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 False measurements pose a major challenge to the stable operation of the smart grid. This paper 

aims to develop a real-time detection method for false measurements in the smart grid, 

especially when the error is in the function of Jacobean matrix. Considering its high robustness 

and excellent short-term prediction effect, the fuzzy time series was selected as the basis for 

our model. The detection is realized in three steps: fuzzification, fuzzy relationship 

determination and defuzzification. The established model was tested on a 30-node network 

using the PSSE. The results show that our model can accurately detect the false measurement 

that are inputted in the Jacobian matrix, which are not detectable by conventional systems. 
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1. INTRODUCTION 

 

The smart grid is an electrical system improvement based 

on advances in information technology, with the aim to 

provide more efficient and reliable electricity through a 

demand response and a complete monitoring and control 

capability [1], Regarded as an evolution of the current power 

grid, the Smart Grid is a perfect example of a complex system. 

Specifically, it refers to an optimized power grid integrating 

the behavior and actions of all users (producers, consumers, 

consumers, etc.).  

The power system became more developed and highly 

sophisticated through its combination between a physical and 

a communication system that collects information at various 

points on the power grid at the right time for the network to 

operate continuously, safely and reliably. As a result, power 

systems were increasingly subject more and more to physical 

cyber-attacks, a situation not seriously approached before such 

an energetic Internet was developed. 

The smart grid infrastructure essentially consists of two-

way communication between suppliers and consumers and the 

SCADA system, which includes a variety of devices (remote 

terminal units (RTUs) and control centers), communication 

protocols (DNP 3, Modbus, Profibus, etc.), computers, 

electrical devices and human-supervised manual processes. 

This system improved the control and monitoring of processes 

and ensured a reliable supply of electricity [2]. 

However, rapid progress in information and communication 

technologies (SCADA) in the field has created a large area for 

cyber-physical attacks, both in the communications network 

and in the metering devices. Especially with the progression 

of smart meters that are significantly increased, and 

consequently have produced a high number of network access 

points, as a result of this, a high flow of false data has been 

generated through the power system, which compromises the 

state estimation process, while the frequency of attack threats 

are supported by protection, detection or mitigation strategies, 

some types of threats identified have not yet been addressed. 

The deployment of a smart grid in an unsafe environment 

could cause serious consequences such as instability of the 

grid, fraud in public utilities and energy losses, which consist 

mainly of energy dissipation. All this requires the 

establishment of a fault detection and identification system, 

which can quickly detect faults to avoid cascading events [3, 

4].  

The measurements are transmitted from the metering 

devices or the remote terminal unit (RTU) and collected by the 

SCADA data acquisition monitoring and control system [3, 5], 

the measurement data (voltage amplitudes and phase angles of 

the different buses) are evaluated before being communicated 

to the central office. As well as being a management system 

for the electrical energy flowing through the electrical grid, the 

SE provides a conventional method for detecting attacks and 

can manage a fraction of the aberrant values [6].  

The false data measurement injection in the power grid has 

raised serious concerns for researchers as well as professionals, 

due to the crucial impact that this can have on the security and 

efficient management of energy resources. The false 

measurement attack by injection mainly affects the state 

variables of the system, such as voltage measurements and 

associated phase angles; therefore, a secure access to the 

parameters and topology of the power grid is necessary, as 

well as the use of more robust new detection algorithms. 

We are concerned about the evolution over time of our 

database in order to predict false and correct measurements. 

We chose fuzzy time series prediction methods because of 

their robustness compared to the most commonly used 

methods in the industry based on the fuzzy time series 

prediction method using hesitant fuzzy sets [7], as well as their 

lower computation time requirements that make them the most 

adaptable for a real time system [8, 9].  

 

 

2. RELATED WORD 
 

The Progress of Smart Grids has led to an effective and 
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reliable improvement of the grid. However, it has created new 

vulnerabilities related to grid security. Various studies have 

addressed the subject of smart grid security in two main areas; 

the first focuses on the cyber-security of the electrical system 

with regard to the security of means of communication [10-

13]. 

The second component addresses vulnerabilities in 

electrical infrastructure which are not accompanied by security 

measures whose access to the Jacobean topological matrix can 

cause serious damage. Liu et al. [6] have showed how 

knowledge of the electrical system configuration can be used 

to introduce bad data into certain state variables and bypass 

existing techniques for detecting bad measurements.  

Studies have shown how to divert the system from state 

estimation to inject false measurements. Hug et al. [14] in their 

paper have determined the types and number of signals that 

can be attacked based on graph theory to determine areas 

vulnerable to security. Rahman et al. [15] addressed the 

possibility of implementing a false attack by data injection 

when the operator uses non-linear state estimation. Sun et al. 

[16] discussed how to avoid the traditional method of detecting 

bad data that does not need the input value of the transmission 

line, but only the topology of the local network. To address the 

problem of false injections, while Giani et al. [17] have 

examined the safety of estimating the state of the fully 

distributed electrical system by increasing the mean square 

error at the state estimator beyond a predetermined objective. 

Dan et al. [10] have offered two algorithms for placing 

encrypted devices in the system to maximize their utility in 

terms of the increased system security. Liu et al. [18] in their 

papers have considered the problem of detecting false data as 

a matrix separation problem. They propose a new mechanism 

for detecting false data based on the separation of nominal 

states and anomalies from the electricity grid. 

Tang et al. [19] have shown that the conventional approach 

with the Gaussian noise hypothesis is a particular case of the 

proposed method; then, by modelling noise with an 

autoregressive process and selecting a number of subsets of 

safe counter measurements they examined the problems of 

state estimation and detection of false injection data into the 

smart grid when measurements are corrupted by colored 

Gaussian noise. Bi et al. [20] use the graphical methods for 

defense strategies of the state variable set. 

Other studies have used the automatic learning method to 

address this subject, where Shavhaug et al. [21] have worked 

with the Support Vector Machine "SVM" to label false and to 

correct measurement data, thus the system can identify false 

measurements after learning its data. However, Esmalifalak et 

al. [22] have developed two techniques based on machine 

learning for detecting stealth attacks. The first method uses 

supervised learning on labelled data and forms a carrier vector 

machine. The second method does not require training data 

and detects the measurement deviation. EL-khantach et al. 

[23] have applied trees algorithm in order to detect the false 

data measurements according to the Jacobean matrix. 

 

 

3. STATE ESTIMATION AND FALSE DATA 

DETECTION 
 

The security of the electricity grid occupies a primordial 

place in the energy system, the challenge takes a major 

position in a real-time process. To maintain a harmonious 

functioning in electrical load management, control, 

supervision and forecasting, the process is equipped with 

essential tools that provide accurate measurements. 

 

 
 

Figure 1. False data detection process 
 

Real-time power grid monitoring applications are equipped 

with the state estimator which is designed to resist the effect 

of measurement errors, the type, position and the accuracy of 

measurements, as well as the time failure of the smart meter 

communication system. 

By acting on the network topology and the available 

measurements; algorithms determine the most likely state of 

the system. The process is described by its state variables, such 

as voltage at network nodes or currents flowing through 

network branches. It must comply with physical constraints 

such as Kirchhoff's laws and the law that connects the primary 

and the secondary currents of each transformer or voltage 

regulator [24].  

The following equations show the link between the state 

variables (voltage magnitude and phase angle) and the active 

powers and the reactive powers. 

 

Pi = Vi ∑ Vj(Gijcosθij + BijsinN
i θij)        (1) 

 

Qi = Vi ∑ Vj(Gijsinθij − BijcosN
i θij)        (2) 

 

Pij = Vi
2Gij − ViVj[Gij cos(θi − θj) + Bijsin(θi −  θj)] (3) 

 

Qij = −Vi
2(Bij − Bcij)Gij − ViVj[Gij sin(θi − θj) −

Bijcos(θi − θj)               (4) 

 

where,  

Pi Active puissance at bus i 

Qi Reactive puissance at bus i 

Pij Active puissance between bus i and j 

Qij Reactive puissance between bus i and j 

Vi Voltage magnitude in node i 

θi Phase angle in node i 

θj  Phase angle in node j 

θij Phase angle between node i and j 

Gij + jBij Line admittance between bus I and j 

The state vector of the measured values is given by X: 

 

X = (θ2, … , θN, V2, … , VN)T     (5) 
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where, θk and Vk denote the voltage magnitude and the phase 

angle at bus k ∈ {1,2, … , N} and the first bus (k=1) is chosen 

as a reference bus and N is the total number of buses. 

The state estimator is a main function of the smart grid that 

has been found to be vulnerable to a large number of attack 

plans. State estimator is the input function that processes raw 

measurements of system topology and dynamics to obtain an 

accurate estimation of state variables, the fundamental state 

estimator problem can be written as 

 

z = h(x) + r       (6) 

 

where, h(x) = (h1(x), … , hm(x))T is the vector of m function 

linking the measurement and the state variable, and z 

designates the vector of measurements taken simultaneously 

by the meters devices and the pseudo-metric, and r =
(r1, … , rm)T representing the vector of error measurement that 

is a random and independent Gaussian variable with zero mean 

and covariance matrix h(x) = (σ21, … , σ2m).  

The function objective is given as follow: 

 

J(x) =
1

2
∑ (zi − hi(x))2/Rii

m
i=1       (7) 

 

J(x) =
1

2
[z − h(x)]TR−1[z − h(x)]     (8) 

 

Different algorithms have been proposed to solve the state 

estimation problem in the power grid [25, 26]. The purpose of 

state estimation is to solve a system of non-linear equations 

with, among them, the unconstrained weighted least squares 

(WLS) method. The weighted least squares approach is 

formulated on the base of some assumptions made about 

measurement errors. These errors are considered as 

independent and distributed random variables; according to a 

normal distribution of zero mean and known variance [27].  

The state estimation is generally calculated by using the 

weighted Least Square (WLS) methods [25]. The conditions 

of the first order of optimality are given by: 

 

g(x) =
∂J(x)

∂x
=

1

2
{−H−1(x)R−1[z − h(x)][z −

h(x)]TR−1H}   (9) 

 

where, the Jacobean H is given by: 

 

H(x) =
∂h(x)

∂x
      (10) 

 

Solve the WLS estimation and obtain the elements of the 

measurement residual vector: r = z – Hx̂. 

Where, x̂ is the estimated state vector of the dimension n, H 

is the jacobian, z is the state vector of the measurement values. 

The bad data will be detected when the difference between 

the estimated measurements  �̂� = Hθ̂  and the actual 

measurements z exceeds the tolerance threshold 𝜏. 

 

r = ||z − Hθ̂|| > τ      (11) 

 

If the residuals of the measurements are unchanged, the 

injections of the bad data measurement can circumvent the 

usual systems of the detection of the false data. The false data 

injection of the power grid can be expressed by: 

 

za = z + a     (12) 

where, a is false data injection to vector measurement z 

 

||za − Hx̂a|| = ||z + a − H(x̂ + c)||     (13) 

 

where, x̂a = x̂ + c 

 

||za − Hx̂a|| = ||z − Hx̂ + (a − Hc)||       (14) 

 

||za − Hx̂a||  = ||z − Hx̂||         (15) 

 

 

4. FUZZY TIME SERIES FORECASTING 

 

Fuzzy time series were first introduced by Song and 

Chissom [28, 29], is based on the notion of a delimited 

boundary between the member and non-member elements of a 

particular set, they modelled fuzzy relationships between 

observations by max-min composition operations in order to 

propose the forecast in three steps: fuzzification, fuzzy 

relationship determination and defuzzification. The model was 

improved by Chen [30] who proposed a method applies 

simplified arithmetic operations to the forecast algorithm, 

including the Conventional time series which refer to real 

values, but fuzzy time series are structured by fuzzy sets. 

Let U be the universe of discourse, such that 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢𝑛} . A fuzzy set A of U is defined as 𝐴 =
𝑓𝐴(𝑢1)/𝑢1 + 𝑓𝐴(𝑢2)/𝑢2+. . . +𝑓𝐴(𝑢𝑛)/𝑢𝑛 , where, 𝑓𝐴  is the 

membership function of A. Let 𝑓𝐴: U → [0, 1]. 𝑓𝐴(𝑢𝑖) Is the 

degree of membership of 𝑢𝑖 in A, where 𝑓𝐴(𝑢𝑖) ∈ [0, 1] and 1

 i n. Let 𝑌(𝑡) (t =…, 0, 1, 2,…), a subset of a real number, 

be the universe of discourse on which fuzzy sets, 𝑓𝑖(𝑡) (i = 1, 

2,…) are defined and 𝐹(𝑡) is a collection of 𝑓1(𝑡), 𝑓2(𝑡),…. 

𝐹(𝑡) is referred to as a fuzzy time series on 𝑌(𝑡). 

Here, 𝐹(𝑡)  is viewed as a linguistic variable and 𝑓𝑖(𝑡) 

represents possible linguistic values of 𝐹(𝑡). If 𝐹(𝑡) is caused 

by 𝐹(𝑡 − 1), the relationship can be expressed as: 𝐹(𝑡 − 1) →
𝐹(𝑡). To compute this fuzzy relationship, various operations 

can be applied; if the maximum degree of membership of 𝐹(𝑡): 

Belongs to 𝐴𝑖 , 𝐹(𝑡)is considered to be 𝐴𝑖 ; then 𝐹(𝑡 − 1) →
𝐹(𝑡) becomes 𝐴𝑖 → 𝐴𝑗. 

The method for forecasting the enrollments is briefly 

reviewed as follow [30]: 

Step 1: Define the universe of discourse within which fuzzy 

sets are defined. 

Step 2: Partition the universe of discourse U into several 

even and equal length intervals. 

Step 3: Define the linguistic values represented by fuzzy 

sets of intervals in the discourse universe. 

Step 4: Fuzzify the historical enrolment data. 

Step 5: Establish fuzzy logical relationships (FLRs) which 

define the relationship between the former states and the state 

to be provided for. 

 

 

5. PROPOSED METHOD 

 

The objective of this paper is to design a system for 

detecting false measurements in the electricity grid, by 

applying short-term forecasting methods based on fuzzy time 

series. 

Our test algorithm is programmed in java, of which we have 

worked on 3 methods [30-32]. The results are taken by vote 

between these three programmed methods. The processes of 
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our approach are mentioned in Figure 2 and listed according 

to the following steps: 

As  

Step 1:  

Half of the correct data is taken for the recognition phase, 

these data are partitioned into 7 intervals, then we assigned 

each measurement group to the corresponding interval, we 

established the Relationship function (FLR) for these data by 

referring to the methods used [30-32]. 

Step 2 

The secondary half of the test data is taken for prediction. 

We have calculated the data forecast for now t+1 based on the 

data of the first group that are taken as historical data.  

Step3 

We calculated the difference between the predicted and the 

actual data; if the difference is less than an experimentally 

chosen threshold; the measurement is taken as the correct 

measurement, otherwise the measurement is taken as false. For 

step t+2, if the detected measurement is false, it will be 

replaced by the planned measurement, and the calculation is 

restarted from "step 1", then the calculation is restarted  

for the rest of the data. 

The following algorithm gives the real-time detection 

process 

For i = t: t+n 

Forecasting (t+1) 

If threshold > forecasting (t+1)-real (t+1)  

Real (t+1) = true; Forecasting (t+2) 

Else real (t+1) =Forecasting (t+1) 

Forecasting (t+2) 

End  

 

 
 

Figure 2. Real time false data detection algorithm 

 

In our studies we use the contingency matrix (confusion 

matrix) which allows us to gather the expected data in order to 

evaluate the performance of the detection. Table 1 presents the 

contingency matrix used to evaluate the detection performance 

of our model in terms of accuracy and recall [33]. 

 

Table 1. Detection evaluation 

 
  Observed measures 

   True False 

Predictive 

True True positive (TP) False Positive 

(FP) 

False False Negative 

(FN) 

True Negative 

(TN) 

 

Recall = TP/(TP + FN)   (16) 

 

Accuracy = (TP + TN)/(TP + FP + TN + FN)  (17) 

 

 

6. EXPERIMENTION AND RESULTS 

 

Several experimentations have been conducted for all 

algorithms with different configurations under a compatible 

Thinkpad, Intel (R) Core (TM) i5-520M CPU 2.40 GHz, and 

4 GB of RAM through Java language. 

First, we worked on the collection of test data which are 

only the voltage measurements and the phase angles of our test 

network (Figure 3), for this purpose, we worked with a test 

network of 32 nodes. 

 
 

Figure 3. IEEE-30 Bus 

 

We have developed our network in the network analysis 

software "PSSE", it is a Siemens PTI software package widely 

adopted by industry and education for calculation load flow 

and dynamic simulation. We have varied several times the 

measurements of the means of production "generating nodes" 

and collected the measurements obtained based on the 

algorithm Newton-Raphson. 

We then worked on the falsification of certain measures. In 

order to test the robustness of our model, we worked with false 

measurements according to the Jacobean, from which they can 

escape for the usual detection systems. To do this, we have 

calculated the Jacobean matrix for 82 groups of measurements 

by implementing the WLS algorithm on Matlab, then we 

introduced false measurements based on the calculated 

Jacobean values. All the measures collected are shown in 

Table 2. 

 

Table 2. Data set 

 

 
Total true 

data 

Total false 

data 

Total 

data 

Angle phase 2281 179 2460 

Voltage 

magnitude 
2259 201 240 
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The test data are tested by the algorithm established in java, 

of which Table 3 shows the results of the detection of false 

values concerning the voltages of the studied network, while 

Table 4 shows the results obtained from the detection of false 

measurements of phase angles. 

 

Table 3. Results for angle phase 

 

 Total true data Total false data 

Chen 93.701 0,986     

Jilany & burnay 94.541  0,991      

stevensen 94.768  0,982     

 

Table 4. Results for voltage magnitude 

 

 Total true data Total false data 

Chen 92.589 0,972     

Jilany & burnay 93.679 0,992     

stevensen 94.2653 0,991     

 

In terms of recall which is the rate of true positives, and 

refers to the proportion of measurements that are correct, of 

our algorithm has correctly identified it. The accuracy reflects 

the detection rate of the true and the false measurements 

relative to all measurements; the two tables (Table 3 and Table 

4) present respectively the accuracy and recall results that 

describe the capacity of our model for phase angle and voltage, 

these results prove the robustness of our approach in detecting 

the false measurements. 

 

 

7. CONCLUSION 

 

In this paper we discussed the detection of false 

measurements in the electrical grid especially when the error 

is in the function of Jacobean matrix. In our study we worked 

on a 30 nodes network using PSSE and we have established a 

database of 2460 for each element (voltage and phase angle). 

We have also worked by the predictive approach particularly 

the fuzzy time series which are known by the robustness of 

their notoriously short-term prediction, the experimental 

studies that we have conducted have shown that this approach 

gives good detection results, as well as it is well adapted to be 

put in real time. 
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