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 The Internet of Things (IoT) is vulnerable to various attacks, due to the presence of tiny 

computing devices. To enhance the security of the IoT, this paper builds a lightweight intrusion 

detection system (IDS) based on two machine learning techniques, namely, feature selection 

and feature classification. The feature selection was realized by the filter-based method, thanks 

to its relatively low computing cost. The feature classification algorithm for our system was 

identified through comparison between logistic regression (LR), naive Bayes (NB), decision 

tree (DT), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM) and 

multilayer perceptron (MLP). Finally, the DT algorithm was selected for our system, owing to 

its outstanding performance on several datasets. The research results provide a guide on 

choosing the optimal feature selection method for machine learning. 
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1. INTRODUCTION 

 

The Internet of Things (IoT) is an emerging paradigm in the 

world of computer networks that allows communication 

between all kinds of objects via the Internet. These objects can 

be RFID tags, sensors, actuators, mobile phones, etc.; which 

use a single addressing scheme to interact and cooperate to 

achieve a common goal [1]. The IoT allows combining all 

kinds of communications, all the time, for everyone, and on 

any object, forming the ubiquitous computing [2]. It will cover 

a wide range of applications and will touch almost all the areas 

we face on a daily life.  

IoT devices are often deployed in a hostile and insecure 

environment, making them more vulnerable to different 

attacks [3]. Therefore, security solutions are essential to 

protect IoT devices from intruder attacks. An Intrusion 

Detection System (IDS) is a tool used to detect attacks against 

a system or a network by analyzing their activities and events 

[4]. It can act as a second line of defense which from intruders 

[5]. The main purpose of an IDS is to detect as many attacks 

as possible with an acceptable accuracy while minimizing 

energy consumption in resource constrained [6]. There are 

mainly two types of IDS, signature-based and anomaly-based 

IDS. A signature-based IDS also known as misuse-based IDS, 

detects intrusions by comparing new data with a knowledge 

base or signatures of known attacks. This approach detects the 

known attacks, but it often fails to detect unknown attacks. The 

anomaly-based IDS compares the activities considered normal 

against observed events to identify significant deviations. 

Many researches have been recently performed in the areas 

of IoT and IDS to provide the best security mechanism. 

Sedjelmaci et al. [3] were interested to a light anomaly 

detection technique based on the concept of the game theory. 

The authors use the Nash equilibrium to predict the 

equilibrium state that allows the IDS agent to detect the 

signature of a new attack. Li et al. [7] proposed a new intrusion 

detection system based on the K-Nearest Neighbor (KNN) 

classification algorithm in a wireless sensor network. The 

system can detect a flood attack in the wireless sensor network. 

It also conducts experiments to study the effects of a flood 

attack. Thanigaivelan et al. [8] presented a distributed internal 

anomaly detection system for the Internet of Things. The main 

features of the system are monitoring, ranking, isolation and 

reporting. Nodes monitor and note their neighbors at one hop, 

and if a neighbor does not maintain the required rating, the 

neighboring node is classified as an anomaly. Shahid Raza [4] 

proposed a real-time intrusion detection system in the IoT 

called SVELTE. It is an IDS available in IoT that is 

implemented in Contiki OS. This approach only detects 

content spoofing attacks within the network, gulp and selective 

transfer attacks. Douglas et al. [9] presented an ultra-

lightweight deep-packet anomaly detection approach that is 

possible to run on small IoT devices. The approach uses n-

gram bit-patterns to model payloads and allows the n-gram 

size to vary by dimension.  

Although all the above research claims that a detection 

system is implemented and that some attacks are successfully 

detected, it is necessary to make the detection system 

lightweight if we want to implement an efficient detection 

system in IoT environments. 

The aim of our research is to build a lightweight IDS. For 

that purpose, two techniques of machine learning have been 

applied, feature selection and classification methods. Feature 

selection methods can be used to select relevant features that 

decrease computational and storage costs and even, improve 

the accuracy of detection. There are three main approaches for 

feature selection [10]: filter-based, wrapper-based and 

embedded-based approaches. In this paper, we used the filter 

method because it has low computational cost compared to 

wrapper and Embedded methods. In addition, in order to find 

the best classification model suitable for the IoT environment, 

several popular algorithms such as Decision Trees, k-Nearest 
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Neighbor, Support Vector Machines, etc.; have been 

implemented using the Scikit-Learn tool. 

This study concludes with a comparative analysis of feature 

selection methods and their effects on various classification 

algorithms using three different data sets, such as KDD99, 

NSL-KDD and UNSW-NB15 datasets. 

The remainder of this paper is organized as follows: in 

Section 2, we briefly discuss the technologies involved in the 

IoT, while Section 3 details our proposed system. In Section 4 

we describe a test of our system. And, we conclude this work 

in Section 5. 

 

 

2. BACKGROUND 
 

In this section, we review the technologies involved in the 

Intrusion Detection System to handle security issues in IoT 

environments. 

 

2.1 IoT architecture 

 

Internet of Things is a collection of many interconnected 

objects allowing people and objects to interact and create 

smart environments like transportation, agriculture, healthcare, 

energy, cities, etc. Figure 1 shows the IoT architectural model 

which is composed of 3 layers [1, 11]: 

 

 
 

Figure 1. The IoT architectural model 

 

- Perception layer: This layer includes devices for 

detecting and collecting information from the environment, 

and then transmits them to the network layer. 

- Network layer: At this layer, the data transmission is 

operated by using some of the recent technologies such as 

WiFi, Bluetooth, 3G, Zigbee, etc. The IoT gateway serves 

as a bridge between devices and the cloud. 

- Application layer: This layer provides the services 

required by the users, such as the services necessary for 

smart homes, health care, etc. At this layer, the authenticity, 

the integrity, and the confidentiality of the data are 

guaranteed [12]. 

The security policy must be fully integrated with the 

architecture to avoid hardware and software vulnerabilities at 

all the levels of the system. 

 

2.2 Security in the Internet of Things 

 

With the development of IoT applications, security remains 

the most important issue that cannot be ignored because of the 

connectivity and the sensitivity of the collected data. Also, the 

IoT has many restrictions and limitations in terms of 

components and devices such as limited processing capacity, 

memory, and power consumption, and even the heterogonous 

and the ubiquitous nature of IoT that introduce additional 

concerns [13]. The implementation of a security policy around 

these systems is therefore essential. In addition to the 

implementation of firewalls and increasingly secure 

authentication systems, it is necessary to complete such 

security policy by monitoring tools to audit the information 

system and to detect possible intrusions. 

Intrusion means penetration of information systems and 

also attempts of local users to access higher privileges than 

those assigned. In this paper, we will see how to protect 

ourselves effectively against these intrusions. Therefore, it is 

important to understand the precise role of these intrusion 

detection systems. 

 

2.3 Intrusion detection system 

 

An Intrusion Detection System (IDS) is a mechanism that 

detects intrusions or attacks against a system or a network by 

analyzing the activity of the network and the system. Such 

intruders can be internal or external [14]: Internal intruders are 

users inside the network that attempt to raise their access 

privileges to misuse non-authorized privileges while external 

intruders are users outside the target network attempting to 

gain unauthorized access to the network [15]. The IDS 

monitors the operations of a host or a network, alerting the 

system administrator when it detects a security violation. 

There are mainly three components of the IDS [16]: 

- Monitoring: This component mostly monitors traffic 

patterns, internal events, and resource utilization; 

- Analysis and detection: This is the main component that 

detects the intrusions according to a specified algorithm.  

- Alarm: This component generates an alarm when the 

intrusion occurs. 

 

2.4 Types of IDS 

 

IDSs can be classified as Network-based IDS (NIDS) and 

Host-based IDS (HIDS) [15]. Network-based IDS (NIDS) 

monitors the network traffic for malicious activities. Host-

based IDS (HIDS) monitors malicious activities occurring 

within the host. 

IDSs approaches may also be classified as signature-based, 

anomaly-based or specification based [14-15]: 
Signature Based IDS: IDS has a database of signatures or 

patterns and each attack can be detected according to patterns 

or signatures. This technique is simple to use. However, it is 

very expensive; it needs more storage space when the number 

of attacks increases. On the other hand, the main disadvantage 

of this method is that only the attacks recognized by the 

signatures will be detected [17]. So, it needs a regularly up-

gradation of the database with new signatures of attacks [18]. 

Anomaly Based IDS: This technique consists in detecting 

an intrusion according to the behavior of the system. It 

predefines the normal behavior of the system and observes 

changes in the normal behavior. If any activity differs from the 

normal behavior, it is marked as an intrusion [14, 19]. The 

main advantage of this technique is that it can be used to detect 

new attacks by signaling any deviation from the normal 

behavior. However, it often generates many false positives 
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because a deviation from the normal behavior does not always 

correspond to an attack. 

Specification Based IDS: This technique combines the two 

previous techniques, due to their complementary nature [19]. 

It takes advantage of the both technologies to detect new 

attacks on the one hand and to reduce false positives on the 

other hand. However, such mechanisms consume more energy 

and more resources [16]. 

 

 

3. THE PROPOSED SYSTEM 

 

One of our main goals is that the IDS should be lightweight 

and comply with the processing capabilities of the constrained 

nodes. Thus, according to [20], it is not possible to have an 

active intrusion detection agent in each node of an IoT due to 

the limited processing capacity and power consumption. 

Therefore, we have adopted a centralized IDS architecture to 

overhead the problem of limited capacity on the one hand and 

the peripheral heterogeneity issue on the other hand, where the 

IDS is implemented on the network layer of the IoT above the 

Gateway component. 

Figure 2 shows the activity diagram of our Lightweight 

Intrusion Detection System (LIDS) that consists in detecting 

an intrusion by observing the current behavior and comparing 

it to the normal behavior. If there is a deviation between the 

two behaviors, an alarm will be triggered. It is composed of 

three phases: 

 

 
 

Figure 2. LIDS architectural model 

 

A- Events collection: In this phase, the component Events 

collector of LIDS collects and records all the events performed 

by the IoT devices in order to build the current behavior that 

will be represented as a feature vector as follows: Vi(t) = (c1, 

c2, …, c n). 

B- Anomaly detection: The detection phase analyzes and 

detects intrusions. It is the main component of our LIDS, 

which will be detailed in the next section.       

C- Alarm: After attack detection, the proposed system 

blocks the user and finishes his session, and then it sends an 

alert to the administrator to take the appropriate action. 

 

 

4. EXPERIMENTS AND RESULTS 

 

Based on the proposed approach, the classification process 

of the system is showed in Figure 3. 

 

 
 

Figure 3. Classification process in the IoT context 

 

The first process is the dataset acquisition. In this process, 

the dataset is collected and splitted into training and testing 

datasets. After, the process of pre-processing allows to clean 

the data while the feature selection process allows to reduce 

the data dimension. In this work, we have employed different 

classifiers model like: Logistic Regression, Random forest, 

Decision Tree, SVM, etc. The training set is used to train the 

models. Then, these models are evaluated against the testing 

set using different evaluation metrics. Finally, these processes 

will be repeated for three datasets. 

 

4.1 Dataset 

 

In our experiments, we employed three datasets such as 

KDD Cup 99 [21], NSL-KDD dataset [22] and UNSW-NB15 

dataset [23]. 

KDD Cup 1999: This dataset is developed by MIT Lincoln 

Labs and provides a standard dataset generated from 

simulations in military network environments and by 

encompassing various intrusions. The dataset includes three 

independent sets: “whole KDD”, “10 % KDD”, and “corrected 

KDD”. We used “10 % KDD” and the “corrected KDD” as 

training and testing dataset, respectively. A connection in the 

KDD Cup 99 dataset is a sequence of TCP packets which 

contains 42 features and they are labeled as either normal or 

an attack.  

NSL-KDD: This dataset is collected by Canadian Institute 

for Cyber security for 9 weeks [6]. It is a new and a reduced 

version of KDD Cup 99 dataset. The data structure and the 

classification of attacks in the NSL-KDD dataset remain the 

same as KDD Cup 99, with eliminating duplicate records in 

the dataset. So, the classifiers will not be biased towards more 

frequent records. NSL-KDD data consists of training and 

testing data stored in 2 separate files, the “KDD Train+” 

dataset as the training set and “KDD Test+” datasets as the 

testing set. 

The KDD Cup99 and NSL-KDD datasets include four 

categories of attack [24]. The Table 1 shows the number of 
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rows for each category: 

 

Table 1. Class distribution in KDD Cup 99 and NSL-KDD 

datasets 

 
KDD Cup 99 

 Normal DoS Prob R2L U2R Total 

Train 97,278 391,458 4,107 1,126 52 494,021 

Test 60,593 229,855 4,166 16,345 70 311,029 

NSL-KDD 

 Normal DoS Prob R2L U2R Total 

Train 67,343 45,927 11,656 995 52 125,973 

Test 9,711 7,460 2,421 2,885 67 22,544 

 

UNSW-NB15: The network packets of this dataset were 

collected by the IXIA Perfect Storm tool in the Cyber Range 

Lab of the Australian Centre for Cyber Security (ACCS) to 

generate a hybrid combination of real-life and contemporary 

synthetic attack behaviors. It has nine categories of attack in 

addition to one category representing the normal data. The 

number of records of each category is given in the Table 2. 

This dataset has 45 features including a class label. These 

features are mixed in nature: nominal, numeric and time-stamp. 

 
Table 2. Class distribution in UNSW-NB15 dataset 

 
Attack Category Training set Testing set 

Normal 56,000 37,000 

Analysis 2,000 677 

Backdoor 1,746 583 

DoS 12,264 4,089 

Exploits 33,393 11,132 

Fuzzers 18,184 6,062 

Generic 40,000 18,871 

Reconnaissance 10,491 3,496 

Shell Code 1,133 378 

Worms  130 44 

Total 175,341 82,332 

 

The attack categories of the different datasets are explained 

as follows: 

DoS (Denial of Service Attack): Is an attack that makes a 

service unavailable, to prevent legitimate users of that service. 

U2R (Users to Root Attack): In this category, an attacker 

tries to get the access rights from a normal user account in 

order to obtain the root access to the system [25]. 

R2L (Remote to Local Attack): In this category, the 

attacker looks for vulnerabilities in a network's security, to 

gain access as a local user of that network. 

Probe (Probing Attack): In this category, the attacker tries 

to collect information about the network in order to circumvent 

its security.  

Analysis: Contains various attacks of port scanning, spam 

and penetration of HTML files. 

Backdoors: The attacker bypasses the system security 

mechanism to access a system or its data. 

Exploits: The attacker has previous knowledge of the 

system and leverages that knowledge by exploiting the 

vulnerability. 

Fuzzers: It generates a huge amount of random data to 

crash the system. 

Generic: It works against all block ciphers. 

Reconnaissance: It gathers information about the system to 

supervise it. 

Shellcode: A small piece of code used as the payload in the 

exploitation of software vulnerability. 

Worms: Attacker replicates itself in order to spread to other 

computers.  

 

4.2 Data preprocessing 

 

Data preprocessing is a technique for transforming the 

original data to a data required by the machine learning 

method. It includes transformation, binarization, 

standardization and normalization. Firstly, the dataset is 

preprocessed to consider binary classification problem in 

which only two labels, i.e., attack and normal traffic are 

considered, and then we applied the data transformation and 

normalization technique on the dataset. 

Data transformation: We use this technique to transform 

the categorical value of features into a numeric value. For 

example, the KDD-Cup99 has the feature "Service" that 

contains the values: Telnet, FTP, HTTP, etc. so, these values 

will be transformed into numeric values: 1, 2, 3, etc. 

Data normalization: Consists in transforming features by 

scaling each one to a given range. A feature set X is scaled 

between its minimum and maximum values. The new feature 

value Z generally lies between [0, 1]. The transformation is 

given by: 

 

𝑍 =
X−min(X)

max(X)−min(X)
                            (1) 

 

Normalization makes training less sensitive at the 

functional scale and ensures that a convergence problem does 

not have a huge variance, which makes optimization possible. 

After the data preprocessing operations, we obtain a new 

structure of datasets that are shown in Table 3. 

 

Table 3. Datasets structure after data preprocessing 

 
KDD Cup 99 

Dataset Number of records Normal Attack 

Train 494,021 97,278 396,743 

Test 311,029 250,436 60,593 

NSL-KDD 

Dataset Number of records Normal Attack 

Train 125,973 67,343 58,630 

Test 22,544 9,711 12,833 

UNSW-NB15 

Dataset Number of records Normal Attack 

Train 175,341 56,000 119,341 

Test 82,332 37,000 45,332 

 

4.3 Feature selection 

 

Feature Selection is the process of selecting the most 

significant features from a given dataset. This allows 

increasing the efficiency of storage, reduces computing costs, 

and also improves the performance of an automatic learning 

model. There are several ways to select features that can be 

grouped into three categories:  

Filter Methods that is selecting features using correlation 

matrix. Each feature is scored based on statistical calculations; 

then, we select only the attributes where the correlation is 

greater than a threshold. 

Wrapper Methods that is looking for the most optimal 

combination of features by evaluating the model accuracy. 

This means, that we feed the features to the selected Machine 

Learning algorithm and based on the model performance we 

add or remove the features. 
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Embedded Methods combine the advantages of both 

previous methods by choosing the best features when building 

model. The most common types of this method are 

regularization methods. 

For our experiments, we used the Filter Method because it 

is much faster compared to wrapper and Embedded methods. 

On the other hand, Wrapper and Embedded methods are 

computationally costly; hence, they are not suitable for the 

low-resource IoT devices. 

To determine the relevance of features for our model, we 

have used three popular correlation analysis techniques i.e., 

Pearson’s correlation technique, Spearman’s correlation 

coefficient and the Kendall’s tau coefficient. 

  

4.3.1 Pearson’s correlation coefficient (PCC)  
That is a measure of dependence between two random 

variables X and Y. The Pearson correlation coefficient ρ is 

given by the equation: 

 

ρ =
cov(X,Y)

√σ2(X) σ2(Y)
                                (2) 

 

where, cov is the covariance and σ  is the variance. The value 

of ρ lies between -1 and 1, ρ is close to the extreme values -1 

and 1 if X and Y are strongly correlated, and ρ = 0 if 𝑋 and 𝑌 

are totally uncorrelated. Thus, a feature which is strongly 

correlated to some other features is a redundant one. 

 

4.3.2 Spearman’s correlation coefficient (SCC) 

Spearman's rank correlation coefficient can be defined as a 

special case of Pearson 𝜌 applied to ranked variables. Rather 

than comparing means and variances, Spearman's coefficient 

looks at the relative order of values for each variable. This 

makes it appropriate to use with both continuous and discrete 

data. The formula for Spearman's coefficient looks very 

similar to that of Pearson, with the distinction of being 

computed on ranks instead of raw scores:  

 

ρ =
cov(rankX,   rankY)

√σ2(rankX) σ2(rankY)
                    (3) 

 

4.3.3 Kendall's tau coefficient (KTC) 

Unlike Spearman's coefficient, Kendall's 𝜏  does not take 

into account the difference between ranks, but only directional 

agreement. Therefore, this coefficient is more appropriate for 

discrete data. 

Formally, Kendall's 𝜏 coefficient is defined as: 

 

τ =  
(concordant pairs)−(discordant pairs)

N(N−1)/2
         (4) 

 

where, 𝑛 is the observation number of the variables 𝑋 and  𝑌. 
The pairs of observations ( 𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗  , 𝑦𝑗)  are called 

concordant, if  𝑥𝑖 >  𝑥𝑗  and 𝑦𝑖 >  𝑦𝑗  or 𝑥𝑖 <  𝑥𝑗  and 𝑦𝑖 <  𝑦𝑗 . 

In the opposite case, they are called discordant. 

To compare the feature selection metric for intrusion 

detection on the three datasets mentioned above, we 

implemented three correlation methods: Pearson’s Correlation 

Coefficient (PCC), Spearman's Correlation Coefficient and 

Kendall's Tau Coefficient (KTC) using different threshold 

values. The goal is to find optimal feature subsets that will be 

used by the different classifiers with the aim of achieving the 

best classification results in the context of the Internet of 

Things. All the obtained results are shown in Figure 4. 

 

 
(a) KDD99 

 
(b) NSL-KDD 

 
(c) UNSW-NB15 

 

Figure 4. Performance of feature selection algorithms 

 

Figure 4 summarizes the number of features selected by 

each algorithm using three datasets KDD99, NSL-KDD and 

UNSW-NB15. Initially KDD99 dataset has 41 features 

without the target attribute. After applying the PCC method 

with three threshold values of 0.9, 0.7 and 0.5, the number of 

features is reduced to 30, 22 and 20 features, respectively. 

Using the SCC method, the number of features is reduced to 

28, 20 and 16 features. While the number of features is reduced 

to 32, 22 and 18 features using the KTC method. On the NSL-

KDD dataset, the number of features is reduced from 41 to 34, 

29 and 24 after applying the PCC method. Using the SCC 

method, the number of features is reduced to 35, 26, 17 

features. In the case of the KTC method, the features number 

is reduced to 37, 30 and 20 features. Finally, on the UNSW-

NB15 dataset, the number of features is reduced from 44 to 30, 

23 and 17 using the PCC method. Applying the SCC method, 

the number of features is reduced to 20, 11, 6 features. While 

the number of features is reduced to 35, 13 and 9 features using 

the KTC method. 
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4.4 Classification techniques 

 

In the classification process of the proposed IDS given in 

Figure 3, the two main phases of the system include the 

training and the testing phase. In the training phase, a training 

dataset containing labeled samples is used to train the classifier. 

To evaluate the performance of the classifier, new samples 

from the test dataset are presented to the classifier. There are 

many types of classifiers available like Logistic Regression, 

Decision Tree, Support Vector Machine, etc. To find the best 

classifier model that suit to our problem, we evaluate seven 

most famous machine learning classifier models and try to 

optimize the parameters of each algorithm in order to obtain 

an efficient classifier model with high accuracy and precision, 

as well as low false negative and false positive. The tested 

classifier models are briefly described below. 

Logistic Regression (LR): it is a predictive analysis 

algorithm based on the concept of probability. It uses the 

Sigmoid function to map predicted values to probabilities 

between 0 and 1. This function is defined as follows: 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒𝑥                     (5) 

 

Naive Bayes (NB): The Naive Bayesian classifier is based 

on Bayes theorem with the independence assumptions 

between predictors. Bayes theorem is defined as follows: 

 

𝑃(𝑋 𝐶⁄ ) =
𝑃(𝐶 𝑋)𝑃(𝑋)⁄

𝑃(𝐶)
                       (6) 

 

where, 𝑃(𝑋 𝐶⁄ ) is the posterior possibility of class (𝐶) given 

predictor (𝑋). 

Decision Tree (DT): it is a decision support tool that uses a 

tree-like graph where each internal node denotes a test on an 

attribute, each branch represents the outcome of the test, and 

each leaf node represents a class label. The paths from root to 

leaf represent classification rules. 

Random Forest (RF): It works exactly like the decision 

tree to build trees. The main difference between the two 

methods is that a decision tree is built using the whole dataset 

considering all features, whereas a random forest randomly 

selects observations and specific features to build multiple 

decision trees and then merges them together to obtain a higher 

accuracy and stability prediction. 

K-Nearest Neighbor (KNN): The principle of this model 

is to classify a point according to its distance from the k nearest 

neighbor points. The decision is taken by the majority vote of 

its neighbors. 

Support Vector Machine (SVM): The algorithm of the 

support vector machine aims to find a hyper plane to maximize 

the separation margin between two classes. The optimized 

hyper plane can be expressed mathematically by: 

 

𝑤𝑇𝑥 + 𝑏 = 0                                (7) 

 

where, 𝑤 is the vector of weights, 𝑥 is an input vector and 𝑏 

represents the bias. 

Multi-Layer Perceptron (MLP): is the neural network 

algorithm. MLP includes a network of artificial neurons 

(nodes). Three types of nodes are connected to each other: 

input nodes, hidden nodes, and output nodes. The node to node 

connection is adjustable. 

 

 

4.5 Performance evaluation 

 

To evaluate the performance of the IDS, many evaluation 

metrics are calculated using the values in the confusion matrix. 

The description of these values is as follows: 

True Positive (TP): the number of records correctly 

classified to the Normal class. 

True Negative (TN): the number of records correctly 

classified to the Attack class. 

False Positive (FP): the number of Normal records 

incorrectly classified to the Attack class. 

False Negative (FN): the number of Attack records 

incorrectly classified to the Normal class. 

Based on the above values, the most commonly used 

evaluation metrics are given by the following formulas: 

 

𝑻𝑷 𝒓𝒂𝒕𝒆 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (8) 

 

𝑻𝑵 𝒓𝒂𝒕𝒆 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                          (9) 

 

𝑭𝑷 𝒓𝒂𝒕𝒆 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                        (10) 

 

𝑭𝑵 𝒓𝒂𝒕𝒆 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
                        (11) 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃 +𝐹𝑁
               (12) 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (13) 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (14) 

 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (15) 

 

4.6 Evaluations and results 

 

The results of our experiments are presented in this section. 

Firstly, we measure the classification evaluation metrics of the 

three datasets with full features. Then, we reduced datasets 

dimension using the three popular correlation methods cited 

above and we evaluate each algorithm based on the best 

hyperparameters. Figure 5, 6 and 7 show the results. 

 

 
(a) Accuracy 
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(b) False Positive rate 

 
(c) Precision 

 
(d) F1-Score 

 

Figure 5. Performance on the KDD99 dataset 

 

Figure 5 shows the performance of the different classifiers 

with various dimension of the KDD99 dataset. As shown in 

the Figure, all the classifiers used in this experiment have 

similar performance in terms of accuracy, precision and F1 

score, with rates that can reach 95 %, 100 % and 96 %, 

respectively. In addition, SVM and MLP give a good False 

Positive Rate against the other algorithms, except the SSC (20), 

SCC (16) and KTC (18). However, NB and RF give a very 

high false positive rate especially with the reduced dimensions. 

Figure 6 represents different evaluation metrics for the 

different techniques on the NSL-KDD dataset. From this 

figure, it can be seen that NB have less accuracy and F1-Score 

values than other classifiers, with an average rate of 80 %; it 

also provides a very high false positive rate, while the other 

classifiers give good results except the case of reduced 

dimensions. It is seen also that the DT classifier performs 

better than the others with the different metrics, where the 

accuracy reached a rate of 98 % with almost all dataset 

dimensions, and a false positive rate not exceeding 2 % except 

the SCC (26) and KTC (20). 

 

 
(a) Accuracy 

 
(b) False positive rate 

 
(c) Precision 
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(d) F1-Score 

 

Figure 6. Performance on the NSL-KDD dataset 

 
Figure 7 shows the results of the experiments on the 

UNSW-NB15 dataset. In this dataset, the best result is 

performed by the KKN and LR algorithms, while the worst 

result is obtained by the NB algorithm. 

According to the above results, the best performances are 

given by the DT and KNN algorithm. Furthermore, feature 

selection techniques produce generally similar results to the 

original data, sometimes worse than the original features. 

There are only a few cases where these techniques provide 

good performances. 

 

 
(a) Accuracy 

 
(b) False Positive Rate 

 
(c) Precision 

 
(d) F1-Score 

 

Figure 7. Performance on the UNSW-NB15 dataset 

 

 

5. CONCLUSION 

 

Internet of Things is increasingly used and many related 

applications appeared. However, the IoT is faced with a 

security problem that needs to be solved, while considering the 

constraints and challenges related to the IoT context.  

In this paper, we have proposed a lightweight intrusion 

detection model based on machine learning techniques. This 

model can detect new attacks and provide double protection to 

the IoT nodes against internal and external attacks.  

In order to find the best classifier model, we evaluated 

several machine learning classifier models using three 

lightweight feature selection algorithms and tried to optimize 

the parameters of each algorithm to get an efficient classifier 

model with high accuracy and precision, as well as low false 

negative. In the experiments, we used KDD99, NSL-KDD and 

UNSW-NB15 dataset to learn and evaluate our model. 

According to the results of our study, it is observed that DT 

and KNN performed better than the other algorithms; however, 

the KNN takes much time to classify compared to the DT 

algorithm. Furthermore, with the three correlation methods 

used to reduce datasets dimension such as PCC, SCC and KTC, 

the classifiers produce good performance when the threshold 

of the correlation coefficient is greater than 0.9; below this 

threshold, performances are poor and sometimes unacceptable. 

In the case of the datasets that relate to the extent of our study 
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area, it is found that the performance obtained on the NSL-

KDD dataset is better compared to the KDD99 and UNSW-

NB15 datasets.  

In Future Work we will study other feature selection 

methods combined with more machine learning algorithms 

applied to real-time data from IoT devices. 
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