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In this article, the effect of multiple slips on the boundary layer flow of MHD nanofluid with 

heat and mass transfer past a vertical plate embedded in a Darcy porous media is 

investigated. Instead of using conventional no slip boundary conditions, we use velocity, 

thermal and mass slip boundary conditions so as to obtain more realistic results compared 

to some earlier studies, for certain  physical situations. Our nanofluid model incorporates 

Brownian motion and thermophoresis effects. The governing boundary layer equations are 

converted to nonlinear ordinary differential equations using similarity transformations and 

the resulting equations are solved using the homotopy analysis method (HAM). The effects 

of the governing parameters on velocity, temperature, nanoparticles concentration field as 

well as on the skin friction coefficient, reduced Nusselt and Sherwood numbers are made 

appropriately via graphs and charts and explained the consequences with proper reasoning 
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1. INTRODUCTION

Convection is of fundamental interest in numerous 

engineering, industrial, and environmental applications such 

as cooling of electronic devices, air-conditioning systems, 

atmospheric flows, and security of energy systems and in 

designs related to thermal insulation. Fluid flow and heat 

transfer through porous media has been discussed in detail and 

reviewed by Nield and Beja [1], Vafai [2] as well as Adler and 

Brenner [3]. A closed form solution of the Brinkman-

Forchheimer equation due the forced convection in a fluid 

saturated porous medium with isothermal and isoflux 

boundaries was obtained by Nield et al. [4] valid for all values 

of the Darcy number. Other studies include that of Ahmad and 

Pop [5] who investigated the mixed convection boundary layer 

flow over a vertical flat plate embedded in a porous medium 

saturated with a nanofluid, Kuznetsov and Nield [6] have 

studied the Brinkman model and provided the thermal 

instability in porous medium layer filled with nanofluid. 

Further, Khan and Pop [7] extended the study and idea of 

Kuznetsov and Nield [8] for the case of stretching surface in 

nanofluid. However, in the above studies [5-7] the authors 

have considered the no-slip boundary conditions and the 

transformed equations are solved numerically. Much of the 

literature on boundary layer flow over various geometries such 

as horizontal/vertical plate, cone, rotating disk deals with no-

slip boundary conditions at the solid fluid interface and 

relatively less attention has thus for been given to slip 

boundary conditions. For flows around micro-scale/nano-scale 

devices, we have to include slip boundary conditions [9]. 

Various other researchers have investigated slip flow for 

different situations [10-18]. 

In general transport problems are governed by systems of 

nonlinear partial differential equation (PDE) subject to 

relevant initial and boundary conditions. Closed form 

solutions are often difficult to obtain. The system of PDEs is 

usually converted into a corresponding system of ordinary 

differential equations (ODEs) using similarity analysis 

techniques. The ODEs which are usually nonlinear can be 

solved by various semi-analytical methods, numerical 

methods but numerical methods are often computationally 

expensive. Several semi-analytical methods have been 

suggested to solve the associated nonlinear ODEs. These 

methods include the modified decomposition method [19] and 

the homotopy analysis method [20-23]. The aim of our present 

paper is to obtain an accurate analytical solution, via the 

homotopy analysis method for a velocity/thermal/solutal slip 

in hydromagnetic nanofluid flow involving in porous media. 

In the sense of comparison with other approximate analytical 

method, HAM yields a family of solution expressions in the 

auxiliary parameter . The analytical solutions obtained, 

albeit approximate, allows for a deeper understanding and 

overview of the understanding physical phenomena. 

2. GOVERNING EQUATIONS

A two-dimensional steady flow with a coordinate system 

such that the x -axis is aligned vertically and the y -axis is 

normal to it is considered. A transverse magnetic field 0B is 

assumed to act parallel to the y -axis. The magnetic Reynolds 

number is assumed small so that the induced magnetic field is 

negligible.  The electric field related to the polarization of 

charges and Hall effects is neglected. The four relevant 

equations are the equations of conservation of mass, 

momentum, thermal energy, and the nanoparticles volume 

fraction which can be written in dimensional forms, extending 

the formulations of Buongiorno [24] as:   
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The appropriate boundary conditions are [9]: 
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Here 𝛼 =
𝑘

(𝜌 𝑐)𝑓
: thermal diffusivity of the fluid, 𝜏 =

(𝜌 𝑐)𝑝

(𝜌 𝑐)𝑓
: 

ratio of heat capacity of the nanoparticle and fluid, Kp: 

permeability of the medium, ( ,u v ): velocity components 

along x  and y  axes, 𝑢̄𝑒 =
𝑈𝑟𝑥̄

𝐿
: velocity of the plate, L : 

characteristic length of the plate, 𝑢̄slip = 𝑁1𝜈
𝜕𝑢̄

𝜕𝑦̄
: linear slip 

velocity, 𝑁1: velocity slip factor, 𝑇slip = 𝐷1
𝜕𝑇

𝜕𝑦̄
: thermal slip, 

𝐷1: thermal slip factor, 𝐶slip = 𝐸1
𝜕𝐶

𝜕𝑦̄
: mass slip, 

1
E : mass slip 

factor, 𝜌𝑓 density of the base fluid, 𝜇 dynamic viscosity of the 

base fluid, 𝜌𝑝  density of the nanoparticles, (𝜌𝐶𝑃)𝑓 : heat 

effective heat capacity of the fluid, (𝜌𝐶𝑃)𝑃 : effective heat 

capacity of the nanoparticle material, 𝐷𝐵 Brownian diffusion 

coefficient, 𝐷𝑇: thermophoretic diffusion.  

We define the following dimensionless transformation 

variables: 
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3. SIMILARITY EQUATIONS 

 

Substitution of (6) into Eqns. (1)-(5) generate the following 

similarity equations: 

 

( )2 2Re =0f f Da ff f M f    − + − −                (7) 
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Re 0
Nt

DaLe f
Nb

    + + =                              (9)  

The relevant boundary conditions are: 

 

(0) 0, (0) 1 (0), (0) 1 '(0),

(0)=1+ '(0), '( ) 0, ( ) ( ) 0

f f a f b

c f

 
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 = = + = +

 =  =  =
       (10)  

                                

where, primes denote differentiation with respect to .  The 

thermo-physical dimensionless parameters arising in Eqns. 

(7)-(10) are defined as follows: Re /U Lr = is the Reynolds 

number, 𝐷𝑎 = 𝐾𝑝/𝐿
2is the Darcy number, 𝑀 = 𝜎𝐵0

2𝐿/𝑈𝑟𝜌 is 

the magnetic field parameter, Pr / =  is the Prandtl number, 

( ) /Nt D T T TwT
 = −    is the thermophoresis parameter, 

( ) /Nb D C CwB
 = −  is the Brownian motion parameter, 

e /L D
B

=  is the Lewis number, /
1

a N K
P

= is the 

hydrodynamic (momentum) slip parameter, /
1

b D K
P

=  is 

the thermal slip parameter, /
1

c E K
P

=  is the mass slip 

parameter, and /f v L U Kw w r p=  is the  suction/injection 

parameter. Note that all the dimensionless parameters are free 

from axial distance x and confirm the true similarity of the 

problem. 

The quantities of physical interest in our study are the local 

friction factor, C
f x

, the local Nusselt number, Nu
x

, the 

local Sherwood number Sh
x

. Physically, C
fx

represents the 

wall shear stress, Nu
x

, defines the heat transfer rates and 

Sh
x

 defines the mass transfer  rates. 

 

( )1 0.5Re 2 0C Da fx xfx
− =                          (11)  

   

( ) ( )0.5 0.50 , ' 0Nu Da Sh Da
x x x x

 = − = −      (12) 

                                                                           

where, 𝐷𝑎𝑥̄ = 𝐾𝑝/𝑥̄
2 is the local Darcy number for Darcian 

porous media and Re /u xwx
= is the local Reynolds 

number. 

Note that for purely hydromagnetic boundary layer 

( 0M = ), no slip boundary conditions ( 0a b c= = = ), the 

problem reduces to the problem which has been recently 

investigated by Dayyan et al. [14] when 1,Da =

0, 0Nt Nb= → in our model and 0n =  in their model. This 

provides a validation of our model. 

 

 

4. HOMOTOPY ANALYSIS METHOD 

 

The HAM procedure described in this section is based on 

the work of [20-23]. For HAM solution of the governing Eqns. 

(7), (8) and (9) subject to the boundary conditions (10), the 

initial approximations for velocity ( )f  , temperature ( )   

and concentration ( )   are chosen as follows: 
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the auxiliary linear operators are:  
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with properties 
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where, ( )1 7C ii = −  are constants.  

Next, construct the following homotopy for the Eqns. (7), 

(8) and (9), 
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subject to the boundary conditions 
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where, N
f

, N
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 and N
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 are non-linear operators, which are 

defined as:  
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and p  is the embedding parameter.  

When p  increases from 0 to 1, ( ),f p , ( ), p   and 

( ), p   vary from ( ),
0

f p , ( ),
0

p  and ( ),
0

p   to 

( ),f p , ( ), p  and ( ), p   respectively. Using Taylor’s 

series, we can write 
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The convergence of the series (25), (26) and (27) is 

dependent as auxiliary parameters f ,   and  . Let us 

assume that the auxiliary parameters are chosen such that 

series (25), (26) and (27) are convergent at 1p = . From (25), 

(26) and (27), 
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The mth-order deformation equations can be obtained by 

differentiating Eqns. (16), (17) and (18) m times with respect 

to p, and subsequently dividing by m! at p = 0. We then have  
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subject to boundary conditions 
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Here the remainder terms are as follows 
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m
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The general solution of Eq. (28) is: 

 

( ) ( ) ( ) ( )* exp exp
1 2 3

f f C C Cm m   = + + + −        (37)   

                                                                       

( ) ( ) ( ) ( )* exp exp
54

C Cm m     = + + −               (38) 

                                                                      

( ) ( ) ( ) ( )* exp exp
76

C Cm m     = + + −              (39)  

                                                                                 

where, ( )*fm  , ( )*
m   and ( )*

m   denote the special 

solutions for Eqs. (29), (30) and (31) and the constants are 

determined by employing the boundary condition Eq. (28). 

The residual errors for the HAM 15th order approximation 

solution are defined as: 
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2 2
Res Re

2 2

d d Nt d
DaLe f

d Nbd d

  
  

 
= + + 

 
         (42) 

5. CONVERGENCE OF THE HAM SOLUTION 

 

Eqns. (37), (38) and (39) yield an analytical solution of the 

problem in the form of series. The convergence depends on the 

auxiliary parameters ℏ𝑓 , ℏ𝜃 , ℏ𝜙 [20]. These parameters, as was 

pointed out by previous researchers can be used to adjust and 

control the convergence region and convergence rate. So that 

appropriate values for these auxiliary parameters, the so called 

ℏ𝑓 , ℏ𝜃  and ℏ𝜙  curves are displayed at 15th order 

approximations as shown in Figure 1. Figure 1 also shows that 

the dimensionless velocity converges when −1.8 < ℏ𝑓 <

−0.25 , the dimensionless temperature converges when 

−1.6 < ℏ𝜃 < −0.5 , and the dimensionless concentration 

converges for −1.5 < ℏ𝜙 < −0.2 . Figure 1 shows the  

curves for the dimensionless velocity, temperature and 

concentration. Convergence of the series solution up to 40th 

order of approximations is presented in Table 1. For validation 

of the obtained homotopy simulation in the present article, we 

compared the numerical results of [14, 19] in Table 2 and 

Table 3 and an excellent agreement is observed. The variation 

of skin friction coefficient, Nusselt and Sherwood numbers for 

various values of parameters is presented in Table 4. 

 

Table 1. Convergence of HAM solutions for different order 

of approximations at 

Re 1, Pr 6.8, 10, 0.3, 0.2,

0.4, 0.8, 1

M Le Da Nb Nt

a b c
f  

= = = = = = =

= = = = − = = −
 

 
Order of  

approximation 
( )0f −  ( )0−  ( )0−  

1 0.81924 0.25267 0.38630 

5 0.82228 0.21782 0.58916 

15 0.82228 0.21223 0.58267 

23 0.82228 0.21200 0.58272 

30 0.82228 0.21200 0.58272 

40 0.82228 0.21200 0.58272 

[Numerical] [0.82228] [0.21200] [0.58272] 

 

Table 2. Comparison of ( )0f −  for various values of Re  at 

1, 0Da a M= = =  

 

M   Re  Dayan el al. 

[14] 

Hayat et al. 

[19] 

Present 

results 

0 

 

 

 

2 

3 

7 

99   

1 

1.5 

2 

5 

1 

 

 

 

1.4242 

1.5811 

1.7320 

2.4494 

- 

- 

- 

- 

1.4142 

- 

- 

- 

2.4494 

3.3166 

7.1414 

10.0498 

1.4142 

1.5810 

1.7321 

2.4495 

2.4494 

3.3166 

7.1414 

10.0498 

 

Table 3. Comparison of heat transfer rate for various values 

of Re  at Pr 1Da M= = = , 0a b c N Ntb
= = = = =  

 

Re  Dayan et al. [14] Present results 

1 

1.5 

2 

5 

0.5033 

0.6422 

0.7592 

1.2576 

0.5029 

0.6419 

0.7594 

1.2576 
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Table 4. Results of skin friction coefficient, Nusselt and 

Sherwood numbers for various values of parameters at

Pr 6.8= , Re 5= , 0, 5,M Le= =  0.1Nb Nt= =  

 
A b  c  Da ( )0f −   ( )0−   ( )0−  

0 

0.5 

1 

0 0 0 1.00000 

0.66666 

0.50000 

0.04696 

0.04696 

0.04696 

0.15304 

0.15304 

0.15304 

0.4 

 

0 

0.5 

1 

0 0 0.71429 

0.71429 

0.71429 

0.04696 

0.04631 

0.04566 

0.15304 

0.15137 

0.14976 

0.5 0.5 0 

0.5 

1 

0 0.66667 

0.66667 

0.66667 

0.04631 

0.04768 

0.04892 

0.15137 

0.14280 

0.13512 

0.2 0.2 0.2 0 

0.7 

1 

0.83333 

1.36746 

1.49052 

0.04728 

1.41331 

1.60736 

0.14882 

1.59144 

1.31367 

 

 
Figure 1. The h-curves of ( )0f  , ( )0  and ( )0  are 

obtained by the 15th-order approximation at 

Re 1,Pr 6.8, 10, 0.3,

0.2, 0.4

M Le Da

Nb Nt a b c

= = = = =

= = = = =
 

 

 
 

Figure 2. Effects of Da and Re on dimensionless velocity 

 

 
 

Figure 3. Effects of a and M on dimensionless velocity 

 

 
 

Figure 4.  Effects of b and M on dimensionless temperature 

 

 
 

Figure 5. Effects of Da and Re on dimensionless temperature 
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Figure 6. Effects of b, M on dimensionless temperature 

 

 
 

Figure 7. Effects of c and M dimensionless concentration 

 

 
 

Figure 8. Effects of Da and Le on dimensionless 

concentration 

 
 

Figure 9. Variation of skin friction coefficient against M, Da 

and a 

 

 
 

Figure 10. Variation of heat transfer rate against Re, Nb and 

Nt 

 
 

Figure 11. Variation of heat and mass transfer rates against 

M, a and Da 
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Figure 12. Variation of mass transfer rate against Re, Le and 

c 

 

  

6. RESULTS AND DISCUSSION 

 

Figure 2 shows the variation of the dimensionless velocity 

inside the boundary layer with the Darcy number and the 

Reynolds number. The dimensionless velocity is decreased as 

both the Darcy number the Reynold numbers increase. A 

similar trend of velocity was also noticed by Dayyan et al. [14]. 

The magnetic field and the velocity slip effects on the 

dimensionless velocity are shown in Figure 3. It is found that 

velocity slip reduces the velocity inside the boundary layer for 

both in the absence and presence of magnetic field. As usual, 

magnetic field dampen the velocity for both the conventional 

no slip (a = 0) and slip boundary condition.  

The magnetic field and the thermal slip effect on the 

dimensionless temperature are displayed in Figure 4. Thermal 

slip reduces the temperature within the thermal boundary layer 

for both in the absence and presence of magnetic field. 

Magnetic field intensify the temperature for both the 

isothermal plate (b = 0) and non-isothermal plate ( 0)b  . 

Figure 5 demonstrates that with an increase in both the Darcy 

number and Reynolds number, the concentration is suppressed 

within the solutal boundary layer. The effect of nanofluid 

parameters on dimensionless temperature is shown in Figure 

6. It is found that temperature is reduced with the 

thermophoresis parameter and increased with the Brownian 

motion parameter. The magnetic field and the solutal slip 

effect on the dimensionless concentration are shown in Figure 

7. It is found that concentration is reduced as the solutal slip 

parameter increases for both in the absence and presence of 

magnetic field. As usual, magnetic field enhances the 

concentration for both the isosolutal plate (c=0) and mass slip 

boundary condition. Figure 8 demonstrates that increasing 

Darcy number reduces the concentration. Lewis number is also 

reduces the dimensionless concentration. Asymptotic 

convergence of all profiles in Figures 2-8 is noticed. We now 

focus on the effect of the controlling parameters on the 

physical quantities. Figure 9 demonstrates the effects of the 

Darcy number, velocity slip parameter and the magnetic field 

parameter on the friction factor. It is noticed that friction 

increases as the Darcy number and the magnetic field 

parameter increase for both slip flow and no slip flow. Note 

that the effect of the Darcy number and the magnetic field are 

prominent for no slip flow.  

Figure 10 demonstrates the effects of the Darcy number, 

velocity slip parameter and the magnetic field parameter on 

the heat and mass transfer rate. It is noticed that heat and mass 

transfer increase as the Darcy number increases whilst they 

decrease as the magnetic field parameter and velocity slip 

parameter increase. The effects of the nanofluid parameters on 

the heat transfer rates are illustrated in Figure 11. It is found 

that both the Brownian motion and thermophoresis parameter 

decrease whilst the Reynolds number increases the heat 

transfer rates. Finally, Fig. 12 illustrated the influence of the 

Reynolds number, Lewis number and the mass velocity on the 

mass transfer rates. It is found that mass transfer rates 

increases as the Reynolds number and Lewis number increases 

whilst it decreases with the increasing of mass slip parameter. 

 

 

7. CONCLUSIONS 

 

In this paper, we developed a mathematical model for 

steady-state two-dimensional viscous incompressible 

magnetohydrodynamic slip flow of nanofluid past a vertical 

plate in a Darcian porous medium. The governing equations 

were transformed into a system of ODE using similarity 

transformation. The homotopy analysis method, which is a 

semi-analytical method, was used to solve this system. The 

main findings are:  

▪ Increasing Darcy number and magnetic field 

parameters lead to increase the friction. 

▪ The heat and mass transfer rates increase as the Darcy 

number increases whilst they decrease as the 

magnetic field parameter and velocity slip parameter 

increase. 

▪ The Brownian motion and thermophoresis parameter 

decrease whilst the Reynolds number increases the 

heat transfer rates. 

▪ The mass transfer rates increases as the Reynolds 

number and Lewis number increase whilst it 

decreases with the increasing of mass slip parameter. 

It is presumed that, with the help of the present model, 

the physics of the flow along the vertical channel can 

be utilized as the basis for many engineering and 

scientific applications. The findings of the present 

problem are also of great interest in engineering, 

industrial, and environmental applications such as in 

cooling of electronic devices, air-conditioning 

systems, e.t.c.  
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NOMENCLATUER 

 

D
B

  Brownian diffusion coefficient 

Nb  Brownian motion parameter 

L  characteristic length 

Da                 Darcy number 

a   hydromagnetic slip parameter 

Le   Lewis number 

u
slip

−
    linear slip velocity 

Cfx   local friction factor 

Nux    local Nusselt number 

Shx    local Sherwood number 

M    magnetic field parameter 

Cslip    mass slip 

E1    mass slip factor 

c       mass slip parameter 

Kp    permeability of the medium 

Re   Reynolds number  

fw   suction/injection parameter 

Tslip   thermal slip 

D1   thermal slip factor 

b   thermal slip parameter 

Nt   thermopheresis parameter 

DT   thermophoretic diffusion 

,u v
− −

   velocity component 

e
u
−

   velocity of the plate 

N1   velocity slip factor 

 

Greek symbols 

 

   thermal diffusivity of the fluid 
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   ratio of heat capacity 

f
   density of the base fluid 

p   density of the nano particles 

   dynamic viscosity of the base fluid 

( )Cp f
  heat effective heat capacity of the fluid 

( )
p

Cp  effective heat capacity of the nanoparticle 

material 
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