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 This article analyzes the magnetohydrodynamic Casson nanofluid flow over an 

exponentially inclined stretching permeable surface considering thermal radiation, 

suction/injection, heat source and chemical reaction in the flow region. Mathematical 

formulation is developed by assuming boundary layer approach. The leading differential 

equations are modelled by considering similarity transformations and solved using 

homotopy analysis method (HAM). Parametric behaviour of various physical constraints on 

velocity, temperature and concentration profiles is discussed through tables and graphs. 

Expressions of friction factor, rate of heat and mass transfer are evaluated graphically and 

also in tabular form for different values of parameters. The obtained results are in fabulous 

agreement with the existing results. Dual solutions are presented by considering suction and 

injection. 
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1. INTRODUCTION 

 

Heat transfer has much utilization in several branches of 

engineering and science, e.g. reactor cooling, nuclear waste 

disposal, energy production, heat conduction in tissues, etc. 

Extensive studies on heat transmission in non-Newtonian 

fluids have been done by many investigators in previous 

centuries. Gupta and Gupta [1] first analysed the 

characteristics of heat transfer on a stretching sheet. Corell [2] 

studied the behavior of viscous fluid flow over a nonlinear 

stretching sheet. Shahzad et al. [3] obtained the exact solution 

of heat transfer flow along axisymmetric nonlinear radial 

stretching surface. Some relevant investigations on this subject 

can be found in the references [4-7]. 

Nanoparticles can be described as particles having size 

between 1-100nm. Nanoparticles are a field of dominant 

logical attention due to its broad variety of uses in utilization 

of energy, toluene, microelectronic, chemical production, 

floor heating, minerals etc. The terminology nanofluid was 

induced by Choi and Eastman [8]. Makinde and Aziz [9] 

discussed the behavior of nanofluid flow over a linear 

stretching sheet. Manusr and Ishak [10] studied the nature of a 

nanofluid flow past a stretching/shrinking sheet by 

considering convective boundary condition. Mabood et al. 

[11] derived the concept on MHD boundary layer flow of 

nanofluids over a nonlinear stretching sheet. Radiation effects 

on viscous nanofluid flow over a nonlinear stretching sheet 

were investigated by Hady et al. [12]. Nadeem et al. [13] and 

Mustafa et al. [14] were proposed a numerical solution of non-

Newtonian nanofluid over a stretching sheet. Flow and heat 

transfer characteristics of nanofluid over a non-linear 

stretching sheet using similarity solutions was carried out by 

Hamad and Ferdows [15]. Chemical reaction and radiation 

effects on MHD mixed convection flow of a Casson nanofluid 

over a non-linear permeable stretching sheet was examined by 

Jayarami Reddy et al. [16]. The influence of heat source and 

radiation on MHD stagnation point flow of Carreau nanofluid 

with suction and injection was analyzed by Jayarami Reddy et 

al. [17]. Suneetha et al. [18] reported the effects of Ohmic 

heating and thermal radiation on MHD mixed convective flow 

with various parameters.  
Non-Newtonian fluids have made a notable attention due to 

its engineering and industrial applications. Examples of these 

fluids are paints, suspensions, emulsions, lubricants, and many 

biological fluids. The common features of all these daily used 

products are that they do not monitor Newton’s law of 

viscosity. Therefore these fluids are labelled as non-

Newtonian fluids. Thus, in order to study characteristics of 

these complex fluids, many fluid models have been suggested. 

These models are primarily categorized as time dependent 

fluids, viscoelastic fluids, time independent fluids. Out of 

these models, Casson fluid is one of time dependent fluid. 

Casson fluid model was proposed by Casson in 1959. Some 

samples of Casson fluid consist of honey, jelly, concentrated 

fruit juices and tomato sauce. Mustafa and Khan [19] 

discussed the magnetic field effect on Casson nanofluid over 

a nonlinearly stretching sheet. Ibrahim and Makinde [20] 

discussed the stagnation point flow of Casson nanofluid 

subject to slip and convective boundary conditions. Ibrahim 

[21] gave a numerical solution for the study of chemical 

reaction and heat source on MHD Casson nanofluid over a 

non-linear stretching sheet. The influence of chemical reaction 

and viscous dissipation on MHD mixed convection flow of 

Casson nanofluid over a nonlinear permeable stretching sheet 

was analyzed by Ibrahim et al. [22]. Mondal et al. [23] 

analyzed the convergence stability of MHD Casson nanofluid 

flow with Soret and Dufour effects. Using HAM Kumar et al. 

[24] studied the 3D radiative MHD Casson nanofluid over an 

exponentially porous stretching sheet under convective 

boundary conditions. 
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In this paper, we study the characteristics of 

magnetohydrodynamic Casson nanofluid flow over an 

exponentially inclined stretching permeable surface using 

HAM. For more details on HAM, one may refer the literature 

done by the authors  Kumar et al. [25], Hayat et al. [26], Liao 

[27] and Nadeem et al. [28].  

 

 

2. MATHEMATICAL FORMULATION 

 
We consider two dimensional flow of incompressible 

viscous electrically conducting magnetohydrodynamic Casson 

nanofluid over an exponentially inclined stretching surface. 

•   is an acute angle of inclination. 

• The stretching velocity L/xeUU 0= , temperature 

distribution L/x
w eTTT 0+=   and concentration 

distribution L/x
w eCCC 0+=  . 

• A variable magnetic field L/xeBB 2
0=  , 0B  is a 

constant is applied along the normal direction to the 

motion of the sheet. 

• We are considering radiation, viscous dissipation and 

heat soure in the flow region. 

• The rheological equation of state for an isotropic and 

incompressible flow of Casson fluid is 
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where, B  is plastic dynamic viscosity of the non-Newtonian 

fluid, yp  is the yield stress of the fluid,   is the product of 

the component of deformation rate with itself, jiji ee= , jie  

is the ( )thj,i  component of the deformation rate and c is a 

critical value of this product, based on the non-Newtonian 

model. 

Under these assumptions the governing boundary layer 

equations are given by 
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Subject to the boundary conditions 
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Here L/xeNN −= 1 , L/xeMM −= 1 , L/xePP −= 1 . The 

no-slip can be attained by assuming 0=== PMN  . It is 

assumed that  L/x* ekK −= 1 , L/xek0= , 
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Now, we introduce the following similarity transformations 

to convert the partial differential equations into ordinary 

differential equations: 
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The pressure outside the boundary layer in quiescent part of 

flow is constant and the flow occurs only due to the stretching 

of the sheet and hence the pressure gradient can be neglected. 

Considering the usual boundary layer approximations, 𝑢 >>

𝑣,
𝜕𝑢

𝜕𝑦
>>

𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
, the momentum equation in −y direction 

reduces to 
𝜕𝑝

𝜕𝑦
= 0. Now substituting Eq. (7) into the Eqns. (2) 

to (6), we get 
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where, prime denotes differentiation with respect to  , 
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Non-dimensional skin friction coefficient 𝐶𝑓, local Nusselt 

number 𝑁𝑢𝑥 and local Sherwood number xSh  are 
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where, k  is the thermal conductivity of the nanofluid, wq  and 

wJ  are the heat and mass fluxes at the surface respectively 

given by 
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Substituting wq  and  mq
 
in the preceding equations, we 

get 
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3. HAM 

 
To grab the homotopic solutions of Eqns. (8) to (11), we 

pick up the initial guesses and linear operators as follows 
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with the following properties 
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where, )i(Ci 7to1= are the arbitrary constants. 

We construct the zeroth-order deformation equations 
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subject to the boundary conditions 
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When 0=p
 
and 1=p , we obtain 
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Thus, as p  accelerates from 0 to 1 then 

( ) ( ) ( )p;p;g,p;f  and  vary from initial 

approximations to the exact solutions of the original nonlinear 

differential equations. 

Using Taylor’s series, we get 
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If the initial approximations, auxiliary linear operators and 

non-zero auxiliary parameters are chosen in such a way that 

the series (22) to (24) are convergent at ,p 1=
 
then 
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mth-order deformation equations are as follows 

 

( ) ( )( ) ( ),RffL f
mmmm  111 =− −                     (29) 

 

( ) ( )( ) ( ),RL mmmm  
212 =− −           (30) 

 

( ) ( )( ) ( ),RL mmmm  
313 =− −                      (31) 

 

with the following boundary conditions  

 

( ) ( ) ( )

( ) ( )
( ) ( ) ,,

,,

,f,f,f

mm

m
'
m

'
m

'
mm

000

000

00000

==

==

===



          (32) 

 

where,  

 

( )

( ) ,fKHcoscos

fffffR

'
mmm

'
i

m

i

'
im

''
i

m

i
im

'''
m

f
m

111

1

0
1

1

0
11 2

1
1

−−−

−

=
−−

−

=
−−−

+−+

−+







+=






     (33) 

 

( ) ( )

( )













+








++









++









 −+








+=

−

−

=
−−

−

=
−−

−

=
−−

−

=
−−−−−

1

1

0
1

1

0
1

1

0
1

1

0
111

1
1

3

4
1

m

m

i

''
i

''

im

'

i

m

i

'
im

'
i

m

i

'
im

m

i
i

'
im

'
iim

''
mm

QffEcPr

,NtNbPr

ffPr
R

R








(34) 

 

( ) ( )

,Sc
Nb

Nt

ffScR

m
''

m

m

i
i

'
im

'
iim

''
mm

11

1

0
111

−−

−

=
−−−−−

−







+









 −+=





       (35) 

 








=

.m,

,m,
m

11

10
                     (36) 

 
 
4. CONVERGENCE OF HAM 

 

It is well recognized argument that HAM provides us great 

freedom and an informal technique to compute the 

convergence region of the series solutions. This convergence 

region mainly depends on the auxiliary parameter  . To 

acquire the relevant values for these parameters,  -curves are 

portrayed in Figure 1. From this diagrammatic representation, 

it is scrutinized that the plausible region of the parameters is 

about  00,01 ..− . For 49021 .−== 
 
and

 
6503 .−= , the 

series solutions are convergent in the whole region of  . 

Table 1 displays the convergence of the method. 

 

 
 

Figure 1.  -curves for ( ) ( ) ( )0and00 '',''f   at 15th order 

approximations 
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Table 1. Convergence of HAM solution for different orders 

of approximations when 𝛽 = 1.0, 𝐻 = 0.5, 𝜆 = 𝛿 = 2.0, 𝐾 =
𝑅 = 0.1, 𝑃𝑟 =0.72, 𝑁𝑏 = 02, 𝑁𝑡 = 0.2, 𝐸𝑐 = 𝑄 = 0.1,

𝑆𝑐 = 0.6, 𝑆𝑣 = 𝑆𝑡 = 𝑆𝑐 = 0.1, 𝑆 = 0.3, 𝛼 =
𝜋

4
. 

 

Order )(''f 0−  )(' 0−
 

)('' 0−
 

5 0.372066 0.782587 0.528452 

10 0.367840 0.785314 0.524781 

15 0.367549 0.785244 0.524270 

20 0.367619 0.785160 0.524339 

25 0.367656 0.785170 0.524339 

30 0.367657 0.785174 0.524339 

35 0.367657 0.785174 0.524339 

40 0.367657 0.785174 0.524339 

 

 

5. RESULTS AND DISCUSSION 

 

In this, we panoply some results which bring acumen about 

the problem. For these computations, we consider the 

following values all over the study: 

 

./

,.S,.SSS,.Sc,.QEc,.Nt
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Figure 2. Effect of   on ( )'f  

 
 

Figure 3. Effect of H  on ( )'f  

 

Figure 2 is sketched to mention the repercussions of Casson 

parameter   on velocity distribution ( )'f . It is elucidated 

that velocity drops with the increase of Casson parameter for 

suction ( )30.S = . This is because of plastic dynamic viscosity 

which reduces the fluid motion enhances with the Casson 

parameter. Opposite trend is observed for injection ( )30.S −= . 

Larger values of magnetic parameter H  resemble an increase 

in Lorentz force which opposes the fluid motion. Hence 

velocity declines with magnetic parameter for both the cases. 

This reduction is more in suction then injection. This is shown 

in Figure 3. It is found that accelerating the porosity parameter 

K , devitalize the thickness of velocity field. This is because 

the holes of the porous layers expand with an increase in the 

porosity parameter and diminish the thickness of the 

momentum boundary layer. This is shown in Figuer 4.  
 

 
 

Figure 4. Effect of K  on ( )'f  

 
 

Figure 5. Effect of   on ( )'f  

 
 

Figure 6. Effect of   on ( )'f  

 

Figures 5 and 6 demonstrate the impact of buoyancy 

parameter   and solutal buoyancy parameter   on velocity. 

It is understood that velocity sketch upturns by enhancing the 

values of   and   . It is also noticed that this enhancement 

in the velocity filed is more on injection case compared with 

the suction case. The Angle of inclination   decreases the 
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effect of the buoyancy force due to thermal diffusion by a 

factor of cos . Hence velocity decreases with   for both the 

cases. This is shown in Figure 7. Effects of velocity slip vS  

on the velocity profiles are shown in Figure 8. It is observed 

that the velocity increases with vS  up to certain value of 

81.=  for both the cases. After that velocity increases 

slightly with vS . Temperature profiles are displayed for 

various values of radiation parameter in Figure 9. It is 

observed that the radiation parameter R  uplifts the 

temperature distribution. This is because of the fact that the 

thermal boundary layer thickness improves with increasing 

radiation parameter for both the cases. It is also observed that 

accretion in the temperature field is considerably large in 

injection case. The deviation of Prandtl number Pr  on 

temperature is explained in Figure 10. It is evident from figure 

that enhancing the values of Prandtl numbers Pr  diminishes 

temperature profile. For lower Prandtl numbers refers to 

thermal diffusion and so momentum boundary layer structures 

thicker, therefore the heat can drawn-out from the sheet faster 

than advanced values of Prandtl number Pr . Figures 11 and 

12 display the influence of thermophoresis parameter Nt  and 

Brownian motion parameter Nb  on temperature. It is clear 

that thermophoresis parameter Nt  and Brownian motion 

parameter Nb  boost up the temperature profiles. The 

repercussion of Eckert number Ec  on temperature is initiated 

in Figure 13. It is observed that the temperature rises with the 

increase of Ec .  

 

 
 

Figure 7. Effect of   on ( )'f  

 
 

Figure 8. Effect of vS  on ( )'f  

 
 

Figure 9. Effect of R  on ( )   

 
 

Figure 10. Effect of Pr  on ( )  

 
 

Figure 11. Effect of Nb  on ( )  

 
 

Figure 12. Effect of Nt  on ( )  
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Figure 13. Effect of Ec  on ( )  

 
 

Figure 14. Effect of Q  on ( )  

 
 

Figure 15. Effect of tS  on ( )  

 
 

Figure 16. Effect of Nb  on ( )  

 

Figure 14 shows the effect of heat source parameter Q
 
on 

temperature. The figure declares that the temperature 

accelerates for various values of Q   due to heat generation 

exist in the thermal boundary layer and hence temperature 

increases. This acceleration is more for injection case. Figure 

15 gives variation of temperature profiles for different values 

of thermal slip parameter tS . From this figure we infer that, 

the temperature of the boundary layer reduces with an increase 

in the thermal slip parameter. Concentration profile for various 

values of Brownian motion parameter Nb  is shown in Figure 

16. We noticed that the concentration profile decelerates with 

an increase in Nb for both cases.  

 
 

Figure 17. Effect of Nt  on ( )  

 
 

Figure 18. Effect of Sc  on ( )  

 
 

Figure 19. Effect of   on ( )  

 

Figure 17 has been plotted to demonstrate the effects of the 
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concentration profile. We noticed that the concentration 

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

( 

) 

 

 

 

Suction

Injection

Ec = 0.1, 0.5, 1.0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 

 

 

 

Suction

Injection

Q = 0.1, 0.3, 0.5

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 

 

 

 

Suction

Injection

S
t
 = 0.0, 0.3, 0.6

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 

 

 

 

Suction

Injection

Nb = 0.2, 0.5 1.0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 
 

 

 

Suction

Injection

Nt = 0.2, 0.3, 0.5

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 

 

 

 

Suction

Injection

Sc = 0.6, 0.78, 1.0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1


( 

) 

 

 

 

Suction

Injection

 = 0.0, 0.5, 1.0

497



 

profile increase with an increasing in the value of Nt for 

suction and injection. Effect of Schmidt number Sc  on 

concentration distribution is displayed in Figure 18. Here 

concentration profile decreases when Sc  increases. 

Physically the Schmidt number is dependent on mass diffusion 

B
D  and an increase in Sc  corresponds to a decrease in mass 

diffusion and the concentration. Figure 19 exposes the 

variation of chemical reaction parameter   on concentration 

profile. It is shows that concentration profile decreases with 

increase in the values of  . The effect of solutal slip parameter 

cS  on the concentration profiles is plotted in Figure 20. It 

reveals that the concentration profiles decrease with increase 

in cS .  

 
 

Figure 20. Effect of cS  on ( )  

 
 

Figure 21. Effect of H  and   on skin friction coefficient 

 
 

Figure 22. Effect of R  and   on local Nusselt number 

 

 

 

Figure 21 is initiated to know the impact of magnetic 

parameter H  and inclination parameter   on skin friction 

coefficient. It is clear that the skin friction declines with both 

H  and  . From Figures 22 and 23, we infer that heat transfer 

rate decreases with viscous dissipation Ec  and Brownian 

motion parameter Nb . It is also noticed that heat transfer rate 

increases with radiation parameter R and buoyancy parameter 

 for both the cases. Figure 24 displays the impact of solutal 

slip parameter cS  and Schmidt number Sc on mass transfer 

rate. Local Sherwood number increases with an increase in Sc

and cS . To endorse the veracity of the present analysis, 

obtained results of ( )0''f−  and ( )0'−  have been compared 

with the existing solutions in Tables 2 and 3. 

 

 
 

Figure 23. Effect of Ec  and Nb  on local Nusselt number 

 
 

Figure 24. Effect of Sc  and cS  on local Sherwood number 

 

Table 2. Comparison of )(' 0−  for different values of 

REcPr,,M and when 𝛽 → ∞, 𝜆 = 𝛿 = 𝐻 = 𝐾 = 𝑁𝑡 =

𝑁𝑏 = 𝑆 = 𝑆𝑣 = 𝑆𝑡 = 𝑆𝑐 = 0.0, 𝑄 = 𝑀 = 0.0 

 

Ec  R  Pr  
Ishak 

[29] 

Seini and 

Makinde 

[30] 

HAM 

0.0 0.0 1.0 0.9547 0.954811 0.954783 

0.0 0.0 3.0 1.8691 1.869069 1.869067 

0.0 1.0 1.0 0.5315 -- 0.531503 

0.9 0.0 1.0 0.5385 -- 0.538541 

0.9 0.0 3.0 0.8301 -- 0.830137 

0.9 1.0 1.0 0.3343 -- 0.334521 

0.9 1.0 3.0 0.6055 -- 0.605519 
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Table 3. Comparison of ( )0'−  and ( )0'  for different 

values of   when 𝜆 = 𝛿 = 3.0, 𝐻 = 𝐾 = 1.0, 𝑁𝑡 = 𝑁𝑏 =

0.5, 𝑆 = 0.7, 𝑅 = 1.0, 𝑃𝑟 =0.72, 𝑆𝑣 = 0.1, 𝑆𝑡 = 0.3, 𝑆𝑐 =
0.7, 𝛾 = 1.0, 𝛼 = 𝜋/4, 𝐸𝑐 = 𝑄 = 0.0 

 

 Eswara Rao [31] HAM 

  ( )0'−  ( )0'−  ( )0'−  ( )0'−  

0.3 0.523109 0.589403 0.523113 0.589411 

0.6 0.512534 0.588060 0.512534 0.588060 

 

 

6. CONCLUSIONS 

 

In this paper, we obtained the numerical analysis of 

magneto-hydrodynamic Casson nanofluid flow at an 

exponentially inclined stretching plate, considering thermal 

radiation, heat source, viscous dissipation and chemical 

reaction. The main findings of computational results are 

summarized below: 

• Velocity is an increasing function of the parameters 

  and  . 

• Temperature profile falls down against Prandtl 

number and thermal slip parameter, while Brownian 

motion parameter, thermophoresis number and 

radiation parameter enhances it. 

• Concentration profile reduces against Brownian 

motion parameter and Schmidt number while it 

enhances for thermophoresis number. 

• Local Nusselt number enhances for buoyancy 

parameter. 

• By increasing solutal slip parameter local Sherwood 

number enhances. 
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NOMENCLATURE 

 

B  variable magnetic field strength, N. m-1.A-1 

0B
 

constant 

C  nanoparticle concentration, kg. m-3 

0C
 

reference concentration 

fC  skin friction coefficientlocal  

wC  nanoparticle concentration at 

the surface of the sheet 

C  ambient nanoparticle concentration 

BD  Brownian diffusion coefficient, m2. s-1 

TD  thermophoretic diffusion coefficient,   m2. s-1 

Ec  viscous dissipation parameter, W. m-2 

Gr  local grashof number 

Gc  local solutal grashof number 

H  Hartman number 

wJ  mass flux 

*K  permeable parameter 

K  non-dimensional porous parameter  

L  reference length 
*M

 
constant 

M
 

thermal slip parameter 
*N

 
constant 

N
 

velocity slip parameters 

Nb  Brownian motion parameter 

Nt  thermophoresis parameter 

xNu  local Nusselt number  

*P  constant 

P
 

solutal slip parameter 

yP
 

yield stress, Nm-2 

Pr  Prandtl number 

0Q  heat source coefficient 

Q  heat source parameter 

R  radiation parameter 

xRe  local Reynolds number 

rq  radiative heat flux, W. m-1 

wq  surface  heat flux 

S
 

suction/injection parameter 

vS
 

non dimensional velocity slip parameter 

tS  non dimensional thermal slip parameter 

cS  non dimensional solutal slip parameter 

Sc  Schmidt number 

xSh  Sherwood number 

T  Temperature, K  

0T
 

reference temperature, K 

wT  surface temperature, K  

T  ambient fluid temperature, K 
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U stretching velocity, m. s-1 

0U reference velocity, m. s-1 

u,v velocity components in ,y,x  directions, m. s-1 

V velocity at the wall, m.s-1 

Greek symbols 

ν kinematic viscosity, m2. s-1 
σ electrical conductivity of the fluid, S. m-1 
 fluid density, kg. m-3 
 inclination angle 

w surface shear rate, Pa 

 Casson fluid parameter 

fh convective heat transfer 

coefficient of the fluid 

k thermal conductivity of the fluid, W. m-1. k-1 
* Stefan-Boltzman constant, W. m-2. K-4 

pc specific at constant pressure, J.K-1.kg-1 

p fluid pressure, Pa 

B plastic dynamic viscosity of the fluid, Pa. s 

g acceleration due to gravity, m. s-2 

f ' velocity profiles, m. s-1 

 temperature profile
 concentration profile 

*k mean absorption coefficient, m-1 

 similarity variable 

 chemical reaction rate 
 buoyancy parameter

 solutal buoyancy parameter 
  chemical reaction parameter 

T coefficient of thermal expansion 

C coefficient of solutal expansion 

Subscript 

s
w conditions at the wall 

 ambient condition 
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