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ABSTRACT 

   
The tongue is one of the few organs with high mobility in the case of severe spinal cord injuries. 

However, most tongue-machine interfaces (TMIs) require the patient to wear obtrusive and 

unhygienic devices in and around the mouth. This paper aims to develop a TMI based on the 

glossokinetic potentials (GKPs), i.e. the electrical signals generated by the tongue when it 

touches the buccal walls. Ten participants were recruited for this research. The GKP patterns 

were classified by convolutional neural network (CNN) and support vector machine (SVM). It 

was observed that the CNN outperformed the SVM in individual and average scores for both 

raw and preprocessed datasets, reaching an accuracy of 97~99%. The CNN-based GKP 

processing method makes it easy to build a natural, appealing and robust TMI for the paralyzed. 

Being the first attempt to process GKPs with the CNN, our research offers an alternative to the 

traditional brain-computer interfaces (BCIs), which suffers from the instability and low signal-

to-noise ratio (SNR) of electroencephalography (EEG).  
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1. INTRODUCTION 

 

The spinal cord injuries (SCIs) and neuromuscular disorders 

are the main problems for the paralyzed individuals. Most of 

the disabled population needs special cares and continuous 

help via assistive technologies [1]. The tongue has complex 

muscles that enable any movement with poor fatigue. The tip 

of the tongue has a negative charge with respect to the root. 

Glossokinetic potential responses are generated via 

discharging bioelectric signals due to the tip of the tongue 

touching inside the mouth. GKP occurs in low frequencies 

(mostly in the delta bands rarely in theta bands) and originates 

from the noncerebral region [2-6]. Therefore, it is incurred less 

deterioration and does not easily interfere with the alpha and 

beta bands arisen by the active brain signals. Moreover, the 

tongue is directly innervated to the brain via cranial nerves. 

Hence, it is slowly affected organ by the SCIs and 

degenerative neuromuscular disorders, such as amyotrophic 

lateral sclerosis (ALS) [3]. The purpose of this paper is to offer 

a natural, easy-to-use, cosmetically acceptable and reliable 1-

D tongue-machine interface model implementing CNN 

architecture and SVM algorithm by investigating GKPs 

measured over the scalp. Tracking tongue movements via 

touching the buccal walls with the tip of the tongue has the 

potential of the proper and accurate direction to control the 

ATs and therefore to enhance the quality of life (QoL) for 

disabled people. This research study also consists of the 

ongoing investigation and comparison of the machine learning 

algorithms on GKPs [5, 6].  

Furthermore, psychophysical papers regarding the 

sensitivity and discrimination exhibit that some oral structures, 

including the tongue tip, are more sensitive than the fingertip 

and may provide promising results for a tongue-machine 

interface [7-9]. Traditional synchronous EEG-based BCIs 

have loss of control (LoC) and degrees of freedom (DoF) 

problems emerged from the nonstationarity of EEG signals, 

highly cognitive workload and the mental state of the user. In 

turn, the influence of user performance such as self-efficacy 

might form positive or negative feedback in BCIs [10, 11]. On 

the other hand, long training time is needed to gain adequate 

control for BCI usage [12, 13]. 

Various assistive technologies operated by tongue have 

been developed utilizing the stated advantages above in recent 

years. A tongue-drive system named as “Tongue Rudder” was 

designed by Nam et.al. In this work, glossokinetic potentials 

and electromyography (EMG) signals of the clenching jaw 

were used together to control the real-time wheelchair. GKPs 

were acquired in special electrode placement on the scalp. The 

linear features of the measured GKP signals were determined 

to gain the 1-D movement and clenching the jaw was handled 

as stop/resume calibration on the system [3]. The other study 

called "GOM-Face" by the same researchers consisted of the 

electrooculogram (EOG) signals beside the GKPs and EMG 

signals to develop a 2-D humanoid robot control in real-time. 

In the reported work, 1-D control was made by GKP signals 

and the other 1-D control was implemented by EOG signals to 

obtain 2-D control channel [4]. However, as our best 

knowledge, applying state-of-the-art-one method 

(convolutional neural network) and the shallow classifier 

(support vector machine) with maximum-peak value (MPV) 

and shape factor (SF) over the glossokinetic potential 

responses is the first attempt in a tongue-machine interface 

research. 

Conceptually, numerous ongoing studies based on tongue-

drive systems have pieces of equipment inside and around the 

mouth. Huo et al. have employed a small permanent magnet 

fixated on the tongue as a tracer. Then the array of magneto-

inductive sensors assembled in the oral cavity on a dental 
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retainer or outside like an orthodontic brace on a headset 

perceives induced magnetic variations due to the tongue 

motions. The signals of intentions are transmitted in the 

wireless communication to the smartphones or computers to 

be decoded and processed [1, 14-16]. Electrotactile interface 

pressured by the tongue on the roof of the mouth is another 

experimental system [5]. This type of physical concepts is 

irritating, aesthetically unappealing and unhygienic solutions 

for paralyzed individual satisfaction. Besides these, the user’s 

speech, ingestion, and breathing may be influenced by bulky 

components inside the oral cavity. Vaidyanathan et al. have 

developed the approach of the airflow pressure changes due to 

the tongue movements in the ear canal. Although the 

classification accuracy of 97 % was achieved with decision 

fusion classification algorithm in the study, the ear listening 

performances and comforts might be degraded for the patients 

due to the microphone attached in the ear canal [17-19]. 

However, in our study, glossokinetic potential based approach 

has simple tongue contacts on the buccal walls and does not 

affect listening fulfillments. Moreover, the classification 

accuracy was also reached up to the 100 % with CNN 

architecture.  

The leftovers of this paper are structured as it follows: 

Section 2 presents theoretical method, the results obtained are 

presented in Section 3, the Section 4 and 5 reviews the 

discussion and conclusion, respectively. 

 

 

2. THEORETICAL METHOD 
 

In this research study, ten subjects, aged 22 to 34 years, 

participated in three offline experimental setups to be 

measured glossokinetic potential responses related to the 

tongue touchings to the buccal walls as shown in Figure 1. 

International 10-20 electrode placement system was 

implemented with nineteen channels in acquisition the signals 

[20]. Left-right earlobes (A1-A2) were described as reference 

and left-eyebrow assigned as ground. EEG frequency bands 

and the monopolar placement for EEG electrodes are shown 

in Table 1 and 2, respectively. 

 

 
 

Figure 1. The workflow presentation of the tongue-machine 

interface using glossokinetic potential responses 

 

GKP responses were measured by EEG signal acquisition 

device benefiting the Micromed SAM32RFO and all 

impedances were kept below 10kΩ. Each channel was 

sampled at 1024 Hz and filtered between 0.5-100 Hz. 

Moreover, a 50-Hz notch filter was carried out to eliminate the 

power line noise. After that, for the part of the SVM algorithm 

process, 10th order infinite impulse response (IIR) 

Butterworth low-pass filter was applied with a 40 Hz cut-off 

frequency [21]. After filtering operation and discrete wavelet 

transform technique, the raw data set for SVM is normalized 

according to Eq. (1) in the range 0-1. 

 

𝑋𝑆
𝑛𝑜𝑟𝑚 =

𝑋𝑆−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                    (1) 

 

XS represents the sth value, Xmax and Xmin define the 

maximum and minimum value in the raw data set, respectively 

[22].  

 

Table 1. EEG frequency bands [11-12] 

 
Delta 1-4 Hz 

Teta 4-8 Hz 

Alpha 8-12 Hz 

Beta 13-30 Hz 

Gamma 30 Hz ≤ 

Table 2. The list of EEG electrodes for monopolar placement. 

 
Channel Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Channel Name Fp2 Fp1 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6 O1 O2 

Then, the feature extraction operations were implemented 

from the raw signal to feature vector for highlighting essential 

data. In this study, maximum-peak value and shape factor were 

used for SVM algorithm as feature extraction processes, both 

of them is in the time domain [23-24]. In the part of the 

proposed study related to CNN, firstly the signal-to-image 

conversion method was handled to convert 1-D time series of 

the raw signals to 2-D time series grayscale images to be 

classified in CNN structure [25-27]. DWT is also employed 

for the part of the CNN study before the signal-to-image 

conversion to investigate the effect of extraction delta and 

theta frequencies [2, 28]. 

 

2.1 Data collection 

 

Eight male and two female naive healthy subjects 

participated in this study, who did not have any nervous 

system impairment. The participants were seated in front of 

the LCD monitor and instructed not to move any part of the 

body except tongue motions during the tasks of the trials. A 

total of twelve trials were obtained for each participant, with 

four trials for each experimental setup. The greatest trial of 

each participant was selected by comparing the accuracy 

results in machine learning (ML) algorithms. Then, this 

relevant trial is used to produce the results for the process of 

the SVM algorithm. However, CNN needs to use more data 

set for reliability and higher results. Hence, twelve trials for 

each subject were used for CNN. 

The recorded trial of each consists of 98 seconds and starts 

after the 10 s delay. Distinct mental activities and short 

response time are required to provide satisfactory recognition 

accuracy in BCI signals [29-30]. The user is instructed to 

perform multiple distinct touchings via tongue on the buccal 

walls. Therefore better patterns of GKPs on the scalp can be 

produced for the machine learning algorithms. The time of the 

task was determined as the 6 s for the GKP signals. Then, the 
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resting intervals last 5 s between the 6 s durations of tongue 

contacts and expected no motion between these resting 

intervals. All participants were expected to make four right 

and four left tongue movements properly according to the 

experimental sequences represented in Figure 2. There are 

nearly ten multiple distinct contacts on the buccal walls during 

each 6 s duration. 

Figure 2. Sequences of the three experimental setups for 

tongue motions in the study 

2.2 Discrete wavelet transform 

To analyze and extract useful information from the non-

stationary signals, discrete wavelet transform (DWT) is a 

powerful tool in signal processing applications [31]. DWT is 

employed to separate the different frequency bands of the 

signal, especially EEG [32]. Hence, classification accuracy 

can be enhanced by extracting different features of the signal 

[32-33]. In this study, a discrete wavelet transform technique 

was applied for the extraction of delta and theta frequency 

bands of the glossokinetic potential signals to obtain better 

results in classification. The recorded data signals 𝑥(𝑛) with a 

sampling frequency of 1024 Hz, the wavelet type (𝜓∗) of db10

(Daubechies) at the 6th level was used to extract the delta and 

theta bands of GKP responses. 

𝐷𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∑ 𝑥(𝑛)𝑛 𝜓∗ (

𝑛−𝑏

𝑎
)   (2) 

The mathematical relation of DWT is in Eq. (2), where a 

and b are translation and scaling parameters, respectively [34]. 

2.3 Feature extraction and signal-to-image conversion 

In order to highlight to the feature set from the raw data set, 

feature extraction operations are employed in traditional 

classifiers. Time domain feature extraction methods, involving 

the maximum-peak value (MPV) and shape factor (SF) were 

applied in this study for the shallow classifier SVM. The 

mathematical relations for the MPV and SF are in Eqns. (3)-

(4), respectively. 

𝑥𝑝 = 𝑚𝑎𝑥|𝑥(𝑛)|       (3) 

𝑆𝐹 =
𝑥𝑟𝑚𝑠

1

𝑁
∑ √|𝑥(𝑛)|𝑁

𝑛=1

     (4) 

where, x(n), n= 1,2, N denote a time series signal and N means 

the number of data points [23]. The recorded data sets are 

(6×8×1024)×19 dimension for each participant, in which 6 

means six second duration for multiple contacts in a trial, 8 

means the number of total direction of the tongue movements 

to the buccal walls (4 right and 4 left) shown in experimental 

setup sequences, 1024 stands for the sampling frequency and 

19 are the recording channel numbers. Since it covers all EEG 

frequencies along feature extraction, 100 ms was selected to 

generate the feature vector. If 1 second of data is determined 

as 1024 / 100ms = 10 parts (approx.), then (6x8x10) equals the 

data length of 480 (approx.). However, some participants were 

unable to begin and end sessions at definite times during the 

experiments. For this reason, the data set had been cut out and 

defined it for each participant as 400x19 dimension. 

In CNN architecture, converted images of the 2-D time 

series of GKP signals are needed to be classified as right / left 

direction. In this signal-to-image conversion method, 1-D time 

series of the raw data signals fulfill the pixels of the image by 

the sequence of 2-D time series in grayscale images 

represented in Figure 3. The segments of the raw data signals 

are extracted sequentially in the length of M2 to have an M×M 

pixel size of image. The mathematical equation of the 

conversion is shown in Eq. (5). 

𝑃(𝑗, 𝑘) = 𝑟𝑜𝑢𝑛𝑑 {
𝐿((𝑗−1)×𝑀+𝑘)−𝑀𝑖𝑛(𝐿)

𝑀𝑎𝑥(𝐿)−𝑀𝑖𝑛(𝐿)
× 255}      (5) 

where, L(i), i=1, …M2 indicate the value of the segment signals 

and P (j, k), j=1, …M, k=1, …M. Each pixel value of the 

grayscale image is normalized by round function from 0 to 255 

[27]. 

Figure 3. The signal-to-image conversion method for GKP 

signals (Each image is in the 102×102 pixel size) 

CNN's advantage is that the feature extraction and feature 

selection operations are unnecessary. However, the main 

drawback of CNN is the need of the high rate of a data set to 

have robust and great results [35]. Therefore, twelve trials for 

each participant has been used to have 2-D time series images 

as shown in the procedure of the Figure 3. Then, 100 ms was 

decided to form the 102×102 pixel size of square images from 

the 1-D time series. Hence, each trial consisting of nineteen 

channels can produce 38 square images for each direction 

(right or left). Finally, twelve trials have achieved to provide 

12×38=456 images for each direction/class. Then, the eleven 

channels results were found in the same procedure, and 22 

square images were generated. Therefore, in twelve trials 

12×22=264 images were obtained totally for each direction.    

2.4 Performance measurement criteria and machine 

learning methods 

In the classification of glossokinetic potentials, we have 

used the classification accuracy (ACC), sensitivity (SENS), 

specificity (SPEC) and information transfer rate (ITR) values 

to test the performance of proposed methods. k-fold cross-
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validation technique was also applied to survey the stability of 

the results, and then 10-fold was chosen in the processing of 

the shallow method SVM. However, the traditional 50 % 

training and 50 % test data set separation technique was 

selected for CNN. The represented mathematical equations for 

the correctness of the classification in Eqns. (6)-(8).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇𝑆) =
∑ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑖)|𝑇𝑆|

𝑖=1

|𝑇𝑆|
 ,             𝑛𝑖𝑇𝑆    (6) 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = {
1, 𝑖𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = 𝑐𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (7) 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇𝑆𝑖)

|𝑘|
𝑖=1

|𝑘|
       (8) 

 

where, TS refers the test data set to be classified, while 𝑛𝑇𝑆, 

cn is the class of n. Moreover, estimate(n) means for the 

classification result of n, k is the k-fold cross validation 

number [36, 37]. True positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) are the fundamental 

evaluation parameters provided for the sensitivity (SENS) and 

specificity (SPEC) in receiver operating characteristic (ROC) 

analysis [37], shown in Eqns. (9)-(10). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                     (10) 

 

Most of the EEG-based BCI systems, information transfer 

rate (ITR) is a characteristic parameter discovering the 

transmitted data information per trial or time. In our study, ITR 

was utilized to measure the system performance of tongue-

machine interface using the GKP signals. The mathematical 

equation for ITR is in Eq. (11). 

 

𝐵 = log2 𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2
(1−𝑃)

(𝑁−1)
     (11) 

 

where, B defines the number of bits per trial, N stands for 

different types of classes, and the correctness of classification 

is named as P. When the number of various mental functions 

in a BCI system increases, the ITR increases in value (0-1) 

[38-39]. 

 

2.4.1 Support vector machine 

Support vector machine (SVM) is a kernel-based machine 

learning algorithm and is used in bio-signal classification. 

SVM determines the support vectors to discriminate the 

decision boundary (hyperplane). The distance from the 

hyperplane to the nearest support vectors to both sides is called 

as the margin. Thus the goal is to maximize the margin and 

find the optimal hyperplane for generalization ability [36, 40], 

as shown in Figure 4. 

 

𝑋{𝑡} = {
𝑟𝑡 = +1, 𝑥𝑡 ∈ 𝐶1 

𝑟𝑡 = −1, 𝑥𝑡 ∈ 𝐶2
                  (12) 

 

𝑔(𝑥) = {
𝑤𝑇𝑥𝑡 + 𝑤0 ≥ +1, 𝑥𝑡 ∈ 𝐶1 

𝑤𝑇𝑥𝑡 + 𝑤0 ≤ −1, 𝑥𝑡 ∈ 𝐶2
       (13) 

 

𝑟𝑡(𝑤𝑇𝑥𝑡 + 𝑤0) ≥ +1                  (14) 

 

where, in the Eqns. (12)-(14), the hyperplane is defined by g(x), 

w0 localizes the hyperplane and w stands for the orientation. 

SVM does not need to carry out the parameters such as 

learning rate, initializations and checking for convergence [40]. 

 

 
 

Figure 4. SVM and maximizing the hyperplane margin for 1-

D time series of the GKP signals [36] 

 

2.4.2 Convolutional neural network 

Convolutional neural network (CNN) is the state-of-art 

technique for computer vision, speech recognition, and natural 

language processing. Meanwhile, CNN has also shown 

remarkable performance in multi-channel EEG signal 

processing with challenging data sets with considerable inter-

and intra-subject variability [25]. The CNN structure has three 

major layers consisting of the convolutional layer, pooling 

layer, and a fully connected layer [27, 35]. The convolutional 

layer has filters (kernels) which are the matrix to be convolved 

with the pixels of image-based 2-D time series signals. 

Convolutional layers aim to extract different features 

involving the edges, lines, and corners [41]. The mathematical 

relation of the convolutional operator is as follows in Eq. (15).  

 

𝑦𝑘 = ∑ 𝑥𝑛ℎ𝑘−𝑛
𝑁−1
𝑛=0                           (15) 

 

where, x is time series of a signal, h means the kernel, N stands 

for the number of data of x, and y is the feature map or output 

vector [35]. The pooling layer is used for reducing the 

dimension of the feature maps and is named as the down-

sampling layer. Hence, overfitting and computational 

complexity are alleviated by pooling layer operation. Then 

fully layers determine the class score. There are two types of 

activation functions in this study: (1) Rectified Linear 

Activation Unit (2) Softmax. 

Rectified Linear Activation Unit (ReLU): There is common 

practice to apply an activation function after each 

convolutional layer. ReLU provides nonlinearity to the 

network structure, represented in Eq. (16) [35, 41]. 

 

𝑓(𝑥) = {
𝑥,         𝑥 ≥ 0

0, 𝑥 < 0
                     (16) 

 

Softmax: This function is used to compute the probability 

of the k output class. The related equation of softmax is shown 

in Eq. (17). 

𝑝𝑗 =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑘𝑘
1

        𝑗 = 1, … 𝑘             (17) 

 

where, x is the input of the net. The values of the output are in 

the range of 0 and 1 and their summation is 1 [35]. 

In our study, the CNN architecture has included one 
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convolution layer with the kernel size as 5 in different number 

of kernel numbers from 5 to 20. Moreover, the maximum 

pooling layer kernel size was 2 and the stride number was 

chosen as 5. 

 

 
 

Figure 5. The structure of the CNN model 

 

 

3. RESULTS 

 

The main aim of this research study is to lead developing a 

tongue-machine interface via investigating and comparing the 

state-of-the-art method (convolutional neural network) and the 

shallow algorithm performances (support vector machine) on 

glossokinetic potential responses. Maximum-peak value and 

shape factor were utilized in feature extraction algorithm for 

SVM. Moreover, the signal-to-image conversion method was 

employed for CNN architecture. Furthermore, discrete 

wavelet transform was also applied in preprocessing to extract 

delta and theta frequencies. The data set of the 11-channel 

(Frontal + Temporal region) signals were also calculated for 

SVM and CNN methods. All the results in the whole article 

were processed by machine learning algorithms from the data 

sets and gray-scale images below: 

• The raw data set (400x19) 

• The data set preprocessed by DWT (400x19) 

• The data set of the related to the extracted frontal and 

temporal region (11-channels) (400x11) 

• The preprocessed data set by DWT related to the frontal 

and temporal region (11-channels) (400x11) 

• The gray-scale images of the raw data set for both 

direction (456x2) 

• The gray-scale images of the data set preprocessed by 

DWT for both directions (456x2) 

• The gray-scale images of the data set related to the 

extracted frontal and temporal region (11-channels) for 

both directions (264x2) 

The best and worst participants were highlighted by the 

results of the raw and preprocessed data sets indicated in Table 

3 to distinguish and compare easily throughout the article. 

Then, the statements and implications of findings were stated 

according to the best and worst participants in the paper. All 

the results obtained are presented in the decimal base and 

percentage expression (%), excluding ITR results. 

 

Table 3. The support vector machine results of the raw data set and preprocessed data set by DWT (400x19)  

 
C .Fea/S. .. Sub_1 Sub_2 Sub_3 Sub_4 Sub_5 Sub_6 Sub_7 Sub_8 Sub_9 Sub_10 Aver. 

MPV 

(RAW) 

Acc 79 97,25 77,05 80,06 88,32 94,15 86,19 79,70 79,48 96,07 85,73 

Sens 84,6 97,5 80,45 80,56 91,25 96,63 84,52 78,52 78,32 97,39 86,97 

Spec 71,55 97,04 72,57 79,34 84,40 90,68 88,38 81,39 81,36 94,42 84,11 

ITR 0,259 0,819 0,223 0,279 0,480 0,678 0,421 0,272 0,268 0,761 0,446 

SF 

(RAW) 

Acc 80,03 97,02 74,10 80,02 90,59 94,64 86,16 78,15 75,33 95,03 85,11 

Sens 86,78 97,50 82,23 82,23 90,78 96,63 85,93 77,59 75,80 95,69 87,12 

Spec 70,67 96,59 63,32 76,97 90,15 91,54 86,47 78,81 74,85 94,06 82,34 

ITR 0,279 0,806 0,175 0,279 0,550 0,699 0,420 0,243 0,194 0,715 0,436 

MPV 

(DWT) 

Acc 81,12 98,01 79,52 76,32 93,02 96,07 89,05 73,23 79,19 97,02 86,25 

Sens 85,93 98,00 83,95 78,37 94,58 97,07 85,43 66,03 77,01 98,26 86,46 

Spec 74,82 98,00 73,80 73,62 89,84 94,62 93,00 82,56 82,03 95,34 85,76 

ITR 0,301 0,859 0,269 0,210 0,635 0,761 0,502 0,162 0,262 0,807 0,477 

SF 

(DWT) 

Acc 79,32 98,00 78,02 73,83 91,24 96,01 86,16 73,26 78,01 97,05 85,09 

Sens 82,79 98,00 84,33 76,61 92,45 97,01 83,98 75,89 79,62 96,96 86,76 

Spec 74,54 97,99 69,69 69,68 89,08 94,80 88,66 70,21 75,75 97,16 82,76 

ITR 0,265 0,859 0,240 0,171 0,572 0,758 0,420 0,162 0,240 0,808 0,449 

The results in Table 3 have shown that Subject_2 has 

achieved with the highest accuracy performance of 98.01 % in 

the MPV+DWT method. Meanwhile, the lowest accuracy 

result (73.23 %) was obtained by Subject_8 in MPV+DWT. 

Therefore, according to this raw data set results, the best and 

worst subjects were observed as Subject_2 and Subject_8 

respectively, as shown in Figure 6. The accuracy difference 

between the best and worst participant is relatively high and is 

about 24.78 value. Hence, the inter-subject variability among 

the participants was observed significantly. Moreover, 

concerning the average scores, MPV+DWT has provided 

86.25 % classification accuracy for the shallow SVM 

algorithm. Furthermore, DWT has advanced the outcomes 

around 0.52 % for MPV extraction method. 

In Table 4, frontal and temporal region signals were 

presented in eleven-channels extracted from the raw data set. 
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These results explicitly show that the best participant has 

achieved almost the same performance (98.03 %) compared to 

the accuracy of the raw data set results (98.01 %). However, 

the performance of the worst subject has declined in either 

extraction methods and DWT preprocessing outcomes. The 

highest accuracy value (79.02 %) of the worst subject 

decreased in 0.68 accuracy in MPV+RAW. Then, MPV+DWT 

has provided the greatest score (84.70 % accuracy) in average, 

as well as in the raw data set results. 

The state-of-the-art machine learning algorithm CNN has 

outperformed results compared to the shallow classifier SVM 

for raw and preprocessed data sets in all subjects, as shown in 

Table 5. The best (99.78 %) and worst (97.37 %) participants 

have close results for the highest accuracy in the raw data sets. 

Moreover, the other subjects' scores are around 97-99 %, as 

well as the average results (98.71) for the raw data set. Discrete 

wavelet transform was used to preprocess the raw data set 

before the signal-to-image conversion in the gray-scale images. 

Then, the effect of the DWT on the CNN architecture may 

have disturbed the pattern of the 2-D time series images. 

Hence, inter-subject variability (95-99 %) and the highest 

average score (97.02 %) are higher than the raw data set results 

in CNN architecture. 

In Table 6, eleven channel signals measured from the frontal 

and temporal regions have provide 100 % accuracy for four 

subjects in CNN architecture. In comparative achievement 

with the SVM for the eleven channel results (84.70 %), CNN 

has improved the highest average score (97.40 %) as 12.70 

accuracy.  

The breakthrough success on recognizing the pattern of the 

glossokinetic potential responses on the scalp was observed 

powerful performance via CNN structure employing the 2-D 

time series gray-scale images. 

 

 
 

Figure 6. The raw data set and preprocessed data set 

classification performances the best subject with SVM (left), 

the worst subject with SVM (right) 

 

Table 4. The support vector machine results of the raw data set and preprocessed data set by DWT related to the extracted frontal 

and temporal region signals (400x11) 
 

C.Fea/S. .. Sub_1 Sub_2 Sub_3 Sub_4 Sub_5 Sub_6 Sub_7 Sub_8 Sub_9 Sub_10 Aver. 

MPV 

(RAW) 

Acc 78,08 97,01 77,03 71,06 88,52 93,06 86,13 79,02 73,03 95,07 83,80 

Sens 85,53 98,00 81,88 80,13 91,25 94,47 83,12 76,28 67,54 96,11 85,43 

Spec 68,22 95,99 70,79 57,88 84,37 91,50 89,41 82,31 80,14 93,74 81,44 

ITR 0,241 0,806 0,223 0,132 0,486 0,636 0,419 0,259 0,159 0,716 0,408 

SF 

(RAW) 

Acc 78,02 96,24 73,06 70,07 87,27 93,17 85,08 77,24 74,57 95,18 82,99 

Sens 83,36 97,50 78,08 79,22 89,11 95,40 82,73 79,45 71,79 96,97 85,36 

Spec 70,91 94,88 66,56 57,68 84,19 89,73 87,83 74,23 78,10 92,53 79,66 

ITR 0,240 0,769 0,159 0,120 0,450 0,641 0,392 0,226 0,182 0,721 0,390 

MPV 

(DWT) 

Acc 81,19 98,02 78,3 70,12 92,01 95,00 88,31 72,27 75,30 96,44 84,70 

Sens 86,4 98,5 83,08 77,05 93,73 96,20 86,39 72,25 70,60 97,41 86,16 

Spec 74,01 97,57 72,33 60,75 89,73 93,21 90,64 72,21 81,76 95,14 82,74 

ITR 0,303 0,860 0,245 0,120 0,598 0,714 0,480 0,148 0,194 0,778 0,444 

SF 

(DWT) 

Acc 79,48 98,03 79,07 67,37 90,04 94,03 85,96 70,40 74,72 96,02 83,51 

Sens 84,07 98,5 83,93 77,55 92,08 95,38 83,48 71,03 75,29 96,11 85,74 

Spec 74,39 97,59 73,12 54,27 87,22 92,30 88,56 69,58 73,92 95,94 80,69 

ITR 0,268 0,86 0,26 0,089 0,532 0,674 0,415 0,124 0,184 0,758 0,416 

 

Table 5. The convolutional neural network results of the gray-scale images of the raw data set and preprocessed data set by DWT 

for both direction (456x2) 
 

C.Fea/S. .. Sub_1 Sub_2 Sub_3 Sub_4 Sub_5 Sub_6 Sub_7 Sub_8 Sub_9 Sub_10 Aver. 

CNN 

(RAW) 

Acc 99,56 99,78 98,46 99,12 99,34 97,37 97,81 97,37 99,12 99,12 98,71 

Sens 99,12 99,56 99,12 99,56 99,56 98,68 97,81 95,61 99,12 100 98,82 

Spec 100 100 97,81 98,68 99,12 96,05 97,81 99,12 99,12 98,25 98,60 

ITR 0,959 0,977 0,886 0,927 0,943 0,824 0,847 0,824 0,927 0,927 0,904 

CNN 

(DWT) 

Acc 98,46 98,46 96,05 98,25 99,12 95,39 95,61 95,83 95,83 97,15 97,02 

Sens 99,12 99,12 96,93 98,68 100,0 96,49 98,68 95,18 96,93 96,93 97,81 

Spec 97,81 97,81 95,18 97,81 98,25 94,30 92,54 96,49 94,74 97,37 96,23 

ITR 0,886 0,886 0,760 0,873 0,927 0,730 0,740 0,750 0,750 0,813 0,811 
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Table 6. The convolutional neural network results of the gray-scale images of the raw data set related to the extracted frontal and 

temporal region signals (11-channels) for both direction (264x2) 

 
C.Fea/S. .. Sub_1 Sub_2 Sub_3 Sub_4 Sub_5 Sub_6 Sub_7 Sub_8 Sub_9 Sub_10 Aver. 

CNN 

(RAW) 

Acc 98,61 100 100 100 99,24 93,56 95,08 92,05 95,45 100 97,40 

Sens 100 100 100 100 100 94,70 96,21 92,42 93,94 100 97,73 

Spec 97,22 100 100 100 98,48 92,42 93,94 91,67 96,97 100 97,07 

ITR 0,894 1 1 1 0,936 0,655 0,716 0,599 0,733 1 0,853 

 

 
 

Figure 7. Brain mapping presentation of Subject_2 (the best participant) related the tongue movements (a- frequency bands’ 

intensities for right buccal wall touchings b- frequency bands’ intensities for left buccal wall touchings) 

 

The best participant has provided distinguishable and clear 

brain mapping results, presented in Figure 7. The delta 

frequency bands have high-intensity power distribution over 

the scalp for both directions of the tongue contact position.  

Frontal and temporal regions have significantly exposed to 

the glossokinetic potential responses in the proper hemisphere 

of scalp extending to the T5 and T6 electrode leads. Moreover, 

the theta, alpha, and beta frequency bands have consisted of 

small magnitudes changes of the GKP responses. 

 

 
 

Figure 8. Brain mapping presentation of Subject_8 (the worst participant) related the tongue movements (a- frequency bands’ 

intensities for right buccal wall touchings b- frequency bands’ intensities for left buccal wall touchings) 

 

The spatial pattern of the glossokinetic potential responses 

over the scalp for the worst subject was not generated 

explicitly to be observed the trace of the tongue position in the 

oral cavity as shown in Figure 8. The magnitude of the power 

signal variations has occurred high and moderate density on 

frontal regions including the leads of the Fp1-Fp2 and F7-F8 

respectively. Hence, the major difference between the success 

of the best and worst participant may be the temporal region’s 

contribution to the delta band activities. Furthermore, theta 

band intensity of the worst subject was acceptable level on the 

frontal region, unlike the best subject. The time-frequency 

analysis using the continuous wavelet transform and scatter 

plot presentation of the best subject were shown in Figure 9. 
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Figure 9. Time-frequency analysis presentation of the continuous wavelet transform while touching the right buccal wall of the 

best participant during 6 s duration in a trial (left) Scatter plot presentation of the classification of the best participant including 

Channel-1 versus Channel-4 (right) 

 

 

4. DISCUSSION 

 

In this study, the shallow classifier SVM with the 

MPV+DWT has achieved great results reaching up to the 98 % 

accuracy in the raw data set, as well as in our previous work 

obtaining as 94 % accuracy in the mean-value feature 

extraction method [5]. Moreover, another previous article 

including the other shallow classifiers, traditional multi-layer 

neural network (97 % accuracy) with Levenberg Marquardt 

(LM) and probabilistic neural network (95.29 % accuracy) has 

not provided greater outcomes than SVM with the 

MPV+DWT for the maximum value of the raw data set results 

[6]. On the other hand, even when the number of data increases 

via using all the trials, there was an expected situation in our 

research about the breakthrough performance of the CNN that 

outperformed shallow classifier not only for subject-specific 

performances but also for the average scores yielding upper 

the 98.71 % recognizing accuracy. Moreover, the success of 

the many shallow classifiers depends on the selection of the 

preprocessing, dimensionality reduction and special feature 

extraction methods which whole steps require the time-

consuming process. However, CNN can realize automatic and 

influential feature extraction operations via deeper 

convolution operators without overfitting and preprocessing 

[42-45].  

Furthermore, the discrete wavelet transform technique was 

applied to extract the delta and theta frequency bands to 

improve the classification accuracy [28, 46]. Whereas 

expected improvement for the shallow classifier was realized, 

the CNN has not achieved better results than the raw data sets 

before the signal-to-image conversion, as shown in Table 5. 

This may be occurred from the deterioration of the pattern of 

the GKP signals by DWT to be recognizable for CNN 

architecture. 

Multidisciplinary research efforts are necessary for the 

development of the modern brain-machine interface (BMI). 

These researches unite a variety of information system 

engineering, statistical signal processing, machine learning, 

control theory, and information theory [47, 48]. Hence, the 

remarkable investigation of our research was the contribution 

and assessment of the frontal + temporal (11-channels) region 

signals due to the high exposure of glossokinetic potential 

responses, as represented in Figure 7. The success of the 

tongue-machine interface with fewer electrodes of the channel 

selection methods may lead wearable and easy-to-use systems 

[49, 50]. Then, fewer electrodes can mean less assisted-living 

help via caregiver for disabled persons in a reliable manner [10, 

11]. Moreover, it is worth to note that the success of the frontal 

+ temporal region signals is very close to the raw and 

preprocessed data set results, represented in Tables 3 and 4 for 

the SVM algorithm. Then, the performance of the CNN is 

almost the same with raw and preprocessed data set results for 

the 11-channel signals, as shown in Tables 5 and 6. Because 

the CNN has reached almost the peak values. Furthermore, 

corticomuscular coupling analysis investigates the interaction 

between the brain regions and ongoing muscular activities 

(EMG). However, as our best knowledge, the coherence of 

brain cortex potentials and glossokinetic potential responses in 

delta and theta bands during the tongue-muscle motor 

functions were revealed for the first time study in a tongue-

machine interface using glossokinetic potential signals [51-52]. 

In our work, occurring of glossokinetic potential responses 

symmetrically on the scalp was an unexpected situation 

according to the related articles observing unsymmetrically on 

the brain mappings. Because negatively charged tongue tip 

creating potentially increased and decreased changes on the 

non-contact and contact surfaces respectively [2-4]. However, 

the same researchers noted that GKP responses from different 

spatial and temporal patterns on brain mappings during tongue 

movements due to the contacting other articulators such as 

teeth or palate. Furthermore, pronouncing the retroflex 

consonants cause a strong potential increase over the frontal 

region during the tongue bending concerning to the language 

and phonetic research [53]. For this reason in our study, 

distinct movements when the tongue touches to the buccal 

walls during experimental tasks might have suppressed an 

antisymmetric event, as indicated in Fig.7. In the mentioned 

study, electrode placements, reference point, and experimental 

procedure were also structured differently from the general 

manner to observe easier the glossokinetic potential responses. 

In their research, the tongue was acted in a continuous motion 

over the right-front-left path to touch the buccal walls [2-4]. 

However, there are multiple distinct contacts in the same 

duration of 6 s task in our study. Thus, all these differences can 

support the assumption of symmetrical results on brain 

mappings of our article. 

Motivation is accepted as a key factor in BCI research. 

Motivated participants perform much better than participants 
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who are bored of their experimental tasks [54]. This admission 

may reflect that the best subject was highly motivated and 

made proper motions via the tongue in distinct and regular in 

our study. On the other hand, the worst subject has acceptable 

concentration and might have not correctly done instructed 

movements via tongue. Inter-trial and inter-subject instability 

are a significant challenge for the robustness of the BCI system 

and named as transfer learning techniques [47]. The same 

situation has been observed for each participant and session-

to-session performances of the same subject in our research. 

Hence, to yield high classification accuracy in large inter and 

intra-subject variability, more effective and powerful signal 

processing algorithm must be needed [25, 29]. In this research, 

CNN has achieved maximum performances for individual and 

average results in a highly challenging data sets, as indicated 

in Tables 5 and 6. 

 

 

5. CONCLUSION 

 

Millions of individuals in the world suffer from the spinal 

cord injuries or motor-related neurological disorders [48]. 

Voluntary tongue touchings modify the contact surface of the 

buccal walls and scalp activity generated by the GKPs. Then, 

using glossokinetic potential responses in a natural, reliable 

and easy-to-use tongue-machine interface technology can 

provide a direct communication and control channel for 1-D 

extraction. This study may extend and serve the literature by 

implementing the CNN and SVM algorithms with the signal-

to-image conversion (gray-scale image) and feature extraction 

methods (maximum-peak value and shape factor), 

respectively, in processing GKP biosignals of the tongue-

machine interface. The convolutional neural network is a 

machine learning algorithm that breaks records of the pattern 

recognition and signal processing applications in the recent 

years. In addition, comparison with the method using SVM 

verifies that CNN has much better performance reaching up to 

the around 100 % classification accuracy for subject-specific 

and average scores in raw and preprocessed data sets via DWT. 

The tongue is directly connected to the brain by hypoglossal 

nerves and generally maintain intact in severe damages of the 

spinal cord injuries [1, 3]. Hence, the nature of the GKP 

responses and CNN offer many significant advantages to be 

implementable in control of assistive devices compared to the 

EEG-based BCIs. 
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