0279 0.0293 0.030279 0.000057 0.999 1.0000 

7 35 0.9774 0.0313 0.0328 0.031145 0.000056 0.9989 0.9999 

8 40 0.9748 0.0355 0.0365 0.025433 0.000144 0.9993 1.0000 

9 45 0.9723 0.0399 0.0401 0.0252 0.000102 0.9998 0.9999 

10 50 0.9697 0.0451 0.0438 0.030342 0.00006 1.0009 1.0000 

 

The elapsed time comparison to predict the parameters of 

the SVC FACTS controller for 5-bus susceptance method is as 

shown in Figure 16 and it was observed that ELM is more than 

1000 times faster than BPNN. 
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Whenever there is a disturbance the bus voltage will be 

deviated from reference value i.e 1 p.u. ELM based ANN or 

BPNN based ANN will sense the deviation and predicts the 

parameters of SVC such that it improves the voltage profile at 

the buses. With the parameter prediction by ELM algorithm 

the voltage is brings back to the reference value effectively 

which was shown in Figure 17. 

 

Table 7. Comparison between ELM and BPNN methods with 30-bus SVC firing angle model 

     

S.No 
%of change 

in load 

Voltage at 

bus-30 

without SVC 

αsvc Predicted Elapsed Time 
Voltage at bus-30 with 

SVC 

BPNN ELM BPNN ELM BPNN ELM 

1 5 0.9919 128.2287 128.2072 0.036975 0.005211 0.9999 0.9992 

2 10 0.9896 128.3032 128.2892 0.035867 0.000145 1.0000 0.9995 

3 15 0.9872 128.3736 128.3731 0.033183 0.000083 0.9999 0.9999 

4 20 0.9848 128.4474 128.4553 0.024665 0.000126 0.9999 1.0002 

5 25 0.9823 128.5276 128.5388 0.034467 0.000153 1.0001 1.0004 

6 30 0.9798 128.6051 128.6201 0.025944 0.00012 1.0001 1.0006 

7 35 0.9774 128.6710 128.6962 0.036435 0.000076 0.9998 1.0006 

8 40 0.9748 128.7298 128.7759 0.031359 0.000083 0.9992 1.0007 

9 45 0.9723 128.7734 128.8500 0.036517 0.000081 0.9981 1.0006 

10 50 0.9697 128.8073 128.9245 0.038679 0.000068 0.9966 1.0005 

 
 

Figure 16. Comparison of elapsed time for pridiction of 

parameters of SVC Facts controller 

 

 
 

Figure 17. Comparison of accuracy of the both algorithms 

 

 

6. CONCLUSION 

 

The Load on the power system continuously get varies, 

which leads to change in the bus voltages due to mismatch in 

the reactive power demand and the generation. The required 

parameters of the SVC FACTS controller must be tuned 

accurately and quickly before the load goes to the next state. 

In this paper optimal loactaion of the SVC FACTS controller 

was identified using L-index method.  Two models of SVC, 

susceptance and firing angle models are designed and 

simulated. The parameters of the SVC FACTS controller are 

tuned with the help of BPNN and ELM algorithms. It has been 

observed the training time of BPNN is very high as it is an 

iterative procedure. At the same time is very les for ELM as it 

is a non-iterative procedure. Once trained with ELM algorithm 

the parameters of the SVC FACTS controller forcasted quicly 

and effectively compared with BPNN. As the BPNN suffers 

from network paralysis, local minima and slow convergence, 

these are overcome by proposed ELM algorithm. 
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