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Plantar pressure, an important index in gait analysis, has been widely adopted for clinical 

diagnosis and sports science. It is of great significance to accurately measure the plantar 

pressure. In this paper, the data of plantar pressure are collected with the flexible force sensor, 

and then filtered by a self-designed filtering algorithm with time window. Then, an 8-

neighborhood connected-component labeling algorithm was proposed to segment and cluster 

the plantar pressure images. Finally, the footprints were recognized based on the plantar 

pressure and shape of footprints. The experimental results show that the proposed footprint 

extraction method extracted 99% of plantar pressure data accurately under normal walking 

conditions, and the proposed footprint recognition method recognized more than 97% of 

footprints in a correct manner. 
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1. INTRODUCTION

Plantar pressure, an important index in gait analysis, has 

been widely adopted for clinical diagnosis and sports science. 

Based on plantar pressure, it is possible to identify abnormal 

gaits, assess the seriousness of foot disease and evaluate the 

rehabilitation condition. Thus, it is of great significance to 

accurately measure the plantar pressure.  

Traditionally, plantar pressure is measured by methods like 

pedography, sole barograph, pressure insole and force 

measuring platform. With the development of computer 

technology, pressure sensors have been applied to collect 

plantar pressure. Flexible force sensor is the most convenient 

and accurate pressure sensor, capable of capturing plantar 

pressure in real time and displaying it in an intuitive manner. 

The application of large-area flexible force sensor can 

acquire both static and dynamic plantar pressures. The data 

thus collected accurately mirror the gait features of the subject. 

The main problem with the gait analysis using large-area 

flexible force sensor lies in the processing of the collected 

plantar pressure.  

To solve the problem, this paper designs a plantar pressure 

platform based on flexible force sensor to collect plantar 

pressure data, puts forward an 8-neighborhood connected-

component labeling algorithm to segment and cluster the 

plantar pressure images, and proposes a dynamic footprint 

recognition algorithm based on plantar pressure. The proposed 

platform and methods were verified through experiments.  

2. LITERATURE REVIEW

Flexible force sensor has been widely used in pressure 

insoles, plantar pressure switches, etc. Chu et al. [1] obtained 

the walking trajectories of left and right foot with a large-area 

flexible force sensor, clustered the data on plantar pressure by 

k-means clustering (KMC), and then differentiated between

the two feet based on the angle of the heel-toe vector. Redd

and Bamberg [2] marked the hardware of pressure insoles

before collecting the plantar pressure of each foot, eliminating

the need to extract or recognize footprints.

With the aid of plantar pressure switches, Daliri [3] 

collected the single support time (left stance), single support 

time (right stance) and double support time, extracted the 

minimum, maximum, mean and standard deviation from the 

three time series, and distinguished healthy people from 

patients using the support vector machine (SVM) algorithm. 

Takayanagi et al. [4] classified normal gait from abnormal gait 

based on four parameters, namely, walking speed, double 

support time, gait balance ability, and static phase time. [5] 

Gopalakrishna et al. [5] adopted fuzzy logic algorithm to 

calculate various gait parameters of plantar pressure. 

Bacarin et al. [6] obtained the static and dynamic features 

of plantar pressure with a single flexible force sensor, and 

recognized different people based on the two features. Before 

collecting the dynamic plantar pressure, the measuring points 

were determined through walking training. Then, the dynamic 

plantar pressure of each foot was measured by the sensor 

according to the expected walking speed. Jang et al. [7] 

segmented the plantar pressure of each step by the KMC, 

rotated the footprint image to determine six feature points by 

scan lines, and recognized footprints based on the coordinates 

of feature points.  

Powell et al. [8] predicted the possible trajectories of 

footprints based on the feature parameters of one foot and the 

process parameters between two feet in the walking process. 

The feature parameters were identified based on the travel 

direction and position. Ferber et al. [9] studied human behavior 

perception with large-area flexible force sensor, and 

recognized footsteps based on walking direction and 
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coordinates of key positions, revealing that footstep 

recognition based on plantar pressure is suitable for normal 

walking with a small direction angle.  

Pataky and Goulermas [10] statistically segmented and 

analyzed images on plantar pressure. Oliveira et al. [11] 

presented a computational framework for automatic foot 

classification, using digital images on plantar pressure. Some 

scholars meshed plantar pressure images through 

pedobarographic analysis, and applied it successfully to 

monitor the plantar pressure of social network users [12]. Crea 

et al. [13] analyzed the standing plantar pressure images in the 

frequency domain. 

 

 

3. ALGORITHM DESIGN 

 

3.1 Data acquisition and outlier removal 

 

Currently, the plantar pressure collected by flexible force 

sensor has been widely applied in health care and 

rehabilitation, as well as gait analysis. The application effect 

hinges on the authenticity and reliability of the collected data. 

Since the walking habits are different from person to person 

and prone to external influence, it is necessary to standardize 

the collection procedure of plantar pressure. In this paper, a 

plantar pressure platform (Figure 1) is designed based on 

flexible force sensor. 

 

  
 

Figure 1. The proposed plantar pressure platform 

 

In our platform, plantar pressure can be collected while the 

previously collected data are being processed. The collected 

data often contain outliers, i.e. the noises from system 

hardware and the flexible force sensor. The noises fall into 

three categories: Gaussian noise, impact noise and jitter noise. 

Before using the plantar pressure, the outliers must be filtered 

out on the platform from the collected data [14]. 

In data acquisition, a pressure value is collected at each 

sensing point of the flexible force sensor. The collected 

pressure is divided to 256 levels, and displayed as the 

corresponding RGB value. The greater the pressure, the darker 

the displayed color. The inverse is also true. The plantar 

pressure 𝑃(t) collected by the flexible force sensor at time t 

can be expressed as: 

 

𝑃(t) = [
𝑝11(𝑡) ⋯ 𝑝1𝑁(𝑡)

⋮ ⋱ ⋮
𝑝𝑀1(𝑡) ⋯ 𝑝𝑀𝑁(𝑡)

]                      (1) 

 

where, 𝑝𝑖𝑗(𝑡) is the pressure collected at sensing point (i, j) at 

time t; M and N are the row number and column number of 

sensing point on the flexible force sensor, respectively. 

According to the features of the flexible force sensor, the 

plantar pressure collected by the sensor can be regarded as a 

dynamically changing digital image, with 𝑃(t) being the pixel 

value. Hence, the collected data can be filtered by digital 

image filtering algorithms. 

Despite its similarity to digital image, the collected data 

have time features in each frame. When the flexible force 

sensor collects plantar pressure, not all sensing points feel the 

pressure at the same time. Thus, there might be only a few 

nonempty pressure points in a frame of collected data. Before 

filtering out the outliers, each pressure point should be judged 

whether it is an outlier, based on the previous and subsequent 

frames.  

Drawing on hybrid image filters, this paper designs a new 

filtering algorithm with time window to remove the outliers. 

This algorithm firstly identifies the outliers based on the 

previous and subsequent frames, and then eliminates the 

outliers with a hybrid image filter. The specific steps of this 

algorithm are as follows: 

Step 1. Judge whether each pressure point is an outlier. If 

yes, go to Step 2 to determine if it is a noise. Otherwise, go on 

to judge the next pressure point. Below is the criterion of 

outlier judgement: with the current pixel as the center, 

generate a 3×3 window and count the number of valid pressure 

points in the window; if the number is greater than the preset 

threshold (here, the threshold is set to 4), then the current pixel 

is a valid point; otherwise, it is an outlier. 

Step 2. Select the previous and subsequent N frames (here, 

N is set to 5), i.e. a total of 2N frames. With the outlier 

identified in Step 1 as the center, generate a 3×3 window in 

each frame, forming a 3D filter window. Then, count the 

number of valid pressure points in each window; if the number 
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is greater than the present threshold (here, the threshold is set 

to 4), count that number in the window of the next frame. In 

this way, the total number of valid pressure points of the 2N 

frames can be obtained. If the total number is greater than a 

preset threshold (here, the threshold is set to 5), then the 

current pixel is a valid point. After that, adopt the hybrid image 

filter to screen the 3×3 window of the current frame. If the total 

number is not greater than the threshold, set the pressure value 

at the current point to zero, and return to Step 1 to filter the 

next pressure point. 

Step 3. Repeat the above steps until all the frames have been 

filtered. 

Figure 2 illustrates the workflow of the proposed filtering 

algorithm.  

 

 
 

Figure 2. The workflow of the proposed filtering algorithm 

 

The filtering performance of our algorithm was evaluated 

by signal-to-noise ratio (SNR). The SNR of an image refers to 

the ratio of the power spectrum of the signal to the noise. Since 

the power spectrum is difficult to calculate, the ratio of the 

variance of the signal to the noise is usually taken as an 

equivalent to the SNR. Therefore, the first step to compute the 

SNR is to calculate the local variance of each pixel in the 

image. Then, the maximum and minimum of all local 

variances are considered as the signal variance and the noise 

variance, respectively. Then, the variance ratio between the 

two could be computed and converted to decibels. Finally, the 

variance ratio can be modified as: 

 

𝑆𝑁𝑅 = 10 log
∑ ∑ ∑ (𝑂𝑢𝑡𝑝𝑢𝑡−𝑂𝑟𝑖𝑔𝑖𝑛)2

𝑐𝑜𝑙𝑟𝑜𝑤𝑡

∑ ∑ ∑ (𝑁𝑜𝑖𝑠𝑒−𝑂𝑟𝑖𝑔𝑖𝑛)2
𝑐𝑜𝑙𝑟𝑜𝑤𝑡

                (2) 

 

where, 𝑂𝑢𝑡𝑝𝑢𝑡  is the filtered output image; 𝑂𝑟𝑖𝑔𝑖𝑛  is the 

original noise-free image; 𝑁𝑜𝑖𝑠𝑒  is the image with additive 

noises. 

Each image was added with a pulsating noise at the 

percentage of p and a Gaussian noise with the standard 

deviation of 𝜎 . For comparison, each noisy image was 

processed by the modified trimmed mean (MTM) filter, the 

intrinsic mode function (IMF) filter and out algorithm, 

respectively [15]. The denoising results of the three methods 

are compared in Table 1 below. 

 

Table 1. Comparison of the three methods in denoising 

effects 

 

Algorithm 
SNR (dB) 

p=4, 𝝈=5 

SNR (dB) 

p=5, 𝝈=8 

MTM -8.43 -10.61 

IMF -9.17 -11.18 

Our algorithm -11.89 -12.50 

 

3.2 Footprint extraction 

 

In image processing, the purpose of pixel classification is to 

identify the region in which the adjacent pixels are of the same 

value. In this paper, the pixel classification is performed to 

find out the pressure concentration region (PCR) of each frame, 

based on the adjacent pressure points from the binary pressure 

matrix. Then, the PCRs of different frames were matched. If 

the preset requirement is met, then the PCRs are ascribed to 

the same class, i.e. to the same footprint. The data of plantar 

pressure can be displayed as images (Figure 3). 

 

 
 

Figure 3. An example of plantar pressure image 

 

Because the plantar pressure is dynamically changing in the 

walking process, it is not suitable to use common clustering 

algorithms to extract the footprint in each step and segment the 

plantar pressure image. Under normal conditions, walking is 

movement with high regularity, which is reflected in the pace, 

step length and step width. Based on the regularity, the plantar 

pressure image was segmented under three empirical 

conditions: 

Condition 1: In normal walking, the step length and step 

width both change in a reasonable range. 

Condition 2: The length and width of feet of a healthy 

person are in a reasonable range (Figure 4). 

Condition 3: In normal walking, the interval between 

frames of the same footstep falls within a reasonable range. 

 

 
 

Figure 4. An example of the length and width of feet of a 

healthy person 
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In this paper, the plantar pressure image is segmented in 

three steps: binarize the plantar pressure data of each frame; 

classify the binary data with the 8-neighborhood connected-

component labeling algorithm [16]; allocate the classification 

results to different classes under the three empirical conditions. 

The specific steps are as follows: 

Step 1: Scan the plantar pressure data of each frame in turn, 

map the pressure data to the image matrix, and binarize the 

image matrix. 

Step 2: Classify the binary matrix with the 8-neighborhood 

connected-component labeling algorithm, divide the plantar 

pressure data of each frame into different classes, compute the 

geometric center of each class, and record the start timestamp 

of each class. 

Step 3: Cluster each class according to its geometric center 

and the preset thresholds (e.g. foot length, foot width, and 

interval of start timestamp), and iteratively separate each 

footprint. 

Under the three empirical conditions, the interval between 

the PCRs of the same footstep in normal walking should be 

smaller than the length of a normal footstep, the footprint area 

fused by these PCRs should fall in the area range of normal 

footprints, and the footprint width fused by these PCRs should 

also fall in the width range of normal footprints. In each frame, 

there should be not spatial overlap between footsteps. In 

addition, the interval of start timestamps between the PCRs of 

the same footstep should fall within the normal range.  

In practical operations, the length, area, and width of a 

normal step are 26cm, 185cm2 and 10cm, respectively; the 

interval of start timestamps between the PCRs of the same 

footstep is 126ms. 

In this paper, the minimum bounding rectangle (MBR) is 

used to cluster the PCRs and fully utilize the shape features of 

the MBR. The information of each footstep can be obtained 

once all the frames are iterated. 

 

3.3 Dynamic recognition of footprint 

 

Both gait information and kinematic information are 

collected by the large-area flexible force sensor. To compute 

the two types of information accurately and in real time, this 

paper puts forward a dynamic footprint recognition algorithm 

based on plantar pressure. 

The center of pressure (COP) trajectory reflects the integrity 

of plantar pressure. Let (𝑋𝑙1, 𝑌𝑙1), (𝑋𝑙2, 𝑌𝑙2), … , (𝑋𝑙𝑛 , 𝑌𝑙𝑛)  be 

the coordinates of all the valid pressure points on the first 

footprint of the left foot, and 𝐹𝑙𝑛 be the force corresponding to 

each coordinates. The coordinates (𝑋𝑙𝑝 , 𝑌𝑙𝑝) at the COP of a 

frame of the left foot can be expressed as: 

 

𝑋𝑙𝑝 =
∑ 𝐹𝑙𝑛∗𝑋𝑙𝑛

∑ 𝐹𝑙𝑛
                                 (3) 

 

𝑌𝑙𝑝 =
∑ 𝐹𝑙𝑛∗𝑌𝑙𝑛

∑ 𝐹𝑙𝑛
                                (4) 

 

Then, the start frame of the first footprint of the left foot was 

extracted, and the all the coordinate points of the COP of that 

foot of frame t were found. Those of the COP of the first 

footprint of the right foot were obtained in a similar manner. 

Here, the direction of each footprint is determined based on 

the position relationship between the forefoot and arch, and the 

left and right feet are differentiated based on the position 

relationship between the inner arch and the outer arch. 

The dynamic footprint recognition algorithm is 

implemented in the following steps: 

Step 1: Extract the plantar pressure data of each footstep 

based on the corresponding start timestamp, end timestamp 

and the coordinates interval in the data field of the flexible 

force sensor. Binarize the data and fill them into the footstep 

image matrix, and convert the matrix to a binary image. 

Step 2: Magnify the small binary image through bilinear 

interpolation, and filter the magnified image with median filter, 

creating a binary magnified image. 

Step 3: Find the MBR of the binary magnified image by the 

convex hull algorithm, and identify the angle between the 

horizontal and vertical directions of the footprint. 

Step 4: Rotate the binary magnified image by the angle 

obtained in Step 3, and perform the nearest neighbor 

interpolation. 

Step 5: Perform morphological image processing on the 

rotated image, and smooth and filter the processed image.   

Step 6: Extract the outer edge of the processed image by the 

edge detection algorithm, and compute the MBR by the 

convex hull algorithm. 

Step 7: Scan the long-axis direction of the MBR, record the 

footprint width in the short-axis direction, and the coordinates 

of the upper and lower boundary points. Take the coordinates 

as the vertical values, the upper boundary of the MBR as the 

benchmark, and the distance between the upper and lower 

boundary points as the pixel distance of the upper boundary of 

the MBR. 

Step 8: Compress the range of the horizontal axis and the 

vertical axis to the range of the footprint length and the 

footprint width, highlighting the peaks and throughs of the 

fitted curve. 

Step 9: Judge the footprints of left and right feet according 

to extreme values of fitting curve. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Verification of footprint extraction accuracy 

 

The accuracy of footprint extraction was mainly measured 

by the start timestamp, end timestamp and the range of 

coordinates of the footprints in each footstep. These 

parameters were selected because they are the only metrics of 

the clustering and segmentation effects of the plantar pressure 

data for each footprint. 

A total of 67 subjects were selected for the experiment. All 

their feet are normal. The test site was divided evenly into rows 

and columns. A random row (column) was selected from the 

site, and some rectangular boxes were marked, slightly larger 

than the footprints, on that row (column). The distance, step 

length and step width between the rectangular boxes were 

similar. 

Each subject was asked to step on the rectangular boxes in 

turn. The experimental process was fully monitored by a 

camera. After the experiment, the landing and departure time 

of each step was extracted from the video shot by the camera. 

Then, the start and end timestamps of the footprints in each 

step were compared, using the 8-neighborhood connected-

component labeling algorithm. On this basis, the authors 

evaluated whether the footprint range is consistent with the 

rectangular boxes marked in advance. The comparison of 

footprint segmentation is shown in Table 2.  
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A long-time walking test was carried out to further verify 

the accuracy of the start and end timestamps of the footprints 

after segmentation. Each subject was asked to work normally 

in the test site for 3~5min. Then, the start and end timestamps 

of all footprints were computed by the 8-neighborhood 

connected-component labeling algorithm. Finally, the 

computed results were compared with those in the video. The 

number of correct and erroneous frames were counted to 

evaluate the clustering accuracy (Table 3). 

 

Table 2. The comparison of footprint segmentation 

 

Step number 
Parameters 

Footprint position Calculated position Recorded start and end timestamps Calculated start and end timestamps 

1 (10, 10) (25, 30) (11, 9) (26, 29) 1000, 2100 1000, 2100 

2 (15, 20) (20, 35) (14, 21) (20, 34) 2100, 3000 2100, 3000 

3 (65, 35) (40, 25) (65, 36) (41, 26) 3200, 4000 3200, 4000 

4 (10, 80) (40, 75) (11, 81) (41, 76) 4100, 4800 4100, 4800 

5 (85, 60) (30, 35) (86, 60) (30, 36) 4900, 5250 4900, 5250 

6 (30, 35) (50, 80) (31, 36) (51, 79) 5350, 5700 5350, 5700 

7 (105, 70) (30, 65) (106, 79) (30, 66) 5860, 6050 5860, 6050 

8 (110, 90) (70, 95) (111, 91) (71, 96) 6200, 6600 6200, 6600 

9 (70, 30) (140, 65) (71, 31) (141, 66) 7200, 7600 7200, 7600 

10 (100, 35) (50, 95) (101, 36) (51, 96) 8600, 9200 8600, 9200 

 

Table 3. The comparison of footprint segmentation for the 

long-time walking test 

 
Walking 

time 

Sampling 

frames 

Number of 

erroneous frames 

Accuracy 

rate 

3 min 19000 112 99.41% 

4 min 26000 137 99.47% 

5 min 32000 151 99.53% 

 

As shown in Table 3, the segmentation accuracy of our 

algorithm was 99%, indicating that our algorithm can 

accurately segment the start and end timestamps and 

coordinates of each footstep in the normal walking process. 

 

4.2 Verification of footprint recognition accuracy 

 

A total of 67 subjects were selected and asked to walk 

normally, slowly, rapidly or at a random speed on the plantar 

pressure platform, according to the prior process. The plantar 

pressure of each subject was measured, and used to recognize 

the left and right feet. The recognition accuracy is listed in 

Table 4. 

 

Table 4. The accuracy of footprint recognition 

 

Walking speed 

Right foot 

recognition 

rate 

Left foot 

recognition 

rate 

Average 

recognition 

rate 

Normally 0.986 0.988 0.987 

Slowly 0.987 0.989 0.988 

Rapidly 0.976 0.976 0.976 

Random speed 0.968 0.966 0.967 

 

As shown in Table 4, the recognition rate of left foot, that 

of right foot and the average recognition rate were higher in 

the three normal gait situations than the random speed 

situation. Through analysis, it is learned that some subjects 

failed to land their heels first in the random speed test, which 

pushes up the recognition error. 

 

 

5. CONCLUSIONS 

 

This paper collects the data of plantar pressure with the 

flexible force sensor. Then, the collected data were filtered by 

a self-designed filtering algorithm with time window. Inspired 

by the theory of plantar dynamics, an 8-neighborhood 

connected-component labeling algorithm was proposed to 

segment and cluster the plantar pressure images. Finally, the 

footprints were recognized based on the plantar pressure and 

shape of footprints. The experimental results show that the 

proposed footprint extraction method and footprint 

recognition method achieved desired segmentation and 

recognition rates. 
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