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 This study aims to investigate a post-construction method that can correct hardening artifacts 

in computed tomography (CT) images without measuring the X-ray spectrum. Reconstructed 

images may include several hardening artifacts, which weaken the image quality and affect 

diagnosis. Therefore, herein, we adopt a reconstruction algorithm based on the equivalent 

tissue length approach. Firstly, the image pixels were divided into different equivalent tissues 

based on their CT values. Then, the equivalent tissues were projected to obtain their lengths in 

different ray directions. Considering the equivalent tissue length as the independent variable, 

a projection model was constructed and the correction coefficients were computed. Next, 

erroneous projection was identified and removed from the image. Finally, an artifact-free 

image was reconstructed from the corrected projection data. The results of a phantom model 

experiment and four patient data experiments show that the proposed method can effectively 

remove beam hardening artifacts and improve image accuracy. We believe the findings will 

be significant in clinical applications. 
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1. INTRODUCTION 

 

Conventional reconstruction algorithms for computed 

tomography (CT) often assume X-rays to be monochromatic. 

However, in practice, X-rays are polychromatic and contain 

photons with various energies. When an X-ray beam passes 

through an object, low-energy photons are more likely to be 

absorbed than high-energy photons. Consequently, beam 

attenuation is not related to object thickness linearly; ignoring 

this nonlinear relation during image reconstruction produces a 

resulting image containing several hardening artifacts, thereby 

reducing image quality and affecting the diagnosis. In the last 

few decades, many methods have been proposed for reducing 

such hardening artifacts [1, 2]. 

Existing artifact removal methods fall into two broad 

categories: hardware and software correction methods. The 

hardware correction method filters low-energy photons by 

placing a metal filter between the X-ray source and the object. 

Although this approach is easy to implement and effectively 

reduces artifacts, the filtering process also reduces the signal-to-

noise ratio (SNR) [3]. Typical software correction strategies 

include dual-energy correction, single-energy correction, 

iterative correction, and polynomial fitting. We briefly describe 

each of these approaches below. 

As proposed by Alvarez et al., theoretically, dual-energy 

correction is the most effective method to remove hardening 

artifacts [4, 5]. This method considers linear attenuation to be 

the combined result of the photoelectric and Compton scattering 

effects. However, it requires two radiation sources and two 

detectors, and these additional instruments lower the scanning 

efficiency and increase the patient’s radiation dose, making the 

method less practical. 

Single-energy correction is based on a hypothesis by 

Nalcioglu and Lou [6]. However, their original method does not 

produce good results if the scanning area contains more than 

two materials. This method was later improved by Joseph et al. 

[7] to handle cases where the scanning area contains three 

materials; however, the computation becomes increasingly 

complex with the increasing number of materials. 

Iterative correction is a relatively new method that iteratively 

recurses new values with old ones. For example, Van Gompel 

et al. [8] introduced an iterative correction method based on a 

cost function. However, their nonconvex cost function yields 

multiple solutions; thus, the solution quality depends on the 

rational selection of initial parameter values. Zhao et al. [9] 

presents another iterative correction strategy that can be applied 

to various hybrid materials, but it can’t remove all hardening 

artifacts. In summary, iterative correction currently has 

considerable practical limitations and thus cannot be widely 

used. 

Polynomial fitting essentially converts the measured 

polychromatic projection data into monochromatic data, and 

then uses these data to reconstruct the object image. This is 

currently the most popular approach for artifact correction 

owing to its simplicity, ease of use, and good correction ability 

[10-12]. For instance, Kachelrieß et al. [11]; Kyriakou et al. [12] 

construct polynomial equations using the segmented tissue 

image as the independent variable, and then compute the 

correction coefficients by minimizing the total variation. 

Although this produces good correction, the calculations are 

complicated. Another approach is to correct the hardening 

artifacts post reconstruction using a ladder-like experimental 

database of equivalent tissues [13-16]. Although this method is 

effective and convenient for simple objects, it is not sufficiently 

flexible to handle objects with complex components, where the 

tissue database is unfeasibly large. 

In our previous work [17], we presented an algorithm based 

on the mathematical perspective of constructing a projection 
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correction model using the projection data as the independent 

variable. This method is suitable for hardening artifact 

correction with a single homogeneous material or a combination 

of two such materials. It can be used for water pre-correction in 

conventional CT, as well as hardening artifact correction for 

both single parts in industrial CT images and two-component 

splicing materials.  

Polynomial fitting is the most popular approach for correcting 

beam hardening artifacts in CT images. However, existing 

correction methods are either based on image space or 

projection space; i.e., they consider the base image or base 

projection as the independent variable. In addition, such need to 

mathematically solve for the correction coefficients to complete 

the correction. For example, Kyriakou et al. [12] solves for the 

coefficients by minimizing the total variation, but the solution 

process is rather complicated. Yang et al. [15] obtains the 

coefficients by minimizing the entropy. Although such methods 

can remove the hardening artifacts, they require complex 

computation. In practice, we cannot accurately represent the 

imaging law by considering the base image or base projection 

as the independent variable. 

To resolve this issue, we develop a simple and universal beam 

hardening correction (BHC) method that corrects beam 

hardening artifacts under the proportional guidance of the 

equivalent tissue lengths. Specifically, we construct an 

innovative projection model that uses the equivalent tissue 

length as the independent variable. 

In the proposed model, correction coefficients reflect the 

correlations between the attenuation coefficients, with low-

order terms describing the actual attenuation projection and 

high-order terms representing the hardening process. (Each term 

in the projection model carries a specific physical meaning.) 

Thus, the entire projection model reflects the actual 

polychromatic projection. Next, we employ an established 

model to approximate the collected polychromatic projection 

and obtain the correction coefficients via the least-squares 

method. Compared with previous polynomial fitting methods 

[18, 19], our approach is simple and fast, and every term has a 

clear physical meaning, making the approach easy to understand 

and utilize. 

During image segmentation, the equivalent tissues are often 

divided inaccurately because of the improper operation or lack 

of the experience. This inaccuracy may cause errors in the 

calculated equivalent tissue lengths, which in turn cause 

discrepancies in the calculated attenuation coefficients (i.e., 

differences in the attenuation coefficient ratio of water to bone 

obtained from the equivalent single-energy process). In such 

cases, the hardening artifacts cannot be completely corrected. 

This led us to propose the proportional guidance method for 

obtaining the correction coefficients. Our analysis results show 

that, under proportional guidance, our correction method can 

overcome the common practical issue of incomplete 

segmentation, demonstrating the universal applicability of our 

method. 

 

 

2. METHOD 

 

Considering the equivalent tissue length as the independent 

variable, we propose a BHC algorithm that removes hardening 

artifacts by eliminating the erroneous component of the 

projection. Figure 1 shows a detailed flowchart of the proposed 

method. Based on the physical laws of ray projection, we 

constructed the projection model through the following five 

steps. 

First, we acquired the original image f0 (with hardening 

artifacts) from the CT image. Next, we decomposed each image 

pixel according to the proportions of air, water, and bone using 

the proportional division function. Following that, we separately 

projected the water and bone tissue regions to determine the 

total length of each tissue type for each ray. Then, we removed 

the nonlinear error term from the original projection, yielding 

the corrected projection. Finally, we reconstructed an artifact-

free image based on the corrected projection. While in existing 

methods [14], erroneous components must be removed from the 

original artifact-containing image, our algorithm can correct all 

artifacts in a single reconstruction and output quantifiable CT 

values. 

 
 

Figure 1. Flowchart of the proposed method 

 

2.1 Equivalent tissues 

 

We roughly determined the CT distribution of each tissue 

type from a histogram of the CT value distribution. Each pixel 

in the artifact-containing image was decomposed according to 

the proportions of the three equivalent tissue types (air, water, 
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and bone) using the proportional division function (Figure 2). 

Here, the fractions of the three tissue types always sum to one. 

 

 
 

Figure 2. Proportional division function 

 

We selected −1,000 Hounsfield units (HU), denoted by T1, as 

the upper limit for air, and adopted 1,300 HU, denoted by T4, as 

the lower limit for bone tissue and 0–100 HU, denoted by T2–

T3, as the range for water. Thus, a pixel with a CT value below 

T1, a CT value above T4, or a CT value between T2 and T3, is 

considered pure air, bone, or water, respectively. Furthermore, 

a pixel with a CT value between T3 and T4 is deemed a mixture 

of water and bone. Herein, we denote the equivalent tissue 

proportions of water, bone, and air as Ww, Wb, and Wa, 

respectively, and the pixel CT value is denoted as Z. 

The proportions of the three equivalent tissues in each pixel 

are determined using the proportional division function (i.e., 

formulas (1) and (2)), which were established by considering 

that X-rays are attenuated more significantly by passing through 

bone than by passing through the same thickness of water. The 

proportional relationships for water and bone can be expressed 

as follows: 

 

𝑊𝑤 =

{
 

 

 

      
𝑧−𝑇1

𝑇2−𝑇1
                            𝑇1 ≤  𝑧 < 𝑇2

         1                               𝑇2 ≤ 𝑧 < 𝑇3

𝑐𝑜𝑠2 (
𝜋

2
∗
𝑧−𝑇3

𝑇4−𝑇3
)              𝑇3 ≤ 𝑧 < 𝑇4

      (1) 

 

𝑊𝑏 = {

0                                         𝑧 < 𝑇3

𝑠𝑖𝑛2 (
𝜋

2
∗
𝑧−𝑇3

𝑇4−𝑇3
)             𝑇3 ≤ 𝑧 < 𝑇4

1                                         𝑧 ≥ 𝑇4

        (2) 

 

For the original image f0 in Figure 3(a), we can use these 

division functions to obtain the equivalent tissue images for 

water and bone as Figure 3(b) and 3(c), respectively. 

 

 
 

Figure 3. Original image (a), and equivalent tissue images 

for water (b) and bone (c) 

 

2.2 Projection model 

 

Let E0 be the energy of the monochromatic X-ray source. 

When an object is irradiated by this source, the projection q is 

linearly correlated with the thickness through which the rays 

penetrate [15]. In this case, the projection can be described as: 

 

𝑞 = ∫ 𝜇(𝐸0, 𝑥)𝑑𝑥
𝐷

0
                             (3) 

where, x is the total thickness penetrated by the X-rays and 

μ(E0,x) is the cross-sectional distribution of the object’s linear 

attenuation coefficient for an energy of E0. 

In the previous subsection, we obtained the equivalent tissues 

for air, water, and bone using the proportional division function. 

Hardening is mainly due to the attenuation of low-energy X-rays 

in water and bone because radiation is only slightly attenuated 

in air. Hence, herein, we primarily consider the hardening 

effects of water and bone, and ignore the effect of air. Then, we 

perform separate forward projections for the equivalent tissues 

of water and bone Ww and Wb to obtain the equivalent tissue 

lengths Lw and Lb for each ray at each angle. Based on these 

projections, we construct a projection model via polynomial 

fitting to correct the considered image. 

During the scan, each ray simultaneously passes through 

water, bone, and air, leaving a projection P on the detector. If 

the beam was purely monochromatic, then P would be linearly 

correlated with Lw and Lb. However, because actual beams are 

polychromatic, P’s relationship with Lw and Lb is actually 

nonlinear. This implies that the individual or combined effects 

of the high-order terms for bone and water create the hardening 

artifacts. Specifically, high-order terms for bone produce bone 

hardening artifacts, whereas those for water produce water 

hardening artifacts. Here, we neglect higher-order terms, such 

as third- and fourth-order terms, and construct the following 

theoretical model for polychromatic projection: 

 

𝑃 = 𝑐1𝐿𝑤 + 𝑐2𝐿𝑏 + 𝑐3𝐿𝑏
2 + 𝑐4𝐿𝑤𝑏 + 𝑐5𝐿𝑤

2            (4) 

 

Thus far, we determined Ww and Wb from the proportional 

division function and acquired Lw and Lb via forward projection. 

Now, using (4), we calculated the Lb×Lb, Lw×Lb, and Lw×Lw 

terms, denoted as 𝐿𝑏
2 , Lwb, and 𝐿𝑤

2 , respectively. Zhang et al. [17] 

obtained artifact-free images by removing the 𝐿𝑏
2  error terms. 

Accordingly, we modified the polychromatic projection model 

to: 

 

𝑃 = 𝑐1𝐿𝑤 + 𝑐2𝐿𝑏 + 𝑐3𝐿𝑏
2                        (5) 

 

2.3 Attenuation coefficient determination 

 

Here, we discuss (5) further as the main aim of the linear 

fitting correction process is to convert polychromatic projection 

data into monochromatic data for the equivalent single-energy 

source. We divided the projection terms into linear (c1Lw+c2Lb) 

and nonlinear (𝑐3𝐿𝑏
2 ) terms. Then, we obtained monochromatic 

projection (c1Lw+c2Lb) for the equivalent single-energy source 

by eliminating the nonlinear terms from the projection data. 

According to the Beer–Lambert Law, the projection data is 

given by the product of the linear attenuation coefficient and the 

thickness penetrated by the ray in the monochromatic projection, 

as shown in (3). Coefficients c1 and c2 in the linear term 

(c1Lw+c2Lb) in (5), which was modified from (3), should be 

proportional to the linear attenuation coefficients of water and 

bone. Therefore, to obtain c1 and c2, we used the proportional 

guidance method and thus ensured that the linear attenuation 

coefficients of water and bone matched the actual law in the 

single-energy case. 

Referring to the table of X-ray mass attenuation coefficients 

provided by NIST [20], we obtained the mass attenuation values 

of water and bone at different energies. The relationship 

between mass and linear attenuation is as follows: 

 

𝜇𝐿 = 𝜇𝑚𝜌                                    (6) 
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where, μL and μm are the linear and mass attenuation coefficients, 

respectively, and ρ is the density. we obtained the ratios of the 

linear attenuation coefficients of bone to water at different 

energies, as shown by the fitted curve. In Figure 4, we can 

observe that although the ratio is different at different energies, 

it has a fixed value for any given energy, such as that at point A. 

 

 
 

Figure 4. Decay ratios of bone to water at different energies 

 

The linear correction method involves correcting the 

polychromatic projection data to match that for the equivalent 

single-energy case. In that case, the linear attenuation 

coefficient ratio has a certain value. Our results indicate that the 

proportional guidance method can achieve good correction for 

energies of 40-60. For example, in Experiment 1 (Section 3.1), 

when we do not apply the proportional guidance method, the 

ratio may substantially differ from the true value, resulting in 

artifacts such as those observed in Figure 5. 

 

 
 

Figure 5. Original and corrected images for Experiment 1 

 

The proportional value, denoted by t, indirectly depends on 

the equivalent energy: 

 
𝑐1

𝜇𝑤𝑎𝑡𝑒𝑟
=

𝑐2

𝜇𝑏𝑜𝑛𝑒
= 𝑡                            (7) 

 

Equation (7) can be rewritten as: 

 
𝑐2

𝑐1
=

𝜇𝑏𝑜𝑛𝑒

𝜇𝑤𝑎𝑡𝑒𝑟
= 𝑡                               (8) 

 

where, μwater and μbone are the linear attenuation coefficients of 

bone and water, respectively. Eq. (8) shows that the ratio of c2 

to c1 can be approximated by the linear attenuation coefficient 

ratio of bone to water. We therefore introduced the proportional 

guidance method to obtain more accurate values for the 

coefficients c1, c2, and c3. First, we determined the ratio of c2 to 

c1 based on the ratio t for the monochromatic case: 

 

𝑡 =
𝑐2

𝑐1
                                        (9) 

For example, the linear attenuation coefficient ratio of 

polyvinyl chloride (PVC) to water is 2.8250, i.e., t=2.8250, at 

an equivalent energy of 50 kVp. Here, we can obtain the value 

of t from the image’s CT value as follows: 

 

𝐶𝑇 =
𝜇−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
× 1000                        (10) 

 

Eq. (10) shows the relationship between the linear attenuation 

coefficient ratio and the CT value. Combining (8) and (10), we 

obtain: 

 

𝑡 =
𝑐2

𝑐1
=

𝜇bone

𝜇water
=

𝐶𝑇bone

1000
+ 1                  (11) 

 

We determined the value of t via self-adaptive proportional 

guidance as follows. First, we extracted N points with high CT 

values (i.e., bone pixels) from the original image f0 without 

water hardening artifacts, and calculated their mean CT value. 

Herein, N was determined based on the image’s size and actual 

bone content. Then, we substituted the mean CT value for bone 

into (11) to obtain a more representative t value that is more in 

line with physical values. 

Substituting this t value into (5), we can simplify the 

polynomial as follows: 

 

𝑃 = 𝑐1𝐿𝑤 + 𝑡𝑐1𝐿𝑏 + 𝑐3𝐿𝑏
2 = 𝑐1(𝐿𝑤 + 𝑡𝐿𝑏) + 𝑐3𝐿𝑏

2     (12) 

 

Thus, only two fitting coefficients were left to be found. 

 

2.4 Coefficient calculation 

 

First, we calculated the projection data p0 by applying a 

Radon transform to the original image f0. Next, we 

approximated p0 by fitting the projection data P using (12). 

Following that, we determined the unknown coefficients c1 and 

c3 via the least-squares method: 

 

𝐸 = min∬(𝑃 − 𝑝0)
2𝑑𝑥𝑑𝑦                   (13) 

 

where, E represents the fitting error. Then, we determined the 

unknown coefficients in (13) using: 

 

∇c𝐸 = ∇c∬(𝑃 − 𝑝0)
2 𝑑𝑥𝑑𝑦 = 0                (14) 

 

After obtaining the coefficients c1 and c3 by solving (14), we 

calculated the value of c2 from c1 and t, and the erroneous 

projection Perror was calculated as: 

 

𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑐3𝐿𝑏
2                               (15) 

 

To approximate the single-energy projection, we removed 

Perror from the original projection 𝑝0 to obtain the final corrected 

monochromatic projection Pfinal: 

 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑝0 − 𝑃𝑒𝑟𝑟𝑜𝑟                         (16) 

 

Finally, we reconstructed the artifact-free image ffinal from 

Pfinal. 

 

2.5 Evaluation 

 

We evaluated the proposed beam hardening method’s 

performance on both phantom data and patient data obtained 

using a cone-beam spiral CT scanner (Beijing Arrays Medical 
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Imaging Corporation, China). The bulb voltage, bulb current, 

medium thickness, source–detector distance, and source–patient 

distance was 120 kVp, 280 mA, 1.25 mm, 988 mm, and 560 mm, 

respectively. In addition, the reconstructed convolution kernel 

was adopted as the standard convolution kernel. 

 

2.5.1 Phantom model 

To simulate the water tissue in a human head, we filled a 

cylindrical bucket with water. The bucket’s diameter was 20 cm, 

which is close to that of a human head. In addition, we used two 

30-mm-diameter pure PVC rods (SIMONA, Germany), referred 

to as bone rods hereafter, to simulate human bones as their 

attenuation effect on X-ray is similar to that of human bones. 

We placed the two bone rods symmetrically around the water-

filled bucket, then placed the bucket on the scanning table and 

conducted a spiral CT scan. 

The main difference between the two experimental materials 

is that, under irradiation by X-rays of the same energy, the X-

ray attenuation caused by water is less than that caused by bone; 

i.e., compared with water, bone is a strong attenuator. We built 

this phantom model to simulate the hardening effect of bone. 

Specifically, because the cylinder was similar in size to a human 

head, we used it to simulate the hardening effect of a human 

head. 

 

2.5.2 Patient data 

Four volunteers participated in Experiment 2. During the 

experiment, they were asked to lie flat on the scanning table, 

following which they were subjected to spiral CT scans of their 

heads. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Experiment 1 

 

Figure 5 compares the original and corrected images. The 

uncorrected image (Figure 5(a)) shows clear black stripe-shaped 

artifacts (high-attenuation objects) between the models. 

However, post correction using the proposed method, we 

obtained a corrected image (Figure 5(b)) in which the artifacts 

were qualitatively removed. This image is in good agreement 

with previous correction results [12, 16]. 

To further investigate the correction effect, Figure 6 

compares the CT values of pixels from horizontal and vertical 

stripes in the middle of the original and corrected images. Figure 

6 shows that the original image contains a cupping artifact for 

the bone (Figure 6(a)), which is largely absent from the 

corrected image. In addition, Figure 6(b) and the magnified 

view in Figure 6(c) show that the CT values in the water tissue 

region have been fully restored, corresponding to the 

elimination of the black stripe artifact in Figure 5(b). 

To evaluate the benefits of the proportional guidance method, 

we also corrected the results of Experiment 1 by directly 

applying the traditional polynomial correction method in (5), 

without proportional guidance. Figure 7 shows the results of 

applying both methods to correct the same CT image. The 

original image (Figure 7(a)) contains an obvious black stripe 

artifact, which was reduced but not eliminated via polynomial 

fitting (Figure 7(b)). In contrast, the black stripe artifact has 

clearly been removed by our proposed method, as observed in 

Figure 7(c). 

 
(a)                                                    (b)                                                     (c)  

 

Figure 6. Comparison of CT values for pixels from vertical (a) and horizontal (b) stripes in the middle of the original and 

corrected images. Additionally, (c) shows a magnified view of (b) 

 

Next, we compared the pixels from horizontal and vertical 

stripes in the middle of the original and corrected images to 

further evaluate the CT value variations produced by correction. 

 

 
 

Figure 7. Comparison of the original image (a) with the 

results obtained via standard polynomal correction (b) and 

the proposed method (c) 

 

Figure 8 shows the CT values from vertical and horizontal 

stripes in the middle of the original image and the image 

corrected by the standard polynomial method. Figure 8(a) and 

8(b) compare the pixel contrast values for the vertical and 

horizontal stripes, respectively. 

Next, we selected regions of interest (ROIs) from the images. 

Table 1 shows the mean CT values in a water tissue region 

(ROI1) for the original and corrected images, with and without 

proportional guidance. 

 

 
(a) 
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(b) 

 

Figure 8. Comparison of CT values for pixels from vertical 

(a) and horizontal (b) stripes in the middle of the original 

image and the image corrected via the standard polynomial 

method 

 

Table 1. Comparison of mean CT values in ROI1 

 
Image Mean CT value (of ROI1) 

Original image -22 

Image corrected by our method -3 

Image corrected by the 

polynomial method 
-19 

 

As shown in Table 1, the mean CT value in ROI1 was -22 

HU before correction, well outside the normal range of 0 ± 4 

HU. Without correction, this image could produce serious errors 

in diagnosis. In contrast, the mean CT values become -19 and -

3 after being corrected via the polynomial and proposed 

methods, respectively. Both values are higher than the mean CT 

value for the original image, indicating that both methods can 

improve image quality. However, only our method resulted in a 

value within the normal mean CT value range, indicating that 

proportional guidance is an important artifact removal tool. 

To make these comparison results more intuitive, Figure 9 

shows the CT values of pixels in the middle of Line 1, 

comparing the original image with those corrected via the 

proposed and polynomial methods. Here, unlike the polynomial 

method, the proposed method managed to restore the bone rods’ 

CT values and suppress the cupping artifacts. 

 

 
 

Figure 9. CT values for pixels in the middle of Line 1, for 

the original image and the images corrected via the proposed 

and polynomial methods 

 

In addition, the polynomial method yielded a c2/c1 ratio of 

2.7479, which is smaller than that yielded by our method 

(2.8586); hence, the result differed from the linear attenuation 

coefficient ratio of bone to water under monochromatic 

conditions. Although both correction methods could suppress 

the image artifacts, our method’s CT value is closer to the 

original true value. Therefore, our correction method, which 

uses proportional guidance, can achieve good correction results. 

 

3.2 Experiment 2 

 

Figure 10 shows the test results for one of the volunteers. 

Here, there is a significant stripe artifact between the bone rods 

in the original image (Figure 10(a)). However, we cannot 

observe this artifact in the images corrected by or method or the 

polynomial method (Figure 10(b)), demonstrating the good 

performance of both methods. 

To further compare the effects of the two methods, we 

selected two ROIs in the image, denoted as ROI2 and ROI3 and 

representing water tissue and reference regions, respectively. 

Table 2 shows the mean CT values in both ROIs, both before 

and after correction. 

 

 
 

Figure 10. Original and corrected images for Experiment 2 

 

Table 2. Comparison of mean CT values in ROI2 and ROI3 

 

Image 
Mean CT value 

(ROI2) 

Mean CT value 

(ROI3) 

Original 20 41 

Corrected (our method) 39 41 

Corrected (polynomial 

method) 
37 41 

 

As shown in Table 2, correction by our method increased the 

mean CT value in ROI2 from 20 HU to 39 HU, close to that of 

water tissue in the other parts of the brain. Meanwhile, 

correction by the polynomial method increased the value from 

20 HU to 37 HU. Although both methods improved the CT 

value, our method came closer to the mean reference value 

(ROI3), suggesting that it is more reliable and precise for image 

correction. 

In addition, the c2/c1 ratios were 2.4575 and 2.4376 for our 

method and the polynomial method, respectively. Introducing 

proportional guidance thus reduced the ratio. As mentioned 

above, correction by our method yielded a higher mean CT 

value in ROI2, suggesting the resulting data is more accurate 

and reliable and demonstrating that it can achieve good 

correction results. 

Next, we applied our method to all four volunteers’ scans to 

verify its validity and universality; Figure 11 shows the results. 

For the first patient, the original image (Figure 11(a1)) shows a 

hardening artifact, due to the presence of bones. The dark region 

(indicated by an arrow) has a low grayscale value, while the 

bright region (circled) has a high value. The CT values are not 

uniform in the soft tissue region of the brain. By contrast, after 

correction by our method (Figure 11(a2)), the distribution is 

now uniform in the soft tissue region, and the hardening artefact 

has been removed. 

For the second patient, the original image (Figure 11(b1)) 

shows three obvious stripe artifacts (arrows), which can no 
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longer be seen in the corrected image (Figure 11(b2)). For the 

third patient, the original image (Figure 11(c1)) shows an 

obvious stripe artifact (arrows) and a relatively dim region 

(circled). In the corrected image (Figure 11(c2)), the stripe 

artifact has disappeared, the values have returned to normal in 

the circled area, and the CT values are more uniform across the 

soft tissue region. For the fourth patient, the original image 

(Figure 11(d1)) shows a black hardening artifact (arrow) 

between the bones and a low-brightness area (circled) in the soft 

tissue region. In the corrected image (Figure 11(d2)), the stripe 

artifact has disappeared, the brightness is normal in the circled 

region, and the values in the soft tissue region are highly 

uniform. These four examples demonstrate our algorithm’s 

wide applicability to artifact removal and CT value restoration. 

Finally, we investigated the applicability of our method 

further by correcting CT images of human heads. Specifically, 

we used the proposed method to correct 104 CT images 

obtained from different layers of the human head in Experiment 

2. Due to space constraints, we cannot present all these images 

in this paper. Instead, Figure 12 compares how the CT values 

varied with the layer, with and without correction. 

 

 
 

Figure 11. Original and corrected images for all four patients 

in Experiment 2 

 

 
 

Figure 12. Contrast maps of a human head before and after 

CT correction 

 

As shown in Figure 12, correction does not change the 

average CT values of the target images. In other words, the 

correction process only corrects the CT values in hardening 

artefacts, leaving the CT values in other tissues unchanged and 

avoiding any increase in the CT values across the image. Thus, 

our algorithm is both widely applicable and robust. 

In order to more fully demonstrate the broad applicability of 

the proposed correction method, we constructed a model of 

human length. Specifically, we constructed a model of the 

human body (30 cm in diameter) consisting of a cylindrical 

bucket full of water with two PVC bone rods distributed evenly 

around the bucket. Figure 13 compares the proposed correction 

method with the scanner’s native correction method. Figure 

13(a) includes obvious black stripe artifacts between the high-

attenuation regions. The scanner’s native correction method 

(Figure 13(b)) reduced but does not remove the stripe artifacts. 

By contrast, our method (Figure 13(c)) entirely eliminated all 

the stripe artifacts. Thus, our method achieved clearly better 

correction than the scanner’s native method. 

 

 
 

Figure 13. Original image (a), compared with the results of 

the scanner’s native correction method (b) and the proposed 

algorithm (c) 

 

The scanner’s native correction method is based on the 

projection. This is essentially a fitting strategy with the 

projection data as the independent variable, and is similar to the 

approaches in [14, 16]. By contrast, our approach is based on 

the equivalent tissue length, and uses proportional guidance to 

calculate the correction coefficients, which is why it achieved 

better results. 

The differences in the two methods’ results come mainly 

from the following facts. In the scanner’s method, even though 

some bones are in direct contact with the air in the model, the 

segmentation function neglects the bone–air interface and the 

resulting segmentation errors lead to discrepancies in the 

projection calculations. Since the projection acts as an 

independent variable, this greatly affects fitting results, meaning 

that some artefacts remain in the corrected image (Figure 13(b)). 

In our method, we instead take the equivalent tissue length as 

the independent variable for fitting, and we use proportional 

guidance to ensure our model obeys the true projection law. This 

enabled our approach to effectively eliminate the artifacts, as 

shown in Figure 13(c). In summary, proportional guidance can 

solve the correction errors induced by inaccurate segmentation. 

 

 
 

Figure 14. Original image (a), compared with the results of 

the scanner’s native correction method (b) and the proposed 

algorithm (c) 

 

In order to illustrate the proposed algorithm’s applicability to 

different CT machines, we also scanned a volunteer using 

another model of spiral CT scanner, and again compared the 

proposed correction method with the machine’s native 

correction approach. The results are shown in Figure 14.  

The original image (Figure 14(a)) includes obvious black 

stripe artifacts between the high-attenuation regions. After 

correction by the scanner’s native method (Figure 14(b)), the 

stripe artifacts have been reduced but not removed. By contrast, 

our method (Figure 14(c)) was able to completely eliminate all 

the stripe artifacts. Thus, our method again achieved better 

correction results than the native method. 
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4. CONCLUSIONS 

 

The results of the phantom model and patient data 

experiments show that our correction method, i.e., beam 

hardening correction with proportional guidance based on 

equivalent tissue length, can effectively reduce hardening 

artifacts and enhance image precision. 

Without proportional guidance, the polynomial method could 

eliminate the artifacts, improve image quality, and approximate 

the actual pixel values in the patient data experiments; however, 

it could not fully eliminate the hardening artifacts in the 

phantom model experiment because the proportional division 

function ignores the air–bone interface, even though they in 

direct contact with each other in the phantom model. Thus, the 

equivalent tissues were not accurately divided, and hence the 

equivalent tissue lengths could not reflect the actual 

contributions of the water and bone lengths to the projection. 

Importing these inaccurate data into the correction model 

introduced errors to the correction results. In contrast, the bone 

was not in contact with the air in the patient data experiments. 

Thus, the proportional division function could accurately divide 

the equivalent tissues. Consequently, the equivalent tissue 

lengths, linear correction coefficients, corrected projection, and 

final image were all accurately obtained. 

In summary, the proposed method successfully uses 

proportional guidance to prevent inaccurate division between 

equivalent tissues. Since there are frequent errors in this 

division process in real-world scenarios, this shows that the 

proposed correction method is widely applicable. 
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