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This study provides a comprehensive research methodology to accurately determine the 

degradation and remaining life of Oil Country Tubular Goods (OCTG) under sour and 

high-temperature conditions. Experiments were conducted to determine the properties of 

three materials (API X70 Carbon Steel, 22Cr duplex stainless steel, and Inconel 625). The 

results confirmed that Inconel 625 possessed the maximum hardness and resistance to 

corrosion, followed by 22Cr duplex stainless steel and API X70 Carbon Steel. A physics-

informed long short-term memory (PI-LSTM) algorithm was developed for physically 

grounded estimation by incorporating Paris’s law and Arrhenius models for corrosion. The 

algorithm outperformed all conventional models (accuracy-93% and R²-0.92), enabled 

reliable life estimation in digital twin simulation platforms, and allowed precise estimation 

of degradation performance ±10% accuracy, replicating laboratory experiments. The 

digital twin simulation estimated the pipeline health index values to provide reliable 

predictive maintenance services. The methodology provides efficient research for scaling 

intelligent integrity management systems for OCTG under adverse operational conditions. 
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1. INTRODUCTION

The oil and gas industry must deal with more complicated 

and demanding conditions because it is looking for deeper 

reservoirs, and the world requires more energy to sustain its 

growth. Sour service environments are some of the most 

difficult to work in because high temperatures, high pressures, 

and corrosive substances such as hydrogen sulfide (H₂S), 

carbon dioxide (CO₂), and chlorides work together to 

accelerate the breakdown of Oil Country Tubular Goods 

(OCTG). These are important steel components that maintain 

wellbore stability during drilling and production. This is 

because there are numerous ways in which things can break 

down, and they play off each other. These include uniform 

corrosion, localized pitting, stress corrosion cracking (SCC), 

sulfide stress cracking (SSC), hydrogen-induced cracking 

(HIC), and corrosion-fatigue coupling. Such processes 

compromise the structural integrity of wells and pipelines and 

predispose them to disastrous failures that can have both 

environmental and financial consequences [1, 2]. 

The primary approaches to traditional maintenance and 

qualification work consist of standardized laboratory tests and 

empirical correlations based on the number of years of 

industrial experience. These techniques have provided 

valuable data on the behavior of materials; however, because 

they are grounded in actual data, they are not always able to 

predict how materials will behave under varying conditions of 

service. Traditional testing or models at rest cannot wholly 

show alterations in the sour environment in terms of 

temperature, fluid chemistry, and stress. Consequently, 

maintenance approaches based on these techniques tend to 

either be overly conservative and costly, or fail to eliminate 

the possibility of failure too early [3, 4]. To overcome these 

issues, predictive models that integrate experimental data, 

physical theory, and real-time data of operations are needed to 

ensure a better demonstration of the degradation evolution. 

Recently, through the integration of research in material 

science and artificial intelligence, a novel computational tool 

called physics-informed machine learning has emerged with 

impressive applications in the analysis of complex engineering 

systems. In contrast to purely data-driven approaches, PIML 

models involve the direct embedding of constitutive equations, 

conservation laws, or governing principles into the learning 

framework to ensure physically consistent solutions with high 

interpretability, even with limited data.  PIML differs from 

traditional data-driven models in that it explicitly uses 

governing equations and constitutive relationships during the 

learning process. This means that the model can be 
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comprehended and obeys the simple laws of physics (even in 

cases where little data are available) owing to this integration 

[5, 6]. Such models can be used to describe fatigue crack 

propagation and corrosion kinetics using physically based 

constraints, such as the law of Paris and Arrhenius-type 

relations, in the context of OCTG reliability. PIML improves 

the prediction accuracy and helps reduce the incidence of 

nonphysical results by combining these equations into a 

learning system. The combination of real-world data obtained 

in the real world and mechanistic knowledge enables the 

development of both experimental validation and predictive 

analytics, which is its hybrid quality. 

Digital twin technology also plays a significant role in data-

driven reliability management. A digital twin refers to a model 

of a physical object that is computer-generated and evolves 

over time as it is continuously updated with field 

measurements obtained through sensors. In OCTG systems, 

digital twins integrate data on pressure, temperature, and 

chemical composition with predictive algorithms to determine 

the state of the material, its degradation, and its life expectancy. 

Constant monitoring and simulation enable engineers to 

enhance inspection and maintenance schedules [7, 8] to 

provide constant monitoring and risk estimation rather than 

adherence to defined timeframes. The addition of PIML to 

digital twin architectures produces models that can be 

modified and self-healed with shifts in operations. This 

enables the maintenance strategies to become more 

dependable and economical. 

The combination of data analytics, computer modelling, and 

materials science is transforming energy sector operations. It 

has been shown that hybrid models that combine physical laws 

and machine learning algorithms offer greater adaptability, 

scalability, and interpretability. Such models dynamically 

adapt to service conditions, forming closed feedback loops that 

lead to improved safety and durability [9, 10]. Moreover, 

complex simulation procedures, such as Deep Fluids and 

hybrid damage identification algorithms, have demonstrated 

how deep neural networks can accurately recreate both 

thermomechanical and electrochemical processes with a high 

level of computational efficiency [11, 12]. Methods are 

necessary to record the mechanical and chemical 

interdependent degradation phenomena that govern the 

behavior of OCTGs. 

Despite these improvements, research gaps remain 

significant. The majority of studies emphasize either PIML or 

digital twin technologies independently, which makes the 

approaches to this fragmented and thus fails to merge the 

experimental data on mechanical, electrochemical, and 

microstructural processes into a unified framework. In 

addition, many of these studies are limited to laboratory 

experiments or theoretical studies, which limits their 

extrapolation to field-scale operations, where loads and 

chemical compositions are variable [13, 14]. To overcome 

these limitations, the development of holistic hybrid systems 

that integrate continuous field data with physical degradation 

models is critical to making them adaptable and interpretable. 

These gaps were directly filled in this study with a unified 

physics-constrained artificial intelligence and digital twin 

framework for predictive degradation assessment and lifespan 

optimization in OCTG systems operating under extreme 

service conditions. It is a framework that unites experimental 

characterization, machine learning, and physical modelling 

into one system capable of illustrating the breakdown of things 

in the real world. Constitutive relationships are involved in the 

learning process, which defines the distribution of fatigue 

cracks and the corrosion process. This ensures that model 

predictions are always physically consistent and reliable, 

irrespective of the conditions [15, 16]. The digital twin 

element implements a predictive structure by incorporating 

real-time field measurements to continuously refresh the 

degradation and remaining life projections to enable proactive 

maintenance and inspection scheduling based on risks.  

The proposed study contributes to the enhancement of 

predictive reliability engineering by unifying physical 

principles, artificial intelligence, and real-time data analytics 

in a unified system. PIML and digital twin technologies 

represent a significant shift in asset management towards a 

proactive approach rather than a reactive one. This approach 

decreases unexpected downtimes, minimizes maintenance 

expenses, and enhances safety and environmental standards 

[17]. Along with OCTG systems, the general concept of this 

hybrid structure can be applied to other applications, including 

aerospace, transport, and biomedical engineering, in which 

materials must perform in harsh environments. This research 

paper is part of a worldwide movement in intelligent, 

sustainable, and resilient engineering systems that rely on 

physics-informed digital transformation, which combines real-

world data with computer-based forecasts. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Theoretical framework 

 

To develop a prognostic framework for understanding 

degradation processes in OCTG under sour and high-

temperature conditions from a fundamental viewpoint 

involving the interplay of fatigue loads and corrosion 

processes, it was necessary to embed two fundamental models 

related to degradation processes into the framework. The 

inclusion of these models to embed fundamental laws related 

to degradation processes provides prognostic reliability to 

ensure adherence to fundamental laws, even in complex 

situations involving high temperatures and sour service 

conditions. The two models selected to embed fundamental 

laws related to degradation processes in OCTG in sour and 

high-temperature service conditions were Paris’s law for 

fatigue failure and Arrhenius models for degradation processes. 

 

2.1.1 Fatigue crack growth kinetics 

The rate of fatigue crack propagation in tubular steels 

subjected to cyclic loading conditions and corrosive media can 

be modelled according to Paris’s law. This law links the rate 

of crack propagation to the stress intensity factor range (ΔK). 

The formula for this law can be written as: 

 

da/dN = C (ΔK)m (1) 

 

where, ‘a’ denotes the instantaneous value of crack extension, 

‘N’ represents the number of loading cycles applied to cause 

material failure, “ΔK” stands for stress intensity factor 

intensity range values, and ‘C & m’ denote material-related 

empirical values related to crack-resistant material property. 

The current research validates the continued application of 

Paris’ law in appropriately analyzing the fatigue 

characteristics of high-strength steels and nickel alloys in sour 

service environments by considering the temperature and 

environmental variability associated with such materials [18, 
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19]. Negi et al. [18] successfully illustrated the utility of the 

phase-field model to investigate the rates of crack growth in 

OCTG steel samples under hydrogen sulfide environments 

and showed a very close resemblance between the stress 

intensity factor and hence confirmed the relevance of the Paris 

law. The study conducted by Jiang et al. [19] validated 

application of ‘Paris law’ in increased rate of crack 

development associated with ‘pressure vessel material 4130X.’ 

In cases of increased fatigue crack development, the material 

property simulation associated with the Paris law application’s 

restricted physically invalid extrapolated values is used to 

ensure adherence to material property values correlated to the 

fatigue material property. 

 

2.1.2 Temperature-dependent corrosion kinetics 

Corrosion under sour environmental conditions is thermally 

activated, and its rate accelerates exponentially as the 

temperature increases. The predictive formula captures this 

dependence by involving the Arrhenius-type equation to 

represent the temperature effects on the reaction rate kinetics 

as follows: 

 

CR(T) = A exp (-Eₐ / (R T)) (2) 

 

where, CR(T) represents the corrosion rate at temperature T, A 

is the pre-exponential factor describing the rate of molecular 

collisions responsible for corrosion, Eₐ corresponds to the 

activation energy of the rate-determining step of the process, 

R represents the ideal gas constant, and T represents the 

absolute temperature. Many studies have been conducted to 

effectively apply this formula to thermally accelerated 

corrosion processes of steels, nickel alloys, and titanium 

materials in oil fields and high-temperature applications [20]. 

Current research has also confirmed its relevance to digital 

twin and PIML models. To improve digital twin models 

related to gas turbine machinery components, Farhat and 

Altarawneh [21] applied degradation kinetics based on the 

Arrhenius formula. Including temperature dependence 

improves the accuracy of the models related to oxidation and 

corrosion fatigue. In this study, Parsa [22] confirmed the 

generalizability of PIML models following Arrhenius-type 

degradation kinetics to several thermal ranges for energy 

systems by describing the material degradation processes 

under high-temperature conditions. The values of A and Eₐ 

were experimentally estimated via electrochemical tests 

performed over certain temperature ranges to provide the 

necessary adjustments to the thermal acceleration of the digital 

twin models. The application of such dependence provides 

relevant digital twin results for material degradation processes 

under high-temperature conditions, instead of strictly defining 

it via data inference methods by capturing robustness in 

physically grounded models. 

The combination of Paris’ fatigue law and Arrhenius 

corrosion kinetics provides a theoretical basis for a hybrid 

physics-informed model. A dual-constraint methodology 

ensures that the learning algorithm not only predicts data 

truthfully but also complies with fundamental physical 

equations describing material behavior in mechanical and 

electrochemical degradation processes. The combination of 

these equations in the digital twin architecture allows the 

construction of physically sound and interpretable 

representations of degradation processes for different service 

conditions of OCTG materials over broad intervals of time and 

wide ranges of loading to provide new solutions matching 

state-of-the-art research in materials predictive science and 

physically informed AI systems [18, 21, 22]. 

 

2.2 Material selection and specimen preparation 

 

The specimen materials were selected and prepared 

according to the research question and purpose. Material 

Selection and Preparation of the Specimen: 2.2 The selection 

and preparation of the specimen material were based on the 

research question and purpose of the research. 

To determine the various mechanical properties and 

corrosion resistance characteristics pertinent to the application 

of OCTG in sour and high-temperature conditions, three 

representative alloy systems were chosen. These were 

microalloyed API X70 carbon steel, 22Cr duplex stainless 

steel (UNS S31803), and nickel-based superalloy Inconel 625 

(UNS N06625). They were selected based on their progressive 

increase in mechanical strength, corrosion resistance, and 

CO2/H2S stability. 

Recent studies have verified the appropriateness of such 

alloys for sour and high-pressure services. Negi et al. [18] 

showed that duplex and nickel-based alloys are effective in 

mitigating SSC in hydrogen sulfide conditions. Jiang et al. [19] 

showed that microstructural refinement and inclusion 

distribution have an important influence on the fatigue crack 

growth resistance of high-strength steels, including API X70. 

Farhat and Altarawneh [21] and Pars [22] also asserted that 

Inconel 625 exhibits better performance in coupled thermal-

corrosive environments because of its high Ni-Cr-Mo content, 

which facilitates the formation of a stable passive layer that 

inhibits localized corrosion. 

Tubular stock materials were milled to standardized 

geometries for various experimental programs. Quasistatic 

testing of uniaxial dog-bone tensile specimens was performed 

in compliance with ASTM E8 [23], and axial fatigue testing 

was performed in compliance with ASTM E466 [24] to obtain 

a consistent stress distribution during cyclic loading. 

Electrochemical characterization of rectangular corrosion 

coupons measuring 10 × 20 × 3 mm was performed using the 

surface area control recommendations of ASTM G1 [25]. 

Moreover, short-ring sections of the tubes were fabricated to 

test the hydrostatic pressure and collapse under conditions 

close to the loading conditions of downhole tubules in service. 

Each sample was successively ground in silicon carbide 

abrasive papers up to 1200-grit, followed by polishing in a 1 

µm alumina suspension to achieve a consistent mirror finish. 

Controlling the surface roughness is also necessary because 

surface asperities may act as preferential corrosion initiators 

and crack nucleation locations. Recent studies have shown that 

the surface finish is a critical aspect of the fatigue and 

corrosion performance of high-strength steels and nickel 

alloys [19]. 

Each specimen was polished and ultrasonically washed with 

acetone and ethanol to eliminate particulate and organic 

contaminants, respectively. The samples were then dried under 

a high-purity nitrogen stream to avoid oxidation and tested. 

These cleaning and preparation procedures were in accordance 

with ASTM G1 standards and the most recent best-practice 

guidelines on the use of corrosion-fatigue assessment of 

OCTG products [18, 20]. 

This careful preparation ensured that all samples had similar 

surface quality and dimensional precision, minimizing 

experimental variability and allowing for a comparison of the 

mechanical and electrochemical performance. The resulting 
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specimens provided a uniform foundation for the subsequent 

testing stages, which were integrated into the physics-

informed digital twin model developed in this study. 

 

2.3 Mechanical characterization 

 

The mechanical characterization of the various elements is 

provided to enable the mechanical modelling of the gas and oil 

extraction processes. 

Mechanical tests were conducted to determine the responses 

of the selected OCTG alloys to tensile, fatigue, and creep tests 

under controlled conditions. All the procedures were in line 

with the relevant ASTM standards to ensure that they were 

performed and redoubled. 

Tensile tests at room temperature provided the yield 

strength, ultimate tensile strength, and elongation according to 

ASTM E8. API X70 possesses a balance between strength and 

ductility, duplex stainless steel possesses higher yield strength 

and moderate elongation, and Inconel 625 possesses better 

tensile performance and structural stability [18, 19]. 

The fatigue tests were based on ASTM E466 and were 

conducted under load-controlled cyclic testing. Duplex 

stainless steel has the highest resistance to fatigue, and Inconel 

625 maintains a stable cyclic performance, indicating that it is 

highly resistant to corrosion [21]. 

According to ASTM E139 [26], the creep behavior was 

investigated at 600℃ and at a constant load. Inconel 625 was 

highly resistant to high temperatures, and it was not easy to 

deform; however, carbon steel would deform because the 

grains moved on the boundary [20]. 

Overall, the mechanical findings indicate that Inconel 625 

and duplex stainless steel are more effective for sour and high-

temperature OCTG applications. This renders them profitable 

for forecasting long-term degradation that will occur in the 

long term. 

 

2.4 Electrochemical characterization 

 

To test the corrosion behavior of the selected OCTG alloys 

under simulated sour service conditions, electrochemical 

testing was conducted. A temporal variation in the parameters 

of the impedance response, such as the charge-transfer 

resistance and double-layer capacitance, with the progress of 

corrosion in sour corrosive environments is called 

electrochemical impedance spectroscopy (EIS) evolution. A 

conventional three-electrode configuration was employed, 

which included a saturated calomel reference electrode, a 

graphite counter electrode, and the test specimen as a working 

electrode, and was linked to a potentiostat. The electrolyte was 

a 3.5 wt% solution of NaCl, which was saturated with CO2 (0.1 

MPa) and H2S (0.05 MPa) and kept at 80℃, which 

approximates the downhole conditions experienced in sour 

environments [27, 28]. 

Tafel extrapolation potentiodynamic polarization tests were 

conducted in a potential-to-open circuit within a range of ± 250 

mV relative to the open circuit (scan rate 1 mV/s, N-1). 

Electrochemical parameters and material constants were used 

to determine the corrosion rate. EIS was performed in the 105 

- 10-2 Hz AC amplitude (10 mV) in 10-1 -1 Hz, and the obtained 

Nyquist and Bode plots were analyzed with equivalent circuit 

modelling to determine the charge-transfer resistance and 

double-layer capacitance [28, 29]. These parameters were used 

to obtain quantitative information on the passive film stability 

and corrosion kinetics during the mixed CO2/H2S transfer. 

2.5 Microstructural characterization 

 

The microstructure of the experiment was characterized 

using a microscope. Both secondary and backscattered 

electron modes and high-resolution scanning electron 

microscopy (SEM) were used as microstructural and 

fractographic analysis techniques. The morphologies of the 

fractures were studied to determine the predominant fracture 

mechanisms, including cleavage, intergranular cracks, and 

ductile dimples [30]. 

The grain size, crystallographic texture, and phase 

distribution in duplex stainless steel were determined using 

electron backscatter diffraction (EBSD), which enabled a 

correlation between the microstructure, hydrogen trapping, 

and crack deflection behavior. Elemental analysis via energy-

dispersive X-ray spectroscopy (EDS) demonstrated that the 

corrosion and pitting precipitation initiation sites as inclusion 

types included MnS, segregation bands, and bands of both 

types [27, 28]. 

 

2.6 Physics-informed machine learning framework 

 

A hybrid physics-informed machine-learning (PIML) 

framework was developed by introducing two constitutive 

relationships into the learning framework: fatigue crack 

growth kinetics and temperature-dependent corrosion. 

Experimentally derived parameters are introduced as physical 

priors or penalty terms in the model objective function to 

ensure physically consistent predictions [31, 32]. 

To ensure physically consistent predictions, physical 

degradation equations were directly incorporated into the loss 

function of the developed LSTM network using a physics-

informed learning approach. The total loss function was 

formed by blending data-informed loss with physics-informed 

loss using distinct weighting for both losses. 

 

Ltotal = Ldata + Lf λfatigue + Lc λcorrosion 
 

 

where, Ldata is the mean squared error between the predicted 

degradation state and values measured in the laboratory. 

Constraint Lfatigue ensures that Paris' law of fatigue crack 

growth is satisfied. This is evident by: 

 

Lfatigue = ||(da/dN)pred − C(ΔK)m ||²  

 

Consistent with Section 2.1.1, da/dN is the growth rate of 

the fatigue crack, ΔK is the range of the stress intensity factor, 

and C and m depend on the material. 

Arrhenius-type corrosion kinetics dealt with in Section 

2.1.2 are employed to obtain the constraint related to 

corrosion, that is: 

 

Lcorrosion = ||CR(T)pred − A exp(−Ea / RT)||²  

 

where, CR(T) is the temperature-dependent corrosion rate, A 

is the pre-exponential factor, Ea is the activation energy, R is 

the universal gas constant, and T is the absolute temperature. 

Learning is influenced by fatigue and corrosion constraints, 

with the weighting factors λf and λc determining the degree of 

influence of one factor on the other. 

This is a combination of the stress amplitude, partial 

pressure of the gases, corrosion current density, charge-

transfer resistance, and mechanical properties. Convolutional 

neural networks were used to process image-based features 
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formed from SEM and EBSD datasets, and long short-term 

memory (LSTM) networks were used to model time-

dependent degradation signals, that is, EIS evolution and crack 

propagation histories [33, 34]. 

The tabular data baseline algorithms were gradient-boosted 

decision trees and random forest models, and accuracy, R2, 

and RMSE were used to evaluate the models. Neural networks, 

probabilistic calibration, Monte Carlo dropout, and isotonic 

regression were used to estimate uncertainty [31]. 

 

2.7 Digital twin implementation 

 

A lightweight platform named the digital twin framework 

was developed to couple physics-informed machine learning 

models with the objective of realizing a constantly changing 

Pipeline Health Index (PHI). The integrity of the entire OCTG 

system is represented by the PHI, which is a scalar metric with 

normalized values between 0 and 1. A value of 1 or close to 1 

indicates that the system is healthy, whereas a value of 0 or 

close to 0 indicates that the system has either severely failed 

or is about to fail. All real-time information related to the 

downhole pressure, temperature, or fluids was automatically 

ingested by the platform. 

A risk-based maintenance model was optimized to 

minimize the projected lifecycle costs and avoid premature 

failures. Digital twins allow the evaluation of mitigation 

measures, such as changing the operating pressures or the 

dosage of an inhibitor in scenario analysis, before applying 

them in practice [31, 34]. This combination of physics-based 

intelligence and digital analytics provides a framework for 

real-time decision-making and adaptive maintenance in sour 

service environments. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Mechanical performance 

 

The average values of the data collected from the three 

samples under similar loading conditions for all three alloys 

are presented in Table 1 and Figure 1. The data show improved 

values of both strength and ductility as a result of 

advancements in the alloy composition and microstructure. 

 

Table 1. The tensile properties of all materials in this study 

 

Material 
Yield Strength 

(MPa) 

UTS 

(MPa) 

Elongation 

(%) 

API X70 482 ± 14 623 ± 17 12.4 ± 1.6 

22Cr Duplex SS 552 ± 11 748 ± 19 25.7 ± 2.8 

Inconel 625 603 ± 9 903 ± 23 39.6 ± 3.5 

 

API X70 carbon steel has moderate strength and low 

ductility, which are typical of ferritic-pearlitic microalloyed 

steels commonly used as standard OCTG casing and line pipe 

products [13, 18]. The yield strength of 482 MPa and 

elongation of 12.4 percent are in line with the reported data on 

the yield strength of hydrogen-exposed microalloyed steels, 

where plasticity is decreased by embrittlement and segregation 

of carbide at the grain boundaries [20]. These microstructural 

constraints are commonly associated with premature fatigue 

crack propagation during sour service, which is also the case 

for comparable X-series steels [27]. 

22Cr duplex stainless steel, on the other hand, has much 

better strength and ductility. The austenitic-ferritic dual 

structure improves the resistance to dislocation motion and 

strain accommodation, which leads to a yield strength of 552 

MPa, ultimate strength of 748 MPa, and elongation of 25.7. 

These findings are consistent with those of Kılınç et al. [30] 

and Sun et al. [27], who demonstrated that duplex steels can 

maintain their toughness and mechanical integrity during 

simultaneous exposure to CO2/H2S because of their balanced 

phase distribution. 

 

 
 

Figure 1. Comparison of yield strength and ultimate tensile 

strength (UTS) for API X70, 22Cr duplex stainless steel, and 

Inconel 625 

 

The large elongation is also evidence of the effective 

trapping of hydrogen and deflection of cracks at the ferrite-

austenite boundaries, enhancing their resistance to localized 

stress corrosion [28]. 

Inconel 625 exhibited the best performance, with a yield 

strength of 603 MPa, ultimate tensile strength of 903 MPa, and 

elongation of 39.6 percent. The cause of this behavior is the 

solid-solution strengthening of Mo and Nb, coupled with 

dislocated γ′ and γ″ precipitates, which increase the creep and 

fatigue strength [29, 31]. Solovyeva et al. [29] reported that 

thermal stability and plasticity of Inconel 625 render it highly 

appropriate in high-temperature and high-H 2 S conditions in 

which typical steels tend to lose their ductility quickly. 

Moreover, its high microstructural refinement-fatigue 

endurance correlation promotes previous computational 

forecasts of digital twins and physics-informed models [7, 21, 

22, 31, 33]. 

The strengthening and ductility improvement between API 

X70 and 22Cr Duplex and Inconel 625 prove that the 

enhancement is possible because of the design of alloys and 

phase control. 

This confirms that high-nickel and duplex systems are more 

applicable to sour-service OCTG components that require high 

load capability and long-term dimensional stability [11, 21, 

22]. 

 

3.2 Electrochemical behavior 

 

The electrochemical data presented in Table 2 and Figure 2 

were derived from Tafel polarization and EIS experiments 

performed in a 3.5% NaCl solution saturated with CO₂ (0.1 

MPa) and H₂S (0.05MPa) at 80℃. As shown in Figures 3 and 

4, there was a strong composition dependence of the corrosion 

rate and passive layer lifetime.
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Table 2. Electrochemical parameters in CO₂/H₂S-saturated 

brine at 80℃ 

 

Material 
Icorr 

(µA/cm²) 

Rct 

(kΩ·cm²) 

Corrosion Rate 

(mm/year) 

API X70 30.1 0.93 0.349 

22Cr Duplex SS 7 4.06 0.066 

Inconel 625 1.1 11.85 0.011 

 

 
 

Figure 2. Comparison of corrosion current density (icorr) 

and corrosion rate for the investigated materials in CO₂/H₂S-

saturated brine at 80℃ 

 

 
 

Figure 3. Tafel polarisation curves of API X70, 22Cr duplex 

steel and Inconel 625 

 

API X70 carbon steel recorded the highest corrosion current 

density (30.1 µA/cm²) and lowest charge-transfer resistance 

(0.93 kΩ cm²), resulting in a corrosion rate of approximately 

0.349 mm/year. This effect is normal in low-alloy ferritic 

steels in sour environments, where the presence of CO₂ and 

H₂S destabilizes the FeCO₃/FeS protective layers, resulting in 

localized film breakdown and accelerated anodic dissolution 

[27, 29]. The interaction between CO₂ and H₂S enhances the 

cathodic hydrogen evolution reaction, increasing surface 

acidity and causing pit nucleation [27, 29]. 

 

 
 

Figure 4. Nyquist impedance plots of API X70, 22Cr duplex 

steel and Inconel 625 

 

Nyquist plots typically have a small semicircle diameter of 

X70, indicating that the main control of corrosion is charge 

transfer rather than diffusion, as observed by Solovyeva et al. 

[29].  

The 22Cr duplex stainless steel exhibited a significantly low 

corrosion current density (7.0 µA/cm2) and high Rct (4.06 kΩ 

cm²), which was equivalent to a corrosion rate of 0.066 

mm/year. 

This is because it forms a small Cr₂O₃–FeCr₂O ₃ passive 

layer, which is resistant to the CO2-H2S combination [27, 30]. 

Kılınç et al. [30] stated that duplex stainless steels form a 

duplex oxide/sulfide coating that keeps the structure intact 

despite the long exposure period and drastically minimizes 

hydrogen ingress. In addition, the ferrite–austenite interface 

provides a network of hydrogen traps, reduces embrittlement, 

and controls the anodic dissolution rate [28, 33]. 

Inconel 625 exhibited the best corrosion resistance, lowest 

corrosion current density (1.1 µA/cm²), and maximum Rct 

(11.85 kΩ cm²); consequently, an exceedingly low corrosion 

rate of 0.011 mm/year was obtained. This is linked to the 

development of a thick NiO-Cr₂O₃-MoO₃ passive layer, which 

offers better resistance to both chloride and sulfide cation 

permeabilities [29, 31]. According to Wu et al. [33] and Meza 

et al. [34], Ni-based superalloys exhibit diffusion-controlled 

reactions to impedance under the conditions of H2S/CO2, 

which implies that corrosion is constrained by slow ionic 

conduction through the protective film rather than by charge-

transfer reactions. 

The steep phase angle in the Bode diagrams and the large 

diameter of the semicircle in the Nyquist plots attest to the fact 

that the signature of stable passive behavior is in line with the 

predictions of the long-term behavior of the digital twin in sour 

service environments [31, 34]. 

In general, Inconel 625 exhibits a higher resistance to 

corrosion than 22Cr Duplex SS and API X70, which is 

negatively proportional to icorr and directly proportional to 

Rct. These findings clearly show that more protective oxide-

sulfide layers are formed in the presence of higher Cr, Ni, and 

Mo alloys, which significantly decreases the rate of corrosion 

in CO₂/H₂S settings [27-30].  

Moreover, the parameters obtained in the polarization and 

EIS analyses (icorr, Rct, and corrosion rate) are crucial input 

parameters in the next physics-informed machine learning and 
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digital twin models applied in predictive degradation 

modelling and reliability measurements [21, 31, 33, 34]. 

 

3.3 Microstructural analysis 

 

High-resolution SEM enabled microstructural analysis to 

provide the necessary information on the fracture mechanisms 

that dominate the behavior of the three alloys examined under 

sour service conditions. As shown in Figure 5, SEM 

observations were used to complete the mechanical and 

electrochemical observations, showing how the different 

fracture morphologies, including brittle cleavage in API X70, 

mixed-mode characteristics in 22Cr duplex steel, and fully 

ductile microvoid coalescence in Inconel 625, were 

determined by the underlying deformation modes and 

environmental susceptibility of each material.

 

 
 

Figure 5. Fractographic features: (a) brittle cleavage in API X70, (b) mixed quasi-cleavage and ductile dimples in 22Cr duplex 

steel, and (c) fully ductile microvoid coalescence in Inconel 625 

 

For API X70 carbon steel, the SEM fractograph showed a 

strong cleavage facet with secondary cleavages, representing 

a predominantly brittle and transgranular fracture process. The 

angular fracture planes and scanty plastic relief indicate that 

hydrogen-assisted cracking and localized anodic dissolution 

work together to propagate cracks under stress in a brittle 

manner. These fracture features can be attributed to the fact 

that CO₂/H₂S co-exposure disrupts the protective FeCO₃/FeS 

coating and increases crack propagation in ferritic steels [27, 

28]. 

The 22Cr duplex stainless steel exhibited a mixed-mode 

fracture morphology with quasi-cleavage facets and ductile 

microdimples. This mixture results from the bipolarity of 

duplex alloys, with the ferritic component being more prone to 

fracture and the austenitic component being more prone to 

plastic deformation. This phase-selective fracture behavior 

increases crack bending, energy capture, and toughness, as 

observed in duplex alloys exposed to hostile environments [30, 

31]. 

In contrast, Inconel 625 exhibited a fully ductile fracture 

morphology typified by evenly dispersed hemispherical 

dimples and definite signs of microvoid coalescence. The lack 

of brittle characteristics or secondary cracking emphasizes the 

remarkable hydrogen uptake and localized corrosion 

resistance of the alloy. This ductile nature is consistent with 

the long-established effect of γ′/γ″ strengthening precipitates 

in Ni-based superalloys, which facilitates homogeneous 

deformation and slower crack growth, even under harsh sour 

conditions [33, 34]. 

As shown by the SEM evidence, brittle cleavage (API X70), 

mixed-mode behavior (22Cr duplex stainless steel), and full 

ductile microvoid coalescence (Inconel 625) were distinctly 

connected and directly corresponded to the trends in the 

mechanical, electrochemical, and degradation properties of the 

three materials. 

 

3.4 Physics-informed AI model performance 

 

Table 3 shows that the evaluated machine-learning 

architectures exhibited a performance gradient that was 

specific to their inherent differences in their ability to describe 

the degradation processes in sour-service applications of 

OCTG. Random Forest achieved an average degree of 

prediction fidelity (accuracy 0.85 ± 0.03; R² = 0.82 ± 0.04), as 

expected, because tree-based ensembles have been shown to 

be highly predictive with tabular, non-sequential features, but 

ineffective with highly path-dependent material degradation 

processes [8]. This constraint is particularly pertinent to 

hydrogen-aided fatigue and corrosion-based damage, where 

sudden degradation does not occur.

 

Table 3. Comparative performance of machine learning models for failure mode classification and remaining useful life 

prediction 

 
Model Architecture Primary Task Classification Accuracy R² (Life Prediction) 

Random Forest Failure mode classification 0.85 ± 0.03 0.82 ± 0.04 

XGBoost Failure mode classification 0.88 ± 0.02 0.87 ± 0.03 

Physics-Informed long short-term memory (LSTM) Integrated prediction 0.93 ± 0.02 0.92 ± 0.03 

XGBoost performance was better (accuracy 0.88 ± 0.02; R² 

= 0.87 ± 0.03), and this result is consistent with the results of 

other researchers who found that gradient-boosted decision 

trees outperform traditional ensembles under the condition of 

nonlinear and multi-interaction relationship of features [9]. 

Nonetheless, similar to Random Forest, XGBoost still 

assumes that input samples are independent observations; 

therefore, it cannot capture temporal aspects, such as crack-

growth curves or EIS evolution paths, that control the 

remaining useful life. 

The Physics-Informed LSTM had the greatest predictive 

power (accuracy 0.93 ± 0.02; R2 = 0.92 ± 0.03), which reflects 

the overall advantage of recurrent neural network sequence 

modelling together with intrinsic physics-based constraints. 
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This finding confirms the emerging belief that physics-

informed architectures are highly effective for improving 

extrapolation robustness and reducing unphysical material 

degradation predictions [32, 33]. The LSTM block is trained 

on long-range temporal dependencies between crack growth 

histories and the electrochemical evolution of electrochemical 

evolution data and enforces physics-based penalty terms, 

which enforce obedience to the mechanistic laws of fracture 

fatigue kinetics, Arrhenius corrosion acceleration, etc., into a 

dual constraint learning environment. 

Furthermore, the better-than-physical-model performance 

is also compatible with recent trends in the digital twin 

literature that discuss the need to adopt a physically grounded 

AI that ensures reliable functionality in safety-critical systems 

[31, 34]. Operational decision-making is also critical because 

its capability of making stable and interpretable predictions is 

critical in areas where maintenance scheduling and risk 

mitigation rely on precise remaining useful life (RUL) 

estimations. 

Overall, the performance ranking, Random Forest < 

XGBoost < Physics-Informed LSTM, is not only 

experimentally justified in this study but also theoretically 

consistent with the modern information on degradation 

modelling, which proves that physics-guided sequential 

networks provide the most successful basis for OCTG digital-

twin integration. 

 

3.5 Digital twin validation and deployment 

 

The verifiability of the physics-informed digital twin was 

demonstrated by comparing the AI-driven degradation 

prediction with experimental fatigue, corrosion, and creep data 

under sour conditions and high temperatures. The additional 

forecasts of the remaining useful life were not more than 

approximately 10 percent of the measured values, and the 

uncertainty bands were able to absorb most of the 

experimental variations, which presents good model 

robustness and generalization. The combination of mechanical, 

electrochemical, and microstructural inputs to make 

physically consistent predictions and the inclusion of the Paris 

law and Arrhenius kinetics to avoid non-physical behavior in 

sparsely populated operating regimes have been achieved [21, 

22]. 

The digital twin translates the predicted rate of degradation 

into an index of Pipeline Health that is constantly updated, 

using which real-time maintenance decisions are made. To 

comply with the dynamic synchronization concepts (as 

reported by Meza et al. [34]), when the index drops below a 

certain threshold, automated inspection alerts are produced. 

Sensitivity analysis, which assessed the modification of the 

cyclic stress amplitude and partial pressure of H2S, produced 

the highest enhancements in the RUL, which is consistent with 

the findings of sour-service degradation studies [6, 11]. In 

general, the validated framework is a reliable reproducer of 

degradation trends and a useful decision-support tool for 

condition-based maintenance of OCTG systems that can 

bridge the gap between laboratory characterization and field-

scale monitoring of complex service conditions. 

 

 

4. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

This study proposes an integrated digital twin framework 

for predicting the rate of degradation and remaining life of 

OCTG materials under sour and high-temperature conditions, 

which is grounded in physics principles. One of the novel 

aspects of this proposed approach is the blending of physically 

based models of degradation, such as Paris' fatigue law of 

crack growth and Arrhenius-type models of corrosion kinetics 

with the sequence-based machine learning framework. This 

blending allows the results to remain physically sound, 

intelligible, and robust while maintaining a high degree of 

accuracy. 

It was observed that experiments revealed that Inconel 625 

is more robust and corrosion-resistant than 22Cr duplex 

stainless steel and API X70 carbon steel. This clearly indicates 

that it is effective under harsh source-service conditions. When 

combined with the physics-informed LSTM and digital twin 

framework, the properties established through experiments 

were useful for precise degradation analysis with differences 

of no more than 10%. 

Despite these encouraging results, the current study has 

certain limitations. The experimental data used in this study 

were drawn from a controlled laboratory setting with limited 

environmental factors, which may not completely capture the 

complexities of real-world variability. Additionally, the 

current framework considers that all conditions of exposure 

are equivalent, without considering the influence of 

multiphase flow or regionalized damage accumulation. 

Future work will be aimed at integrating the proposed 

framework with sensor data, incorporating spatially resolved 

damage models, as well as learning/adaptive features. It is 

expected that further research on multiphysics coupling and 

uncertainty quantification in the digital twin framework will 

lead to enhanced prediction capability and application 

domains for other engineering systems that fall under the 

safety-critical category. 
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NOMENCLATURE 

 

OCTG Oil country tubular goods 

PIML Physics-informed machine learning 

PI-LSTM Physics-informed long short-term 

memory model 

DT / Digital Twin Real-time virtual replica of physical 

system 

API X70 Carbon steel used for pipelines 

22Cr Duplex SS 22% chromium duplex stainless steel 

Inconel 625 Nickel-based superalloy 

H₂S Hydrogen sulfide 

CO₂ Carbon dioxide 

SCC Stress corrosion cracking 

SSC Sulfide stress cracking 

HIC Hydrogen-induced cracking 

EIS Electrochemical impedance 

spectroscopy 

SEM Scanning electron microscopy 

EBSD Electron backscatter diffraction 

EDS Energy-dispersive X-ray spectroscopy 

icorr Corrosion current density 

Rct Charge-transfer resistance 

ΔK Stress intensity factor range 

da/dN Fatigue crack growth rate 

RUL Remaining useful life 
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