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The machine learning methods for ultra-wideband (UWB) positioning in non-line-of-sight 

(NLOS) environment either mitigates the NLOS ranging errors after identifying the NLOS 

signals (indirect mitigation methods) or directly mitigates the errors (direct mitigation 

methods). Despite their positioning accuracy, the indirect mitigation methods face two 

problems: the positioning system faces a high computing load, for lots of samples are needed 

to train the classification model and the regression model, respectively; the uneven distribution 

of the NLOS signal samples is often ignored, reducing the generalization ability of the 

regression model. To solve the two problems, this paper designs an adaptive approach to 

reduce the complexity and improve the positioning accuracy of UWB system in complex 

environment. Under this approach, the moment-based imbalanced binary classification 

(MIBC) is firstly adopted to identify the NLOS signal samples, and divides the samples into 

mild and severe obstruction propagation signals, according to the magnitude of NLOS signal 

ranging errors; then, the fuzzy comprehensive evaluation (FCE) and Gaussian process 

regression (GPR) were combined into the F-GPR to mitigate the ranging errors of the two 

types of the signals. The excellence of the proposed adaptive approach was fully proved 

through simulations, in comparison with the hybrid method and the global GPR. 
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1. INTRODUCTION

One of the main problems in ultra-wideband (UWB) 

positioning is the ranging errors caused by non-line-of-sight 

(NLOS) propagation. The ranging errors may lead to a positive 

bias in distance measurement [1-5], which greatly suppresses 

positioning accuracy. Machine learning methods are widely 

adopted to solve the NLOS ranging errors in UWB positioning, 

thanks to the capabilities of fast learning and arbitrary 

nonlinear approximation. In this way, the NLOS ranging 

errors can be mitigated effectively without prior information 

like channel statistics and characteristic parameters [6-10]. 

The machine learning methods either mitigates the NLOS 

ranging errors after identifying the NLOS signals (indirect 

mitigation methods) or directly mitigates the errors (direct 

mitigation methods).  

The indirect mitigation methods end up by estimating the 

tag location through mature LOS positioning strategies [11-

16]. A typical indirect mitigation method is the hybrid method 

[17], which boasts a high positioning accuracy under the 

coexistence of line-of-sight (LOS) and the NLOS signals. This 

method identifies the NLOS signals by a nonparametric 

classifier called least squares support vector machine (LS-

SVM), and then mitigates the NLOS ranging errors by through 

LS-SVM regression. There are two problems with the hybrid 

method. First, the positioning system faces a high computing 

load, for lots of samples are needed to train the classification 

model and the regression model, respectively. To solve the 

problem, Tian [18] considered the NLOS identification as a 

single classification problem and proposed the support vector 

data description (SVDD) to identify the NLOS signals. 

Although the SVDD saves half of the training time compared 

with the LS-SVM, the classification accuracy is not high 

enough. Second, despite the error mitigation through 

regression, there are still a class of NLOS ranging errors within 

1m and another class of the NLOS ranging errors above 1m, 

and some residual ranging errors have negative values [17]. 

This is because the estimation accuracy of multiple regression 

model depends not only on its parameters, but also on the 

distribution of the training samples (NLOS signals). To 

achieve accurate estimation through regression, it is necessary 

to divide the NLOS signal samples into mild and severe 

obstruction propagation signals according to the magnitude of 

their ranging errors. Recently, Wen et al. [16] developed an 

NLOS discrimination and compensation method based on 

obstruction classification. The method can achieve good 

positioning accuracy, only if the received signal propagates 

through one class of obstruction.  

The direct mitigation methods directly mitigate the NLOS 

ranging errors without identifying the NLOS signals. For 

example, Wymeersch [19] proposed a general direct 

mitigation method by SVM regression, a.k.a. the global 

Gaussian process regression (GPR). Their method estimates 

both LOS and NLOS ranging errors based on waveform and 

estimated distance. While reducing the system complexity, 

this method has a poorer positioning accuracy than the hybrid 

method [17]. Overall, the method reduces the complexity at 

the cost of positioning accuracy. 

In the light of the above, this paper designs an adaptive 

approach to reduce the complexity and improve the 
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positioning accuracy of UWB system in complex environment. 

The adaptive approach first identifies the NLOS of the 

received signals and then establishes regression models for 

mild and severe obstruction propagation signals, respectively, 

to mitigate ranging errors of the two classes of the NLOS 

signals. In the first step, a fast-binary imbalance classification 

method was adopted to identify the NLOS quickly and 

accurately. This method is called moment-based imbalanced 

binary classification (MIBC). Compared with LS-SVM and 

SVDD, the MIBC has a low computing complexity and high 

classification performance. In the second step, the fuzzy 

Gaussian process regression (F-GPR) was designed to 

overcome the low estimation precision caused by uneven 

distribution of NLOS signal samples. The F-GPR involves 

three operations: fuzzy comprehensive evaluation (FCE) of the 

membership degree of the NLOS test signals (mild and severe 

obstruction propagation signals), estimation of the NLOS 

ranging errors by the GPR sub-models, and weighted 

summation of ranging errors of the test signals. The F-GPR 

has better estimation accuracy than the global GPR [19] and 

the hybrid method [17]. 

In addition, the adaptive ability of our approach is reflected 

in the following aspects. If there are enough LOS signals, these 

signals will be directly used for positioning; otherwise, the two 

classes of NLOS signals are mitigated and then used for 

positioning. In the latter case, if the NLOS signal being used 

has a greater-than-0.7 membership degree, the NLOS ranging 

errors will be mitigated directly as a single obstruction degree 

signal, whether it is a mild or severe obstruction propagation 

signal. To estimate the NLOS ranging errors, the adaptive 

approach requires the waveform features and the estimated 

distance of the NLOS signals, eliminating the need for any 

prior information of the channel or details on the environment. 

The remainder of this paper is organized as follows: Section 

2 mathematically describes the problem of the NLOS ranging 

errors; Section 3 introduces the principles of the three 

algorithms used by our adaptive approach to mitigate the 

NLOS ranging errors; Section 4 verifies the effectiveness of 

the MIBC in identifying the NLOS signals, and the F-GPR in 

estimating the NLOS ranging errors; Section 5 examines the 

positioning performance of the adaptive approach; Section 6 

puts forward the conclusions. 

 

 

2. PROBLEM STATEMENT 

 

This section models the NLOS ranging errors and describes 

the UWB positioning algorithm, highlighting the importance 

of the NLOS error mitigation to UWB positioning. 

 

2.1 System setup 

 

The UWB positioning system contains two kinds of nodes: 

reference nodes with known positions and tags with unknown 

positions. In a 2D plane, the tag position can be pinpointed 

based on its distances to at least three reference nodes. In a 3D 

space, the tag position can only be identified by increasing the 

number of reference nodes or the angle information of 

received signals. 

For convenience, the 2D position P of one tag is taken as 

the object. Let N be the number of reference nodes involved in 

tag positioning, Pi, i=1, 2, …, N be the position of each 

reference node, di(P,Pi)=||P-Pi|| be the real distance between 

the tag and the i-th reference node, and ˆ
id  be the estimated 

distance between the tag and the i-th reference node obtained 

by the time-of-arrival (TOA) ranging protocol. The real 

distance and the estimated distance can be represented by the 

following vectors: 

 

( ) ( ) ( ) ( )1 1 2 2, , , , , , ,
T

Nd d d=   1:N N
d P P P P P P P P      (1) 

 

( ) ( ) ( ) ( )1 1 2 2
ˆ ˆ ˆˆ , , , , , , ,

T

Nd d d =
 1:N N

d P P P P P P P P      (2) 

 

It is assumed that L out of the N estimated distances used to 

locate the tag are NLOS estimated distances. If L=0, there is 

no NLOS ranging error between the tag and all reference 

nodes; if L=N, all estimated distances contain NLOS ranging 

errors. Then, the ranging error of the tag and each reference 

node can be expressed as: 

 

1,...,
ˆ

1,...,

i i i

i

i i

e v i L
d

v i L N

 − + + =
= 

− + = +

P P

P P
                (3) 

 

where, ||•||, ei and vi are the real distance, the NLOS ranging 

error (a positive bias) and the system measurement error 

between the tag and a reference node, respectively. Under the 

influence of the NLOS environment, the ranging error ei is far 

greater than the system measurement error vi. Therefore, the 

latter is negligible in actual processing. Let ( )ˆ ,i i i id d = − P P  

and ˆ
i  be the ranging error and the estimate of the ranging 

error, respectively. Then, the estimated distance after error 

mitigation can be expressed as ˆ ˆ ˆm

i i id d= − , and the final 

residual ranging error as ( )ˆ ,m m

i i i id d = − P P . 

Therefore, the NLOS ranging errors must be mitigated 

before the UWB positioning. Once the ranging information is 

obtained, the tag position can be estimated by various 

positioning algorithms. Among them, the positioning method 

by l1-norm and l2-norm minimization is simple and robust, 

requiring no statistical information of the estimated distance. 

This method can be mathematically expressed as: 

 

( ) ( )1: 1:
ˆˆ argmin , ,N Nd d= −

P

P P P P P                   (4) 

 

Obviously, l1-norm is more robust against outliers than l2-

norm, because outliers incur only a linear cost in l1-norm and 

a quadratic cost in l2-norm. 

 

2.2 Ranging errors 

 

The data measured by Stefano, Wymeersch et al. are 

adopted for this research. These data were collected through 

an extensive ranging measurement campaign conducted in 

Massachusetts Institute of Technology (MIT), using UWB 

radios conforming to standards issued by the Federal 

Communications Commission [17-19]. The measured data 

shed light on how LOS and NLOS conditions affect the 

received waveform. Figure 1 offers a distribution histogram of 

ranging errors under LOS and NLOS conditions, and Figure 2 

presents two typical waveforms under LOS and NLOS 

conditions. 
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Figure 1. Distribution histogram of ranging errors under 

LOS and NLOS conditions 

  

 

 
 

Figure 2. Two typical waveforms under LOS (upper) and 

NLOS (lower) conditions 

 

The following can be observed from Figures 1 and 2: 

(1) The ranging errors of LOS and NLOS do not obey 

Gaussian distribution in the measured data. All the ranging 

errors are nonnegative, i.e. �̂�(P,P1:N)d(P,P1:N), because the 

first arrival path is overlooked by the leading-edge detection 

(LED) algorithm. 

(2) The ranging errors under LOS and NLOS conditions 

have different properties. Under LOS condition, 98% of the 

measured data have a ranging error within 1m; under the 

NLOS, only 28% of the measured data have a ranging error 

within 1m. 

(3) The waveforms received under LOS and NLOS 

conditions carry different features. These features can be used 

to identify NLOS waveforms and compensate for positive 

ranging errors through algorithms. 

 

 

3. MATHEMATICAL FRAMEWORK 

 

This section mainly introduces the principles of the three 

algorithms in the adaptive approach, including the MIBC, the 

FCE and the GPR. 

 

3.1 The MIBC 

 

The MIBC, proposed by Song et al. [20], provides a fast and 

accurate way to identify NLOS and LOS signals. This 

algorithm regards the NLOS identification as a classification 

problem with class-imbalance.  

Before using the MIBC, lots of the LOS signal samples need 

to be processed. Here, each LOS signal sample is represented 

by the first two moments of their probability distribution, i.e. 

the mean 𝒙 and covariance . Then, the MIBC model was 

established based on the two moments and n NLOS signal 

samples (xi)i{1,…,n}. Suppose there exists a hyperplane H(w,b) 

to correctly classify all the NLOS signal samples: 

 

 - , 1,...,b i n  0
T

i
w x                      (5) 

 

The hyperplane can also maximize the probability of 

correctly classifying the LOS signal samples which respect to 

the distribution with mean  𝒙 and covariance Σ: 

 

 
( , ), ,

max inf Pr 0b


 


 
0 b

-
T

x xw
w x


              (6) 

 

where, x~(𝒙,Σ) is to the class of probability distribution with 

mean  𝒙  and covariance Σ. This hyperplane H(w,b) is the 

optimal solution of the following optimization problem: 

 

1

1
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2

. . - 1 ,

0,

n
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T
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                 (7) 

 

where, C +  is the penalty factor to offset the model 

complexity and training error; ξi≥0 are the slack factors added 

because it is impractical to accurately classify all samples. 

Considering the features of formula (4), the MIBC is 

actually an extension of one-class SVM [21, 22]. Of course, 

there are two key differences between the MIBC and the one-

class SVM: First, the MIBC minimizes the Mahalanobis 

distance between x  of the LOS signal samples and its 

projection on the convex hull of NLOS signal samples, instead 

of the l2-norm of w; Second, the MIBC separates the NLOS 

signal samples from the mean of the LOS signal samples, 
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rather than from the origin of coordinates. Similar to the SVM 

algorithm, the solving algorithm (classifier) for the problem in 

formula (7) can be written as: 

 

1

ˆ( ) sign( ( ) 0)
n

i

i

f K b
=

= −  , -
i

z z x x                (8) 

 

If the LOS and NLOS signals are not linearly separable in 

the original space, the nonlinear classification problem can be 

solved by introducing the modified kernel function ˆ ( )K ,
i j

x x  

to map the original data to the high-dimensional space: 

 
1

2

( ) ( )
ˆ ( , ) exp( )K

−− −
= −



T

i j i j

i j

x x x x
x x


            (9) 

 

When it is used to identify the NLOS signals, the MIBC 

algorithm has an overall complexity of O(d3)+O(n3), where 

O(d3) is the computing load of covariance matrix, d is the 

dimension of signal waveform, and O(n3) is the computing 

load of the optimal solution to the dual problem. By contrast, 

the overall complexity of the SVDD is O(N 3). Because the 

LOS signals far outnumber the NLOS signals, the MIBC is 

much less complex than the SVDD. 

 

3.2 The FCE 

 

Some NLOS ranging errors are very large, while the others 

are very small. In addition, the sample distribution directly 

bears on the estimation of ranging errors through regression. 

For these two reasons, the NLOS signals can be classified 

according to the magnitude of NLOS ranging errors. If the 

ranging errors are within 1m, the NLOS signals are known as 

mild obstruction propagation signals; otherwise, the NLOS 

signals are known as severe obstruction propagation signals.  

In this paper, the waveform features of these two classes of 

NLOS obstruction propagation signals are collected in 

advance, and the membership degree of each NLOS test signal 

belonging to mild or severe obstruction propagation signal is 

computed by the FCE. Based on fuzzy mathematics, the FCE 

can clearly and systematically quantify the membership degree 

of an NLOS signal in UWB positioning [23, 24]. 

Before using the FCE, the factor set and the determination 

set are set up, respectively, as: 

 

 

 

, , ,

,

k r m

mild severe

X x x x x

Y y y

=


=


                            (10) 

 

where, xε, xk, xr and xm are the energy, Kurtosis, rise time and 

maximum amplitude of the waveform, respectively; ymild and 

ysevere are the two classes of obstruction propagation signals. 

These four factors are selected as the factor set because of the 

following facts: if a signal passes through severe obstruction, 

the energy and amplitude of the received signal will be greatly 

attenuated, reducing the concentration and kurtosis of the 

waveform amplitude distribution; it takes a longer time for the 

signal to rise after passing through severe obstruction than 

through mild obstruction. The degree of influence of each 

factor on judgment can be defined as: 

 

( , , , )k r mA =                                 (11) 

 

Then, the two classes of obstruction propagation signals 

were grouped based on the principle of 10-fold cross-

validation. One of the ten groups was taken as the test group, 

and the other nine groups were treated as training samples to 

provide prior values of the four factors of waveform. 

The probability that an NLOS test signal x0=(ε0, k0, r0, m0) 

is a mild obstruction propagation signal ymild can be calculated 

by: 

 

0 0 0

0 0

( ) ( ) ( )

( ) ( )

mild mild k mild

r mild m mild

k

r m

 = + +

+

     

   

x
          (12) 

 

where, μmild(ε0), μmild(k0), μmild(r0) and μmild(m0) are the 

probabilities that the NLOS test signal x0 is a mild obstruction 

propagation signal ymild judging by one of the four factors, 

respectively. The specific value of μmild(ε0) can be obtained by: 

 

0

0

1 0

0 0

0 0

1
( ) (1 ),

1, 1

p
j

mild

j

j j

p

if then

=

−
= −

− −
 =


 

 


   

 

                   (13) 

 

where, εj is the characteristic energy of the j-th prior waveform 

in the training samples of the mild obstruction propagation 

signals. The values of μmild(k0), μmild(r0) and μmild(m0) can be 

calculated in a similar manner. 

Similarly, the probability 
0( )severe

 x  that an NLOS test 

signal x0 is a severe obstruction propagation signal ysevere can 

also be obtained. Through normalization, a comprehensive 

evaluation result can be obtained for the NLOS test signal x0: 

 

0 0

0 0

( ) ( )
( , ),

( ) ( )

mild severe

mild severe

B
 

 

=

= +

 

 

  

x x

x x

                    (14) 

 

where, 0 0( ) ( )
andmild severe

  

 

x x
 are the membership degrees of 

the mild and severe obstruction propagation signals to which 

the NLOS test signal x0 belongs. Here, the two membership 

degrees are denoted as 1 and 2, respectively. Note that if 

either 1 or 2 is greater than 0.7, the NLOS ranging error will 

directly mitigated as a single obstruction degree signal; 

otherwise, the estimate of the ranging error ˆ
i  can be 

corrected by: 

 

1 2
ˆ ˆ ˆmild severe

i i i =  +                            (15) 

 

where, ˆ mild

i  and ˆ severe

i  are ranging errors estimated by the 

GPR model for mild obstruction propagation signals (M-GPR) 

and the GPR model for severe obstruction propagation signals 

(S-GPR). 

The above analysis shows that the FCE outputs the 

membership degrees of the two classes of obstruction 

propagation signals to which an NLOS signal belongs, rather 

than directly judge which class the signal falls into.  

 

3.3 The GPR 

 

The Gaussian process is a desirable tool to solve regression 

problems [25]. The GPR model can be generally described as: 
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= ( )y f +x                                  (16) 

 

where, x is the input vector; f is the function value 

corresponding to the input; 2(0, )nN   is a normally 

distributed observation noise ε; y is the observed value of each 

training sample. Hence, the prior distribution of the observed 

values of the training samples can be written as: 

 
2(0, ( , ) )n nN +y K X X I                    (17) 

 

The prior distribution of the joint probability of the observed 

value of a training sample and the predicted value f* of the test 

sample can be expressed as: 

 
2( , ) ( , )

0,
( , ) ( , )

n nN
f k


    + 
           

y K X X I K X x

K x X x x
       (18) 

 

where, 

 

1 2 1 2 1

2 1 2 2 2

1 2
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( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

n

n

n n n n

n

k k k

k k k

k k k

k k k  

 
 
 =
 
 
 

  =  

x x x x x x

x x x x x x
K X X

x x x x x x

K x X x x x x x x

      (19) 

 

Note that K(X,Y)=Kn=(kij) is an n-order Gram matrix formed 

by covariance of the NLOS signal training samples; kij=k(xi,xj) 

is the correlation between two NLOS signal training samples, 

xi and xj; K(K,x*)=K(x*,X)T is a pair of n-dimensional column 

vector and row vector formed by the covariance of an NLOS 

signal test sample x* and an NLOS signal training sample; 

k(x*,x*) is the covariance of an NLOS signal test sample. 

According to the probability theory, the posterior 

probability distribution of the predicted value f* can be 

described as: 

 

( ), , , cov( )f N f f  X y x                     (20) 

 
1

2( , ) ( , ) n nf
−

  =  + K x X K X X I y              (21) 

 

1
2

cov( ) ( , )

( , ) ( , ) ( , )n n

f k

−

=   −

   +  

x x

K x X K X X I K X x
         (22) 

 

f   and cov( )f   are the mean and variance of ranging 

error estimate corresponding to each NLOS signal test sample 

x*. Here, the covariance of training samples and test samples 

is computed by the popular squared exponential covariance 

function below: 

 
2

2 2

,2

( )
( , ) exp

2
f nk

l


 − −
 = + 

 
  

x x

x x
x x           (23) 

 

 

4. MITIGATION OF THE NLOS RANGING ERRORS 

 

This section verifies the performance of the adaptive 

approach in two steps. First, the author examined the 

effectiveness of NLOS signal identification by the MIBC. 

Next, the accuracy of F-GPR in estimating the NLOS ranging 

errors was evaluated. 

 

4.1 MIBC-based NLOS identification 

 

For comparison, the MIBC and the LS-SVM were both 

applied to identify the NLOS signals. The identification 

performance was evaluated by the area under the curve (AUC): 

the receiver operating characteristic curve (ROC). The ratio 

between LOS signal training samples to NLOS signal training 

samples was expressed as λ=nLOS:nNLOS. In addition, the 

acceptance rate of the LOS signals was defined as the true rate, 

that is, the proportion of LOS signal samples correctly 

identified as LOS signals in all LOS signal samples; the 

acceptance rate of the NLOS signals was defined as the false 

positive rate, that is, the proportion of NLOS signal samples 

incorrectly identified as LOS signals in all NLOS signal 

samples. The AUC values of the two algorithms under four 

different λ values are listed in Table 1. The calculation times 

of the two algorithms under the same scenarios are compared 

in Table 2. 

 

Table 1. The AUC values of the LS-SVM and the MIBC 

 

λ=nLOS:nNLOS 
AUC values 

LS-SVM MIBC 

1:0.4 0.9491 0.9628 

1:0.1 0.8623 0.9624 

1:0.08 0.8216 0.9623 

1:0.06 0.7840 0.9621 

 

Table 2. The calculation times of the LS-SVM and the MIBC 

(milliseconds) 

 

λ=nLOS:nNLOS 
Computational times 

Speed-up 
LS-SVM MIBC 

1:0.4 235 112 2.1 

1:0.1 95 28 3.4 

1:0.08 72 19 3.8 

1:0.06 33 8 4.2 

 

 
 

Figure 3. The ROCs of different algorithms at the λ of 1:0.06 

 

As shown in Tables 1 and 2, the MIBC, which uses four 

waveform features in the factor set F, outperformed the LS-

SVM at all four different λ values in identification accuracy 

439



 

and calculation efficiency. 

Furthermore, the LS-SVM, the SVDD and the MIBC were 

simulated at the λ of 1:0.06. Their ROCs are displayed in 

Figure 3. Since the SVDD only uses LOS signal samples, its 

AUC was basically unchanged and calculation time was only 

half that of the LS-SVM. The MIBC had the largest AUC 

among the three algorithms, an evidence of its excellence in 

NLOS signal identification. 

 

4.2 F-GPR-based error mitigation 

 

In our hybrid approach, the F-GPR process basically 

contains the following operations: First, two GPR sub-models, 

M-GPR and S-GPR, were set up based on the waveform 

features and estimated distances d̂  of the two classes of 

obstruction propagation signal training samples. Then, each 

test NLOS signal was subjected to the FCE, yielding two 

membership degrees ω1 and ω2. Meanwhile, the two GPR sub-

models output two NLOS ranging error estimates ˆ mild

i  and 

ˆ severe

i , respectively. Next, the two estimates were weighted 

and added up as the final NLOS ranging error estimate 

1 2
ˆ ˆ ˆmild severe

i i i =  +   .  

In this subsection, the F-GPR is compared with the LS-

SVM in the hybrid method [17], using several feature sets. The 

error mitigation performance was evaluated by the root mean 

square residual ranging error (RMS RRE): 

1
2ˆ( )

1
N

i i
NRMS RRE d
i

−=  =
.  

The mitigation results of the two methods on several feature 

set are recorded in Table 3. Besides, the cumulative 

distribution functions (CDFs) of the original NLOS ranging 

errors, those mitigated by the F-GPR and those mitigated by 

the LS-SVM are compared in Figure 4. 

 

Table 3. Mitigation results of the two methods for different feature sets 

 

Feature set 
Mean (m) RMS (m) 

F-GPR LS-SVM F-GPR LS-SVM 

 1
ˆF d=  -0.0002 -0.0003 1.524 1.721 

 2
ˆ,F k d=  -0.0034 -0.0041 1.358 1.578 

 3
ˆ, ,riseF t k d=  0.0004 0.0005 1.232 1.459 

 4
ˆ, , ,rise MEDF t k d=   0.0021 0.0027 1.146 1.432 

 5
ˆ, , , ,r rise MEDF t k d=    0.0106 0.0132 1.141 1.428 

 6
ˆ, , , , ,r rise MED RMSF t k d=     0.0145 0.0180 1.135 1.421 

 7 max
ˆ, , , , , ,r rise MED RMSF r t k d=     0.0143 0.0179 1.139 1.427 

 

 
 

Figure 4. The CDFs of the ranging errors before and after 

LS-SVM and F-GPR mitigations 

 

It can be seen from Table 3 that both methods achieved the 

best error mitigation effect on the feature set F6. The proposed 

F-GPR estimated the NLOS ranging errors more accurately 

than the LS-SVM. Figure 4 shows that, after mitigation by the 

F-GPR, the ranging errors of about 80% of the NLOS signals 

were within 1m, about 20% more than those mitigated by the 

LS-SVM. Hence, the F-GPR can effectively overcome the low 

estimation accuracy caused by the nonuniformity of the NLOS 

signal training samples. 

 

 

5. POSITIONING PERFORMANCE 

 

This section attempts to make a fair comparison between 

our adaptive approach, the hybrid method [17], and the global 

GPR [19] in positioning performance. The simulation scenario 

was designed as follows: The tag position was defined as 

P=(0,0) and the NLOS conditional probability was assumed to 

obey 0≤PNLOS≤1; a total of N=5 reference nodes were 

randomly selected to identify the tag position, and each 

reference node i (1≤i≤N) randomly extracts a received signal 

waveform from the measured data, which contains PNLOS 

waveforms of the NLOS signals and 1-PNLOS waveforms of the 

LOS signals. Then, the position Pi of each reference node i 

(1≤i≤N) can be calculated by: 

 

( , )(sin(2 ( 1 )),cos(2 ( 1 )))i i id i N i N= − − P P P      (24) 

 

where, di(P,Pi) is the real distance between the reference node 

and the tag. 

After extracting the waveforms and obtaining the estimated 

distances ( )ˆ ,i id P P , the adaptive approach, the hybrid 

method and the global GPR were separately applied to 

mitigate NLOS ranging errors. Finally, the tag position was 

estimated by l1-norm and l2-norm minimization [12]: 
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( )1:
ˆ arg min , N= −


P

P l P P y                    (25) 

 

where,  1,2 ,  

 

( )  1: 1 1 1, ( , ), , ( , )N Nl l=l P P P P P P                (26) 

 

( ) ( )( )ˆ( , ) log , ,i i i i i il d d= −P P P P P P               (27) 

 

1
ˆ ˆlog( ), log( )N

 =  
 

y                         (28) 

 

The positioning accuracy of each algorithm was evaluated 

by the outage probability: 

 

 ˆ( )out th thp e pro e= − P P                      (29) 

 

where, eth is the preset allowable error; ˆ−P P  is the position 

error. Under each NLOS conditional probability, an outage 

occurs if ˆ−P P  exceeds eth. The three algorithms were 

tested under four scenes: changing allowable error under the 

NLOS conditional probability of 0.2, changing allowable error 

under the NLOS conditional probability of 0.8, changing 

NLOS conditional probabilities under the allowable error of 

0.5m, and changing NLOS conditional probabilities under the 

allowable error of 2m. For each scene, the outage probability 

was determined through 5,000 Monte-Carlo simulations.  

 

5.1 Simulation 1 (outage probabilities at different 

allowable errors) 

 

Figures 5 and 6 show the outage probability curves of the 

three algorithms under PNLOS=0.2 and PNLOS=0.8, respectively.  

As shown in Figure 5, under the same allowable error 
the , 

the outage probability of global GPR method was greater than 

that of hybrid method or adaptive approach, whether the tag 

position was estimated by l1-norm or l2-norm minimization. 

The reason for the high outage probability is as follows: global 

GPR makes use of all the estimated distances in positioning; 

however, the estimated distances under mitigated NLOS are 

not so accurate as the estimated distances under the LOS; the 

positioning based on these estimated distances will face a high 

redundant error.  

It can also be seen that the adaptive approach achieved a 

lower outage probability than the hybrid method. This is 

because the adaptive approach has better identification 

probability for the NLOS signals, although both methods only 

rely on the estimated distances under the LOS for positioning.  

In addition, under PNLOS=0.2, all three methods performed 

better when the tag position was estimated based on l2-norm 

than l1-norm. A possible reason is that, under l1-norm 

minimization, some components of the ranging error vector 

( ) ( )ˆ , ,i i i id d−P P P P  are adjusted to zero to find sparse 

solution, which pushes up the error of the remaining 

components. 

As shown in Figure 6, under the same allowable error eth, 

the adaptive approach realized a smaller outage probability 

than global GPR and hybrid method, whether the tag position 

was estimated by l1-norm or l2-norm minimization. This means 

the LS-SVM in the hybrid method leads to a higher outage 

probability than the F-GPR of the adaptive approach. The 

result can be attributed to two reasons. First, the hybrid method 

is outshined by the adaptive approach in identification 

performance, though both classifies NLOS signals and LOS 

signals in advance. Second, the LS-SVM in the hybrid method 

establishes the regression model directly, without considering 

the suppression of the nonuniform distribution of NLOS signal 

samples on the regression effect, while the F-GPR fully 

recognizes the nonuniform distribution and divides the 

samples into mild and severe obstruction propagation signals. 

 

 
 

Figure 5. Outage probabilities of the three algorithms at 

PNLOS=0.2 

 

 
 

Figure 6. Outage probabilities of the three algorithms at 

PNLOS=0.8 

 

5.2 Simulation 2 (outage probabilities at different NLOS 

conditional probabilities) 

 

Figures 7 and 8 show the outage probability curves of the 

three algorithms under eth=0.5m and eth=2m, respectively.  

As shown in Figure 7, under the same NLOS conditional 

probability, the outage probability of global GPR method was 

greater than that of hybrid method or adaptive approach, 

whether the tag position was estimated by l1-norm or l2-norm 

minimization. There are two causes of this situation. First, the 

global GPR does not discriminate the NLOS signals from the 

LOS signals, but directly set up the regression model. The 
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model cannot make accurate estimations due to the uneven 

distribution of training samples. That is why the global GPR 

performed poorly in estimation of ranging errors and tag 

positioning. Second, the estimated distances under the NLOS 

are used, although those under the LOS are sufficient for 

positioning, leading to redundant errors.  

 

 
 

Figure 7. Outage probabilities of the three algorithms at 

eth=0.5m 

 

 
 

Figure 8. Outage probabilities of the three algorithms at 

eth=2m 

 

Furthermore, the hybrid method had a higher outage 

probability than our adaptive approach, because the LS-SVM 

is less precise than the F-GPR. The LS-SVM’s lag in precision 

is resulted from its relatively poor identification performance, 

and the failure to divide nonuniform NLOS signals into mild 

and severe obstruction propagation signals. 

As shown in Figure 8, the outage probabilities of all three 

algorithms at eth=2m were lower than those at eth=0.5m. Under 

the same NLOS conditional probability, the adaptive approach 

boasted the lowest outage probability, whether the tag position 

was estimated by l1-norm or l2-norm minimization. Meanwhile, 

l1-norm minimization achieved the better positioning result, 

owing to its high robustness. 

In real-world scenarios, the UWB positioning is confronted 

with serious positioning error under the presence of the NLOS 

signals. The existing methods to mitigate the error all have 

certain problems or limitations. To solve the problems, this 

paper proposes an adaptive approach for UWB positioning in 

complex environment based on machine learning. The 

adaptive approach integrates the MIBC with the F-GPR to 

achieve accurate and flexible positioning with a limited 

computing load. The excellence of the proposed adaptive 

approach was fully proved through simulations, in comparison 

with the hybrid method and the global GPR. 
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