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Random patches network (RPNet) is an emerging deep learning method that can effectively 

extract the deep features from hyperspectral images. However, this network only relies on 

spectral bands in feature extraction, failing to make use of the information-rich spatial features. 

This paper puts forward another variant of the RPNet, named G-RPNet. The proposed network 

extracts the deep hierarchical Gabor features, with Gabor spatial features as inputs. The 

extracted deep hierarchical features were stacked to those extracted by the RPNet, and the final 

feature vectors were classified by the support vector machine (SVM). The integrated feature 

vectors inherit the merits of the deep hierarchical features of both RPNet and G-RPNet, laying 

a solid basis for the classification of hyperspectral images. Experiments were conducted on 

two real hyperspectral images (Indian Pines and Pavia University) from agricultural and urban 

areas. The results prove the superiority of the proposed method in the classification of 

hyperspectral images over some recent shallow and deep spatial-spectral classification 

techniques. 
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1. INTRODUCTION

Due to wealth spectral characteristics, hyperspectral images 

(HSI) are used in various fields such as agriculture, 

mineralogy, military, medicine, and urban planning. Although 

many advanced methods are proposed in the literature for 

feature extraction from HSI, how to exploit discriminative 

spectral-spatial features from this rich source of data is still a 

critical challenge. 

Based on the literature, different feature extraction methods 

such as principal component analysis (PCA), minimum noise 

fraction (MNF), independent component analysis (ICA) and 

wavelet decomposition and linear discriminant analysis 

(LDA) are proposed for extracting the spectral features of 

hyperspectral images. Due to the spectral confusion of similar 

pixels and the problem of mixed pixels, the classification of 

HSI with only spectral features may lead to noisy classified 

maps. To address this issue, a set of techniques are developed 

which use spatial features such as shape and texture of the 

image to improve the performance of pixel-based classifiers. 

Gray level co-occurrence matrix (GLCM) [1], Gabor filter 

banks [1], local binary pattern (LBP) [2], morphological 

profiles [3], attribute profiles [4], local surface fitting features 

(LSFFs), and image moments [5] are among the most 

important methods for generating the spatial features. As a 

core idea, these spatial features are generated before 

classification in the stage of spatial feature generation and then 

stacked to spectral features and classified via a robust classifier 

such as support vector machines (SVM) because of its ability 

to handle the high dimensional feature vectors. In this 

direction, the multiple spatial features (morphological profiles, 

Gabor features and GLCM features) are combined with 

spectral features and final spatial-spectral features vectors are 

classified via SVM [6]. 

Recently, deep learning is an active topic in the HSI 

classification concept because of its ability for extracting the 

deep features which are more robust and discriminative in 

comparison to shallow features. Until now, many deep 

learning models are proposed for the classification of HSI. As 

the first attempts in literature, Chen et al. [7] proposed the 

stacked Autoencoder (SAE) for extracting the deep spatial-

spectral features of HSI. Improved Autoencoder model named 

stacked sparse Autoencoder (SSAE) is proposed by Tao et al. 

[8]. The Deep belief network (DBN) is introduced by Chen et 

al. [9] based on a singular restricted Boltzmann machine to 

learn the shallow and deep features of HSI. A convolutional 

neural network (CNN) is adopted for the classification of HIS 

[10]. In this model, CNN is trained via spatial patches around 

each labeled pixel, and then the trained model predicts the 

label of each test pixel based on surrounding pixels. PCANet 

is proposed by Chan et al. [11] in which PCA transform is used 

to learn the convolutional kernels and then extracted deep 

features are classified via SVM.   

As the recent trend, spatial features (i.e. attribute profiles 

and Gabor features) are used in combination with deep models 

[4, 12]. This is motivated by the ability of deep models to 

extract more abstract and robust features from shallow spatial 

features. Despite the appropriate performance of deep models 

in the classification of HSI, there are still some issues that 

should be addressed: Computational burden is the first issue 

that decreases the applicability of deep models. As another 

issue, in many deep learning models, the deepest level of 

features (features from the last network layer) in the network 

is used in the Softmax layer for the analysis of HSI. For 

example, Aptoula et al., based on their flowchart, only the 

deep features of the third convolution layer are used in the 

fully connected layer for classification of HIS and the other 

deep features of first convolution layer and second 

convolution layer are discarded [4].   

These two major issues are addressed in some new studies. 

Zhao et al. [13] proposed a novel framework named multiple 

convolutional layers fusion (MCLF) which can exploit 
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different levels of deep features in the classification of HSI. 

Rotation based deep forest (RBDF) is proposed by Cao et al. 

[14] in which the output probability of each layer is used as 

the supplement feature of the next layer, and rotation forest is 

used to increase the discriminative power of features. As a 

recent study, the random patches network (RPNet) is proposed 

by Xu et al. [15] that simulates a deep model with the principal 

component analysis and convolutional kernels that are directly 

extracted from image random patches without any training 

stage.  

Although the original RPNet has an excellent ability for 

extracting the deep features from different layers of deep 

network with a low-computational burden, it only uses the 

original spectral bands as the input features. In other words, 

the original RPNet neglects the spatial features as another rich 

source of data. Motivated from the ability of Gabor filter banks 

to extract the image objects from different scales and 

orientations, in this study we introduce the new variant of 

RPNet, named G-RPNet, based on Gabor features. In G-

RPNet, Gabor spatial features which are produced from 

different scale and orientation are used as the input of RPNet 

and deep Gabor features are extracted from different layers of 

the network. To put in a nutshell, the main contributions of this 

paper are as follows: 

• This paper, motivated by the ability of Gabor filter banks 

in spatial feature extraction from different directions and 

scales, G-RPNet is proposed which uses the Gabor features as 

inputs to extract the hierarchical deep Gabor features. 

• As an innovative point, a method named SGDFF 

(Spectral-Gabor Deep Features Fusion) is proposed in this 

paper in which extracted deep features of G-RPNet are stacked 

with deep features of the original RPNet. SGDFF takes 

advantage of both shallow/ hierarchical deep Gabor-spectral 

features. 

In section 2, we summarize the concepts of Gabor filters, 

SVM, and introduce the G-RPNet and the method of 

combining the deep spatial-spectral features. Section 3 

introduces the two hyperspectral images which are used in 

experiments. Section 4 reports the results of classification 

followed by discussions. Moreover, last section 5 concludes 

the study.  

 

 

2. METHODOLOGY 
 

2.1 Gabor features  

 

Gabor features as spatial features are used to extract image 

objects in different directions and scales. The core of the 

Gabor feature extraction method is the 2D Gabor filter 

function that is shown in the spatial domain as below [16, 17]: 

 

𝜙(𝑥, 𝑦) =
𝑓2

𝜋𝛾𝜇
𝑒

−(
𝑓2

𝛾2𝑥′2+
𝑓2

𝛾2𝑦′2)+𝑗2𝜋𝑓𝑥′

                (1) 

𝑥′ = 𝑥 𝑐𝑜𝑠(𝜃) + 𝑦 𝑠𝑖𝑛(𝜃) 

𝑦′ = −𝑥 𝑠𝑖𝑛(𝜃) + 𝑦 𝑐𝑜𝑠(𝜃) 

 

in which, f is the filter tuning frequency and γ, μ control the 

bandwidth which corresponds to two perpendicular axes of 

Gaussian. θ is the rotation angle of both Gaussian and plane 

wave. Fourier transformed version function (1) has the 

following Eq. (2) in the frequency domain [16, 17]: 

 

𝜙(𝑢, 𝑣) = 𝑒
−𝜋2(

𝑢′−𝑓

𝛼2  +
𝑣′

𝛽2)
                          (2) 

𝑢′ = 𝑢 𝑐𝑜𝑠(𝜃) + 𝑣 𝑠𝑖𝑛(𝜃) 

𝑣′ = −𝑢 𝑠𝑖𝑛(𝜃) + 𝑣 𝑐𝑜𝑠(𝜃) 

 

which is the single Gaussian band-pass filter. Gabor features 

are constructed from responses of Gabor filters (1) or (2), 

commonly, in different directions and scales. Output values of 

Gabor filter are complex, and usually, its magnitude is used. 

Due to the high dimensionality of HSI in this study, Gabor 

features are generated from the first three principal 

components of HSI (which contain above 95% of variance).  

MATLAB image processing toolbox is carried out for 

generating the Gabor features in the four directions [0, 45, 90, 

135] and 24 scales (in MATLAB, wavelength values in the 

range [2:25]). Based on this setting, a total of 288 Gabor 

features are generated from the first three principal component 

analysis features (PCs) for each data set and are used in 

experiments. 

 

2.2 G-RPNet 

 

In RPNet, there is no training stage, despite the traditional 

deep learning. In this model, random patches that contain the 

useful geometrical and textural information are selected from 

the image and are used as the convolution kernels. G-RPNet, 

as a variant of original RPNet, uses the Gabor features from 

different scale and orientation as inputs to extract the 

hierarchical deep Gabor features. G-RPNet same as RPNet has 

two major layers, including principal component analysis 

(PCA) and data whitening, and convolution with random patch 

selection and rectified linear units (ReLU). More details of 

these layers are as follows [15]: 

To reduce the computation burden of the model, PCA is 

used for the features extraction of each layer of RPNet. In 

order to create the features with similar variances and to 

decrease the correlations of the features, the whitening 

operation is applied to p extracted features of the PCA layer.  

In the next layer, we randomly selected the k pixels from 

whitened data, and the k patches around them with size w×w×p 

are used as convolutional kernels. As so, we can get the k 

features maps with convolving the p whitened images with k 

convolutional kernels as follows: 

 

𝐼𝑖 = ∑ 𝑋whitened 
𝑗

∗  𝑃𝑖
𝑗𝑝

𝑗=1  , 𝑖 = 1, … , 𝑘              (3) 

 
where, * denotes the convolution operation, Ii is the ith feature 

map, 𝑋whitened 
𝑗

is the jth band of whitened data and 𝑃𝑖
𝑗
 is the jth 

dimension of the ith random patch. Convolutional kernels are 

slide in all over the image with a stride of 1, and mirror 

extension is used for pixels in the edge of the image. For 

improving the sparsity of features, G-RPNet, the same as 

RPNet, uses the rectified linear unit (ReLu) as the activation 

function. 

G-RPNet with two deep layers is shown in Figure 1. Based 

on this figure, original Gabor features (Gi) and deep Gabor 

features from different deep layers (hierarchical deep Gabor 

features, DGi) are stacked and considered as final features 

vectors of G-RPNet. The final feature vector in each pixel (i,j) 

is shown below: 

 

𝐺 − 𝑅𝑃𝑁𝑒𝑡(𝑖,𝑗) = [𝐺1; … , 𝐺𝑅; 𝐷𝐺1; 𝐷𝐺2; … ; 𝐷𝐺𝑙]         (4) 
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R is the number of original Gabor features and l is the number of hierarchical deep Gabor features. 

 
 

Figure 1. Flowchart of G-RPNet 

 
2.3 Support vector machines 
 

Support vector machines (SVM), as the non-parametric 

supervised classifier, is widely used for classification of high 

dimensional data, such as HSI, because of its excellent 

performance and its ability to handle the high dimensional data. 

SVM classifies the data based on maximizing the geometrical 

margin and minimizing the empirical error. In the context of 

HSI classification, commonly, kernel trick is used to map the 

data to the higher dimensional space in which data are linearly 

separable. Given p training sample [(x1,y1),(x2,y2),…,(xp,yp)] in 

which xp is the N-dimensional vector correspond to N features 

and yp is the class labels {-1,+1}. To classify the data with 

SVM, the following function should be maximized with 

respect to 𝛼𝑖  (Lagrange multipliers) [18]: 

 

𝐿 = ∑ 𝛼𝑖𝑖 +
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖𝑥𝑗)𝑖,𝑗                  (5) 

 

Given non-linear mapping ϕ(x) [19] Eq. 5 can be 

represented by:  

 

𝐿 = ∑ 𝛼𝑖𝑖 +
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝜙(𝑥𝑖). 𝜙(𝑥𝑗))𝑖,𝑗          (6) 

 

A kernel function is defined as: 

 

𝐾 = 𝜙(𝑥𝑖). 𝜙(𝑥𝑗)                            (7) 

 

By substituting (7) in (6) and solving the problem, SVM 

decision function for test sample x is shown as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖
𝑝
𝑖=1 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏)         (8) 

 

in which, b is computed from 𝛼𝑖 . In this study, cubic 

polynomial kernel with the following formula is used to 

classify of spatial-spectral features [5]: 

 

𝐾(𝑥1, 𝑥2) = (
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑥1𝑥2

𝑇)3       (9) 

 

𝑥1, 𝑥2  are the two arbitrary feature vector, and T vector 

transpose. Also, each feature vector is mapped to [-255,255]. 

It is worth to note that, SVM is inherently a two-class classifier 

that is extended to the multiclass problem by two techniques 

named "one against one "and "one against all". 

 

2.4 Stacking the G-RPNet and RPNet features 

 

As mentioned before, the original RPNet can only extract 

the hierarchical deep features based on spectral features and 

ignores the spatial features as the inputs. To address this issue 

in this study, G-RPNet is proposed that uses the Gabor features 

as the inputs of RPNet to extract the hierarchical deep Gabor 

features. Due to complement characteristics of Gabor and 

spectral features, the SGDFF method is proposed in this study. 

Final feature vectors of SGDFF consist of stacking the 

extracted features of RPNet and G-RPNet. In other words, the 

feature vector of RPNet and SGDFF for every pixel (i, j) are 

shown below: 

 

𝑅𝑃𝑁𝑒𝑡(𝑖,𝑗) = [𝑏1; 𝑏2; … ; 𝑏𝑁;  𝐷𝑏1; 𝐷𝑏2; … ; 𝐷𝑏𝑆]        (10) 

 

𝑆𝐺𝐷𝐹𝐹(𝑖,𝑗) = [𝑅𝑃𝑁𝑒𝑡(𝑖,𝑗); 𝐺 − 𝑅𝑃𝑁𝑒𝑡(𝑖,𝑗)]            (11) 

 

In (10) bi indicates the original spectral bands, N is the 

numbers of original bands, 𝐷𝑏𝑖is the hierarchical deep features 

which are extracted via RPNet, S is the numbers of RPNet deep 

features. Then, final vectors of SGDFF are classified via SVM 

because of its ability to handle the high dimensional data. 
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3. DATA SETS 
 

Two real hyperspectral images, Indian Pines and Pavia 

University, are used in this study. Their details are as follows. 
 

3.1 Indian pines 

 

This hyperspectral image is collected by the AVIRIS sensor 

in 1992 from Indianapolis in the USA. After removing the 

noisy and water absorption bands, the remaining 200 spectral 

bands are used in experiments. The size of the image is 

145×145 pixels, and the spatial resolution is 20 meters. This 

scene contains the 16 agricultural classes such as soybean, 

corn, etc. a false-color image of this scene is shown in Figure 

2. 

 

 
 

Figure 2. Indian pines hyperspectral image 

 

3.2 Pavia University 

 

This hyperspectral image is collected by ROSIS 3 sensor 

from Pavia University in northern Italy. After removing the 

noisy and water absorption bands, the remaining 103 spectral 

bands are used in experiments. The size of the image is 

610×340 pixels, and the spatial resolution is 1.3 meters. This 

urban scene contains the nine class of information such as 

asphalt, bitumen, etc. a false-color of this scene is shown in 

Figure 3. 

 

 
 

Figure 3. Pavia University hyperspectral image 

 

 

4. EXPERIMENTAL RESULTS  
 

Experiments of this study are conducted on two real 

hyperspectral images Indian pines and Pavia University. For 

both data sets, two sizes of training samples, 5%, and 10%, of 

the ground truth are randomly selected as training samples, 

and remaining samples of ground truth are considered as test 

samples. In all experiments mean of the classification overall 

accuracies of ten times running of the method with different 

sets of training and test samples are reported. MATLAB 2019a 

is used for the implementation of all experiments. SVM is 

implemented based on LibSVM [20]. 

 

4.1 Parameters analysis 

 

Same as RPNet, G-RPNet has three important parameters 

including, the size of the patches (w), number of the random 

patches (k), and depth or the number of the network layers.  To 

investigate the impacts of these parameters, in the first 

experiment of this section the depth of the G-RPNet for both 

data is set as 1 and the performance of G-RPNet for both data 

are studied with different values of w and k. Extracted features 

of each case are classified in the situation of 10% of training 

samples via SVM, and results for both data set are shown in 

Figure 4. a, and 4. c. The analyses of results are summarized 

as follows: 

 

• For Indian pines, w=31 is chosen as the optimum values 

while w=35 is chosen for Pavia University. The size of the 

w is in the correspondence with the size of the image 

objects. Therefore, for Pavia University with larger 

objects, the larger window size is better.  

• For Pavia University image with high spatial resolution 

from the complex urban area, to extract the more efficient 

feature, larger values of k=50 is needed in the comparison 

to k=20 for Indian Pines.  

 

 
a 

 
b 
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c 

 
d 

 

Figure 4. Parameters analysis of G-RPNet- a, b) Indian 

Pines- c, d) Pavia University 

 

In the second experiment by considering the optimum 

values of w and k for each data set, we investigate the impact 

of depth or the number of layers. Classification results when a 

different number of layers are considered for both data sets are 

shown in Figure 4. b and 4. d. The plot of Indian Pines has 

some fluctuation, and the best result is obtained when a 

number of layers is 7 but for Pavia University best result is 

obtained in 5 and after that adding the more layers has no 

impact on results. 

 

4.2 Results and discussions 

 

To evaluate the efficiency of the proposed method for 

classification of hyperspectral images, in this section we 

compare the classification result of the proposed method (G-

RPNet and SGDFF) with other spatial-spectral classification 

methods which their more descriptions are as follows: 

• Spectral: In this method, original hyperspectral bands are 

classified with SVM classifier with parameters tuning as 

[5]. This method is implemented in Matlab by authors.  

• Gabor: In this method dimensionality of original 

hyperspectral bands are reduced based on PCA and the 

first three PCs are used for generating the Gabor features 

in 4 direction and 24 scales and final Gabor features are 

classified via SVM with parameters tuning as [5]. This 

method is implemented in Matlab by authors. 

• Spectral ⊕ Gabor: In this method original spectral 

features are stacked ( ⊕  means stacking) with Gabor 

features and final spectral-Gabor features are classified 

via SVM with parameters tuning as [5]. This method is 

implemented in Matlab by authors. 

• SSTF: In this method, spectral features are stacked with 

Morphological, Gabor and GLCM textural features and 

final combined spatial-spectral features vectors are 

classified via SVM. Due to the unavailability of codes, the 

results of this method are obtained from the original paper 

[6].  

• Moment: In this method Zernike moments features are 

extracted as the spatial features and stacked to spectral 

features and final combined features vectors are classified 

via SVM. Due to the unavailability of codes, the results of 

this method are obtained from the original paper [5]. 

• FCLFN: In this method after the initial dimensionality 

reduction of HSI with PCA, deep features are extracted 

from different convolutional layers and are combined. 

Finally, the combined deep features can be used to obtain 

the final classification map via softmax. Due to the 

unavailability of codes, the results of this method are 

obtained from the original paper [13]. 

• RBDF: In this simple deep learning model, the output 

probability of each layer is used as the supplement feature 

of the next layer. Rotation forest is used for increasing the 

discriminative power and spatial information is 

incorporated in the model by neighboring pixels. Due to 

the unavailability of codes, the results of this method are 

obtained from the original paper [14]. 

• RPNet: This method simulates a deep learning model 

based on PCA transform and random patches. More 

precisely, after the initial dimensionality reduction of 

original HSI via PCA, some patches are randomly 

selected from PCs and convolved to PCs to extract the 

deep features. This procedure is repeated in numerous 

layers to extract the hierarchical deep features. Finally, 

deep features of each layer are stacked to original spectral 

bands and combined features vector are classified via 

SVM. This method is implemented in Matlab by authors 

and final results are obtained based on the reported tuning 

parameters [15]. 

Final overall classification accuracies of proposed methods 

and other competitor methods are reported in Table 1. The 

analyses of results are summarized as follows: 

• Based on the results of Table 1, the classification of 

hyperspectral images with the only spectral band cannot 

lead to good results due to the spectral similarity of classes. 

On the other side, Gabor features that contain the scale 

and orientation information is more useful than spectral 

features, especially in urban areas such as Pavia 

University.  

• Although the classification results of Stacked the spectral 

features and spatial features such as Spectral ⊕Gabor, 

SSTF, and moment features reach to a high level of 

accuracy, these methods ignore the ability of deep 

features.  

• When the adequate numbers of training samples are 

available (10%), G-RPNet performs better than the 

original Spectral-based RPNet, but the performance of G-

RPNet is degraded when a few numbers of training 

samples (5%) are available.  

• In overall, best results are achieved in the case of SGDFF 
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when shallow spatial-spectral features and hierarchical 

deep spectral-spatial features are stacked and classified 

via SVM. It is worth to note that in proposed SGDFF is 

more robust to the number of training samples in urban 

areas in comparison to other methods. 

This experiment proved that SGDFF that takes advantage of 

both deep spectral and spatial features is an excellent method 

for the classification of HSIs both from agricultural and urban 

areas. For the sake of visual comparison, classified images of 

proposed SFDFF and other methods (which are implemented 

by authors) for the situation of 10% training samples are 

shown in Figure 5 and Figure 6 for both data sets. Based on 

these figures, we can say that SFDFF produced the smoothest 

classified maps with the lowest levels of salt and paper noise. 

All experiments are implemented with a desktop computer 

with specifications of Intel(R) Core(TM) i5-6400 CPU and 8.00 

GB RAM. Processing times of features generation for Pavia 

university in SGDFF is about 50 seconds which is five times 

higher than the original RPNet with 10 seconds. Although 

proposed SGDFF is not superior in the computational times in 

comparison to some methods (i.e. Spectral, Gabor, 

Spectral⊕Gabor, SSTF, RPNet), it is still faster than most of 

the deep learning methods (i.e. RBDF with 693 seconds).  

 

Table 1. Comparison with other methods 

 

Method 

Training samples size 

10% 5% 

India

n 

Pines 

Pavia 

Universit

y 

India

n 

Pines 

Pavia 

Universit

y 

Spectral 79.30 89.76 73.38 89.95 

Gabor 97.91 98.64 93.93 97.79 

Spectral⊕Gabor 98.55 99.71 96.59 99.49 

SSTF (2015) [6] 96.48 99.37 92.78 98.95 

Moment (2016) [5] NA* 99.82 NA* 99.60 

FCLFN (2019) [13] 98.56 NA* ≈96 NA* 

RBDF (2019) [14] NA* 99.52 NA* 99.42 

RPNet (2018) [15] 97.76 99.26 95.46 98.88 

Propose

d 

G-

RPNet 
97.98 99.48 94.97 

98.52 

SGDF

F 
99.12 99.93 97.34 

99.84 

NA*: In this situation, results of classification are not reported 

in the source paper. 

 
Ground truth image 

 
spectral 

 
Gabor 

 
Spectral⊕Gabor 

 
RPNet 

 
SGDFF 

 

Figure 5. Indian pines classified image with different methods 

 

 
Ground truth image 

 
spectral 

 
Gabor 

404



 

 
Spectral⊕Gabor 

 
RPNet 

 
SGDFF 

 

Figure 6. Pavia university classified image with different methods 

 

 

5. CONCLUSION 

 

In this paper, a new variant of RPNet named G-RPNet is 

proposed that uses Gabor spatial features as the inputs of the 

network. G-RPNet is used to extract the hierarchical deep 

spatial features from different orientations and scales. Due to 

the complementing nature of Gabor and spectral features, 

extracted features of G-RPNet and original RPNet are stacked 

and resultant feature vectors are classified via SVM classifier. 

The final results demonstrate that the proposed method of this 

study outperforms the other recent methods and has great 

ability in the classification of hyperspectral images.  

In this paper, different Gabor-spectral features are stacked and 

then classified by SVM, but based on literature; it seems that 

it is more efficient to combine the different deep features in 

composite kernel SVM. Therefore, this concept is suggested 

for future studies. 

 

 

REFERENCES 

 

[1] Imani, M., Ghassemian, H. (2016). GLCM, Gabor, and 

morphology profiles fusion for hyperspectral image 

classification. In 2016 24th Iranian Conference on 

Electrical Engineering (ICEE) IEEE. Shiraz, Iran, pp. 

460-465. 

http://dx.doi.org/10.1109/IranianCEE.2016.7585566 

[2] Gao, F., Wang, Q., Dong, J., Xu, Q. (2018). Spectral and 

spatial classification of hyperspectral images based on 

random multi-graphs. Remote Sensing, 10(8): 1271. 

http://dx.doi.org/10.3390/rs10081271 

[3] Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R. 

(2005). Classification of hyperspectral data from urban 

areas based on extended morphological profiles. IEEE 

Transactions on Geoscience and Remote Sensing, 43(3): 

480-491. http://dx.doi.org/10.1109/TGRS.2004.842478 

[4] Aptoula, E., Ozdemir, M.C., Yanikoglu, B. (2016). Deep 

learning with attribute profiles for hyperspectral image 

classification. IEEE Geoscience and Remote Sensing 

Letters, 13(12): 1970-1974. 

http://dx.doi.org/10.1109/LGRS.2016.2619354 

[5] Mirzapour, F., Ghassemian, H. (2016). Moment-based 

feature extraction from high spatial resolution 

hyperspectral images. International Journal of Remote 

Sensing, 37(6): 1349-1361. 

http://dx.doi.org/10.1080/2150704X.2016.1151568 

[6] Mirzapour, F., Ghassemian, H. (2015). Improving 

hyperspectral image classification by combining spectral, 

texture, and shape features. International Journal of 

Remote Sensing, 36(4): 1070-1096.  

[7] Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y. (2014). 

Deep learning-based classification of hyperspectral data. 

IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 7(6): 2094-2107. 

http://dx.doi.org/10.1109/JSTARS.2014.2329330 

[8] Tao, C., Pan, H., Li, Y., Zou, Z. (2015). Unsupervised 

spectral–spatial feature learning with stacked sparse 

autoencoder for hyperspectral imagery classification. 

IEEE Geoscience and Remote Sensing Letters, 12(12): 

2438-2442. 

http://dx.doi.org/10.1109/LGRS.2015.2482520 

[9] Chen, Y., Zhao, X., Jia, X. (2015). Spectral–spatial 

classification of hyperspectral data based on deep belief 

network. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 8(6): 2381-

2392. https://doi.org/ 10.1109/JSTARS.2015.2388577 

[10] Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P. (2016). 

Deep feature extraction and classification of 

hyperspectral images based on convolutional neural 

networks. IEEE Transactions on Geoscience and Remote 

Sensing, 54(10): 6232-6251. 

http://dx.doi.org/10.1109/TGRS.2016.2584107 

[11] Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y. 

(2015). PCANet: A simple deep learning baseline for 

image classification? IEEE Transactions on Image 

Processing, 24(12): 5017-5032. 

http://dx.doi.org/10.1109/TIP.2015.2475625 

[12] Kang, X., Li, C., Li, S., Lin, H. (2017). Classification of 

hyperspectral images by Gabor filtering based deep 

network. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 11(4): 1166-

1178. http://dx.doi.org/10.1109/JSTARS.2017.2767185 

[13] Zhao, G., Liu, G., Fang, L., Tu, B., Ghamisi, P. (2019). 

Multiple convolutional layers fusion framework for 

hyperspectral image classification. Neurocomputing, 

339: 149-160. 

405



 

http://dx.doi.org/10.1016/j.neucom.2019.02.019 

[14] Cao, X., Wen, L., Ge, Y., Zhao, J., Jiao, L. (2019). 

Rotation-based deep forest for hyperspectral imagery 

classification. IEEE Geoscience and Remote Sensing 

Letters, 16(7): 1-4. 

http://dx.doi.org/10.1109/LGRS.2019.2892117 

[15] Xu, Y., Du, B., Zhang, F., Zhang L. (2018). 

Hyperspectral image classification via a random patches 

network. ISPRS Journal of Photogrammetry and Remote 

Sensing, 142: 344-357. 

http://dx.doi.org/10.1016/j.isprsjprs.2018.05.014 

[16] Ilonen, J., Kamarainen, J.K., Paalanen, P., Hamouz, M., 

Kittler, J., Kalviainen, H. (2008). Image feature 

localization by multiple hypothesis testing of Gabor 

features. IEEE Transactions on Image Processing, 17(3): 

311-325. http://dx.doi.org/10.1109/TIP.2007.916052 

[17] Jain, M., Sinha A. (2015). Classification of satellite 

images through Gabor filter using SVM. International 

Journal of Computer Applications, 116(7): 18-21. 

http://dx.doi.org/10.5120/20348-2534 

[18] Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., 

Vila-Francés, J., Calpe-Maravilla, J. (2006). Composite 

kernels for hyperspectral image classification. IEEE 

Geoscience and Remote Sensing Letters, 3(1): 93-97. 

http://dx.doi.org/10.1109/LGRS.2005.857031 

[19] Cover, T.M. (1965). Geometrical and statistical 

properties of systems of linear inequalities with 

applications in pattern recognition. IEEE Transactions on 

Electronic Computers, EC-14(3): 326-334. 

http://dx.doi.org/10.1109/PGEC.1965.264137 

[20] Chang, C.C., Lin, C.J. (2011). LIBSVM: A library for 

support vector machines. ACM Transactions on 

Intelligent Systems and Technology (TIST), 2(3): 27. 

http://dx.doi.org/10.1145/1961189.1961199

 

406




