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The Domain Name System (DNS) is exploited for sophisticated threats like botnet control,
evading signature-based detection. This study evaluates four unsupervised clustering
algorithms: K-means, DBSCAN, Hierarchical Clustering, and Gaussian Mixture Models
(GMM), on 100,001 DNS queries with 84 features. Parameters were optimized via
GridSearchCV, with comparisons across raw data, principal component analysis (PCA),
and t-distributed Stochastic Neighbor Embedding (t-SNE). Results show dimensionality
reduction is critical: raw data yielded poor separation (Davies-Bouldin Index (DB Index)
up to 2.94), while t-SNE enabled DBSCAN to achieve the best cluster separation (DB
Index = 1.29). K-means and Hierarchical Clustering showed strong agreement (96%
similarity on PCA data), whereas GMM effectively modeled overlapping stealthy attack
behaviors. Cross-algorithm similarity varied dramatically (K-means vs. GMM: 14-28%),
highlighting that consensus depends heavily on data representation. These findings
demonstrate performance is highly representation-dependent, providing empirical support
for hybrid DNS security systems that select algorithms based on threat characteristics and

preprocessing

strategy. Real-time deployment faces

computational constraints,

motivating future work in optimized implementations.

1. INTRODUCTION

In today’s interconnected world, Domain Name System
(DNS) is fundamental to how we access the internet,
translating easy-to-remember domain names into IP addresses.
It enables users to locate resources efficiently. However, this
essential service has also become a target for cybercriminals,
who use DNS for various malicious activities, from botnet
command-and-control to covert data exfiltration. Traditional
defense mechanisms, which often rely on predefined
signatures, struggle to detect these increasingly sophisticated
and evolving threats. Consequently, there is growing interest
in applying clustering techniques to DNS data: by analyzing
patterns in an unsupervised manner, clustering can help us
catch unusual activity that we might otherwise miss.

Previous research has taken a closer look at how different
clustering algorithms perform in the context of DNS analysis
[1], but often with a focus on single methods or limited
comparisons. For example, prior research has demonstrated
that K-means works well for identifying distinct, well-defined
clusters, while others have highlighted the advantages of
DBSCAN for capturing more irregular, complex patterns.
Meanwhile, hierarchical clustering and Gaussian Mixture
Models (GMM) also have their advocates, each bringing
unique strengths to the table. However, we still lack a
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thorough, side-by-side comparison of these methods to
evaluate their performance under similar conditions.

In this study, we have gone beyond single-method
evaluations. We have applied K-means, DBSCAN,
Hierarchical Clustering, and GMM to a dataset of 100,001
DNS query records, each with 84 features ranging from IP
addresses and timestamps to protocol types and DNS
responses. These features were carefully preprocessed to make
them usable for clustering, involving steps like encoding
categorical variables, balancing classes with Synthetic
Minority Over-sampling Technique (SMOTE), engineering
new features, and standardizing the data for consistency.

We also employed two dimensionality reduction
techniques: principal component analysis (PCA) and t-
distributed Stochastic Neighbor Embedding (t-SNE), to see
how they might affect our results. PCA helps capture the
overall variance in the data [2], while t-SNE focuses on local
relationships, which can be especially useful for algorithms
like DBSCAN that thrive on density-based distinctions.

This paper aims to address the following key questions:

1. How well do different clustering algorithms detect
unusual patterns in DNS data, and how do they
compare when evaluated using metrics like the
Silhouette Score, DB Index, and similarity measures?

2. What insights can be gained regarding the unique
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strengths of each clustering method by comparing them
directly on both PCA and t-SNE-reduced data?

What does this comparison tell us about the potential
for using a combination of clustering algorithms to
improve DNS-based anomaly detection?

This work makes the following key contributions to DNS
anomaly detection:

A Systematic Comparative Framework with Cross-
Algorithm Similarity Analysis: We provide the first side-by-
side evaluation of four fundamentally different clustering
algorithms (K-means, DBSCAN, Hierarchical Clustering, and
GMM) on real-world DNS log data. Unlike previous studies
that evaluate algorithms in isolation, we directly compare
clustering results using similarity metrics (Adjusted Rand
Index (ARI)) to quantify agreement and divergence between
methods across different data representations.

Dimensionality Reduction Analysis for DNS: We
systematically analyze how both linear PCA and non-linear t-
SNE dimensionality reduction fundamentally alter clustering
performance for DNS security applications. Our analysis
includes a three-way comparison: raw 84-dimensional data vs.
PCA-reduced vs. t-SNE-reduced representations.

DNS-Specific Performance Profiles with Similarity
Insights: We develop comprehensive algorithm profiles that
not only measure individual performance but also analyze
pairwise similarities, revealing that K-means and Hierarchical
Clustering show 96% agreement on PCA data while diverging
significantly with other methods, insights critical for ensemble
design.

Empirical Foundation for Representation-Aware Detection:
Our findings demonstrate that clustering performance and
algorithm agreement are highly dependent on data
representation, providing the empirical basis for designing
future hybrid DNS security systems that leverage multiple
clustering perspectives.

In the end, our findings provide insights into how these
algorithms can be leveraged for better DNS security. Our
findings suggest that there is no one-size-fits-all solution. K-
means and Hierarchical Clustering perform well when clusters
are clearly separated, but DBSCAN and GMM offer unique
advantages for detecting anomalies and handling overlapping
data. By understanding the relative strengths and limitations of
these methods, we can better equip cybersecurity systems to
spot DNS-based threats before they escalate.

The remainder of this paper is organized as follows. We
start with Section 2, Methodology, where we provide
foundational definitions and theoretical insights into the
methods used in this study, such as categorical encoding,
dimensionality reduction, and clustering. This section lays the
groundwork for understanding the techniques applied later in
the analysis.

Next, Section 3 focuses on the Proposed Method, detailing
the stages of our analytical framework. This section outlines
how DNS data is collected and preprocessed, describes the
dimensionality reduction techniques like PCA and t-SNE, and
introduces the clustering algorithms we used. Each step is
designed to enhance our approach to anomaly detection within
DNS traffic.

In Section 4, we discuss the Experimental Setup, which
includes a deep dive into the DNS log dataset, its attributes,
and the comprehensive preprocessing steps we employed. We
describe how the data was cleaned, balanced using SMOTE,
and transformed to prepare it for clustering analysis.

Finally, Section 5 deals with the Results and Analysis. Here,

2334

we compare the performance of K-means, DBSCAN,
Hierarchical Clustering, and GMM, using evaluation metrics
like the Silhouette Score and DB Index. We interpret the
clustering results in the context of DNS traffic, assessing each
algorithm’s ability to capture patterns and detect anomalies.

2. RELATED WORKS

Bilge et al. [3] proposed a system for detecting botnet
command and control (C2) servers through behavioral analysis
of DNS traffic. By correlating domain resolution behaviors
with temporal patterns, they achieved over 90% accuracy in
identifying malicious domains. Their work complements our
study by emphasizing the importance of DNS patterns in
detecting anomalies, although their focus was on supervised
techniques, while ours employs unsupervised clustering.

Antonakakis et al. [4] introduced a system for identifying
malicious domains using DNS traffic features from
authoritative name servers. With a precision rate of 98%, their
work highlighted the potential of DNS-based malware
detection. While their methodology relied heavily on domain
reputation and supervised learning, our approach broadens the
scope by utilizing unsupervised clustering for a wider range of
anomalies.

Kumari et al. [5] applied K-means clustering to network
traffic data to detect anomalies by identifying outliers in
clustered data. Their work focuses on clustering based on
statistical attributes of network traffic to group normal and
anomalous traffic effectively. Their results demonstrate that
K-means can effectively partition data into distinct clusters,
identifying outliers that indicate anomalies in network
behavior. While their study demonstrates the effectiveness of
K-means clustering for detection, our study builds upon this
by investigating multiple clustering algorithms to address a
wider range of DNS-based anomalies.

Liu et al. [6] proposed a hierarchical clustering method
designed to dynamically detect anomalies in cross-domain
network data. The approach adjusts cluster granularity
adaptively to ensure highly sensitive anomaly detection in
imbalanced datasets. Their results highlight the method's
effectiveness in separating traffic anomalies from normal
patterns, with robustness against initial parameter selection
issues. Our study aligns with this work in leveraging
hierarchical clustering but differs in focusing exclusively on
DNS traffic anomalies.

Ichise et al. [7] investigated machine learning-based
detection and mitigation of anomalous DNS traffic. The
authors analyze DNS-specific attacks such as botnet
command-and-control and propose methods for their timely
identification and mitigation. The study demonstrates the
efficacy of machine learning for managing DNS anomalies,
highlighting its potential in reducing false negatives in security
operations. While this study focuses on supervised machine
learning for anomaly detection, our research contrasts by using
unsupervised clustering, enabling broader detection of
unknown patterns  without requiring labeled data.
Additionally, we evaluate the relative performance of different
clustering methods to optimize DNS anomaly detection
comprehensively.

While the mentioned studies demonstrate significant
advancements in DNS security, they predominantly rely on
supervised learning or focus on specific threat types such as
botnets. In contrast, our work introduces a fully unsupervised



framework that leverages multiple clustering algorithms to
detect a broader spectrum of DNS anomalies without requiring
labeled data. Unlike supervised approaches, which depend on
known attack signatures and are thus limited to detecting
previously seen threats, our method can identify novel and
evolving attack patterns through pattern discovery in
unlabeled DNS traffic. Furthermore, while prior clustering-
based studies often evaluate algorithms in isolation, our
framework incorporates cross-algorithm similarity analysis
and evaluates the impact of dimensionality reduction,
providing a more holistic view of algorithm behavior and
representation sensitivity. This enables the design of adaptive,
hybrid detection systems that can dynamically select
algorithms based on data characteristics, a contribution not
addressed in existing literature.

3. MATERIALS AND METHODS
3.1 Categorical encoding

Categorical features are converted to numeric values using
Label Encoding, which assigns a unique integer to each
category. For nominal variables, One-Hot Encoding was
considered to avoid imposing unintended ordinal relationships

[8].
3.2 Synthetic Minority Over-sampling Technique

SMOTE was applied to address class imbalance by
generating synthetic samples for minority classes. New
samples are created by interpolating between similar
instances, preserving data distribution and reducing overfitting

[9].
3.3 Standardization

Features were standardized to a mean of zero and a standard
deviation of one to ensure equal contribution in distance-based
clustering algorithms, such as K-means and GMM [10].

3.4 Dimensionality reduction

PCA reduces dimensionality by projecting data onto
orthogonal axes of maximum variance [11].

T-SNE preserves local data structures by minimizing
Kullback-Leibler divergence between high- and low-
dimensional similarity distributions [12]. Both methods were
evaluated to assess their impact on clustering performance.

3.5 Clustering algorithms

K-means partitions data into k spherical clusters by
minimizing within-cluster variance [13, 14]. It is efficient but
sensitive to centroid initialization.

DBSCAN identifies clusters of arbitrary shape based on
density, classifying low-density points as noise [15].

Hierarchical Clustering builds a tree of clusters using
agglomerative linkage, suitable for nested structures [16].

GMM perform soft clustering by fitting multiple Gaussian
distributions, accommodating overlapping clusters [17].

3.6 Evaluation metrics

Silhouette Score measures cluster cohesion and separation,

ranging from -1 to 1 [18].

DB Index quantifies the average similarity between clusters,
with lower values indicating better separation [19].

Adjusted Rand Index (ARI) was used to assess similarity
between clustering results across algorithms.

3.7 Innovative aspects of our framework

Unlike prior studies that evaluate clustering methods in
isolation, our work introduces cross-algorithm similarity
analysis using ARI. We systematically compare performance
across three data representations: raw (84D), PCA-reduced,
and t-SNE-reduced. This multi-perspective evaluation
provides novel insights into how preprocessing influences
DNS anomaly detection and informs hybrid security system
design.

3.8 Parameter tuning and implementation details

For reproducibility, we detail the specific parameters used
for each algorithm. To ensure optimal performance, we
employed systematic  hyperparameter tuning using
GridSearchCV where applicable, with 5-fold cross-validation
and silhouette score as the primary evaluation metric.

Dimensionality Reduction:

PCA was configured with n_components = 0.95 to retain
95% wvariance, while for 2D visualization we used
n_components = 2. t-SNE parameters were set to standard
values: perplexity = 30, learning rate = 200, n_iter = 1000,
with Euclidean distance. The t-SNE perplexity was validated
through a limited search over values [15, 30, 50], with
perplexity = 30 yielding the most stable embeddings as
measured by trustworthiness score.

Clustering Algorithms:

e K-means: The optimal number of clusters was
determined using the Elbow Method, plotting the
within-cluster sum of squares (WCSS) against potential
k values in the range [4, 6, 8, 10, 12, 15]. The "elbow
point" occurred at k = 8, indicating diminishing returns
in variance reduction beyond this point. This was
validated through GridSearchCV over the same range,
with k = 8 consistently maximizing the average
silhouette score. We used init = 'k-means++' and
max_iter = 300.

e DBSCAN: Parameters were optimized through a grid
search over eps values [0.3, 0.5, 0.7, 1.0] and
min_samples values [5, 10, 15]. The combination eps =
0.5 and min samples = 10 yielded the highest
silhouette score while maintaining reasonable cluster
discovery.

e Hierarchical Clustering: We used Agglomerative
clustering with Ward linkage and Euclidean affinity.
GridSearchCV was applied over n_clusters [4, 6, 8, 10,
12] and linkage types ['ward', 'complete’, 'average'],
with n_clusters = 8 and linkage = 'ward' performing
best.

e GMM: A comprehensive grid search was conducted
over n_components [4, 6, 8, 10, 12] and
covariance type ['spherical’, 'tied', 'diag', 'full']. The
optimal configuration was n_components = 8 with
covariance type = 'full', maximizing the Bayesian
Information Criterion (BIC).

Evaluation Framework for GridSearchCV:

For all grid searches, we used 5-fold cross-validation with



silhouette score as the primary evaluation metric. For
algorithms requiring stability assessment (particularly GMM),
we also considered the BIC to balance model fit and
complexity. Random seeds were fixed (random_state = 42)
throughout to ensure reproducibility.

Final Evaluation Metrics:

Cluster similarity between algorithm pairs was measured
using the ARI. Final clustering quality was assessed using both
the Silhouette Score and DB Index, both computed with
Euclidean distance on the standardized feature space.

All implementations used scikit-learn (v1.3+) with
consistent random seeding to ensure reproducible optimization
and evaluation.

4. PROPOSED METHOD

The proposed method, as illustrated in Figure 1, aims to
effectively analyze DNS log data for anomaly detection and
cybersecurity insights. This method is divided into four main
stages to prepare the data and enhance clustering effectiveness.

DNS Data Collection & Preprocessing

Dimensionality Reduction
PCA / t-SNE

K-Means DBSCAN Hierarchical Gaussian Mixture
Clustering Clustering Clustering Model (GMM)

Cluster Evaluation
DB Index, Silhouette Score, ARI

l Anomaly Detection & AnalysisJ

Figure 1. Proposed method workflow for Domain Name
System (DNS) log analysis and anomaly detection

The proposed workflow comprises the following stages:

1. Data Collection and Preprocessing: The DNS log
dataset, comprising 100,001 records and 84 attributes,
is initially cleaned to remove noise and handle missing
values. Categorical variables are encoded into
numerical formats, and SMOTE is applied to address
any class imbalances, especially for response codes
linked to potential threats. Feature engineering further
refines the dataset, while standardization ensures
uniformity across numerical attributes.
Dimensionality Reduction: To facilitate clustering,
PCA and t-SNE are employed. PCA maximizes
variance and captures global data structures, while t-
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SNE preserves local neighborhood structures, which is
critical for density-based clustering methods used in
anomaly detection.

Clustering Techniques: Four clustering algorithms
are applied to identify patterns in the preprocessed data:

K-means: effective for identifying well-separated

clusters.

DBSCAN: Effective for detecting anomalies and

handling noise in irregular clusters.

Hierarchical Clustering: Useful for uncovering

nested and hierarchical data structures.

GMM: Provides probabilistic clustering, capturing

overlapping clusters that can indicate transitional

DNS behaviors.

Evaluation and Anomaly Detection: The clustering
results are evaluated using metrics like the Silhouette
Score and DB Index. DBSCAN’s ability to identify
outliers also aids in isolating anomalous DNS
activities, providing valuable insights for cybersecurity
applications.

This approach provides a comprehensive framework for
analyzing DNS traffic data, leveraging the strengths of
multiple clustering methods to reveal hidden patterns and
potential threats. Each stage in the process contributes to a
robust analysis that supports improved threat detection and
understanding of DNS query behaviors.

5. EXPERIMENTAL SETUP
5.1 Dataset overview

The DNS log dataset utilized in this study was sourced from
a cybersecurity firm specializing in network traffic analysis
and threat detection. It contains 100,001 records and consists
of 84 attributes associated with DNS query activities,
capturing a variety of data points that are crucial for
identifying and analyzing potential security threats within
network traffic [20]. The attributes encompass both
categorical and numerical data, including:
Timestamp: The precise date and time of each DNS
query. This attribute is essential for identifying
temporal patterns and trends in query activity, such as
burst patterns during specific times of the day, which
may suggest coordinated attacks or anomalies.
Source IP Address: Represents the IP address from
which each DNS query originates. This attribute is
critical for tracing back the source of traffic, identifying
potential attackers, and detecting unusual query
volumes from a single IP that may indicate malicious
scanning or botnet activity.
Destination IP Address: Provides the IP address of the
DNS server that was queried. By examining the
destination addresses, one can detect unusual patterns
such as repeated queries to specific domains associated
with malicious infrastructure or uncommon DNS
servers outside of normal operating regions.
Protocol Type: Indicates the protocol (typically TCP
or UDP) used to send the DNS query. DNS over TCP
is less common and is often associated with larger
query payloads or more secure transactions, whereas
UDP is the standard protocol for regular DNS queries.
This distinction helps in identifying non-standard DNS
usage, which can be indicative of tunneling attacks.



Query Type: Specifies the type of DNS record
requested, such as A (IPv4 address), AAAA (IPv6
address), MX(mail exchange), or TXT (text records).
Certain query types may be linked to specific attack
vectors; for instance, TXT record requests may suggest
attempts to exploit DNS as a covert channel for data
exfiltration.

Response Code: Captures the DNS response code for
each query, such as NOERROR (successful query),
NXDOMAIN (non-existent domain), and SERVFAIL
(server failure). High frequencies of NXDOMAIN
responses may suggest reconnaissance activities or
phishing attempts where attackers probe for inactive or
misspelled domains.

DNS Answer: Contains the response data provided by
the DNS server, which could include IP addresses,
canonical names, or other relevant details. Analysis of
DNS answers can reveal information about the queried
domains, including those that may be part of known
malicious networks or flagged in threat intelligence
databases.

5.2 Preprocessing

Preprocessing involved multiple steps to ensure the dataset
was clean, consistent, and ready for analysis. Key
preprocessing steps included:

Data Cleaning: Missing Values: The dataset was
examined for missing values, which were imputed
using mean imputation for numerical data and mode
imputation for categorical data where necessary. In
cases where missing data points were significant, entire
records were excluded from the analysis to maintain
data integrity. Noise Reduction: Irrelevant or redundant
attributes, such as administrative metadata, were
removed to streamline the dataset. This step focused on
retaining only those fields that contribute to
understanding DNS query behavior.

Encoding Categorical Data: For categorical features
like ’protocol’, ’query type’, and ’response code’,
scikit-learn’s LabelEncoder was used to convert these
into numerical values. This encoding transformed non-
numeric fields into integer representations that
clustering algorithms could process efficiently.
Handling Imbalanced Data: Preliminary analysis
revealed that certain response codes appeared
disproportionately compared to others. To mitigate
potential biases, SMOTE is applied to create a balanced
dataset, especially for response codes indicative of
potentially malicious queries.

Feature Engineering: New features were derived
from existing attributes to enhance the dataset's
descriptive power. For instance, query duration was
calculated by measuring the difference between request
and response timestamps for queries involving multiple
records. Additionally, source IP query frequency was
included to identify repeated queries from specific IP
addresses, often a hallmark of automated or malicious
behavior.

Standardization: All numerical features are
standardized using scikit-learn’s StandardScaler to
ensure a mean of zero and a standard deviation of one.
Standardization mitigates the impact of feature scale
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differences, enabling the algorithms to focus on feature
relationships without scale bias.

Dimensionality Reduction Preparation: To prepare
for dimensionality reduction, the dataset was split into
subsets tailored for PCA and t-SNE analysis. For PCA,
a more extensive subset retaining the majority of
variance was selected, while t-SNE was applied to a
subset optimized for local neighborhood structure.

By applying these preprocessing techniques, the dataset was
transformed into a structured, analyzable format that enabled
effective application of clustering methods. The detailed
preprocessing steps ensured the dataset’s integrity and
enhanced the accuracy of subsequent analyses, which focused
on uncovering hidden patterns in DNS queries linked to
cybersecurity threats.

6. RESULTS AND ANALYSIS
6.1 Comparative performance of clustering algorithms

6.1.1 K-means vs. DBSCAN

K-means and DBSCAN showed moderate similarity (57—
65% ARI), reflecting their different clustering philosophies.
K-means achieved higher Silhouette Scores (0.68 PCA, 0.72
t-SNE), indicating well-separated clusters suitable for clear
traffic patterns. DBSCAN yielded lower Silhouette Scores
(0.56 PCA, 0.61 t-SNE) due to noise inclusion, but its superior
DB Index (1.29 with t-SNE) confirms effective separation of
irregular clusters, highlighting its utility for anomaly detection
in noisy DN traffic.

6.1.2 K-means vs. Hierarchical Clustering

K-means and Hierarchical Clustering showed strong
agreement (96% ARI with PCA, 93% with t-SNE),
demonstrating consistent detection of well-defined DNS
traffic patterns. Hierarchical Clustering achieved marginally
higher Silhouette Scores (0.74 PCA, 0.76 t-SNE) and lower
DBI values (1.32 PCA, 1.21 t-SNE), confirming a slight
advantage in producing cohesive, well-separated clusters.

6.1.3 K-means vs. Gaussian Mixture Models

The low similarity between K-means and GMM (14-28%
ARI) reflects their fundamentally different approaches: hard
vs. soft clustering. GMM’s lower Silhouette Scores (0.51
PCA, 0.58 t-SNE) and higher DBI values (1.85 PCA, 1.67 t-
SNE) indicate their strength in modeling overlapping traffic
behaviors, relevant for stealthy attacks that blend with normal
queries.

6.1.4 DBSCAN vs. Hierarchical Clustering

Moderate similarity (51-65% ARI) was observed.
Hierarchical Clustering produced higher Silhouette Scores,
favoring structured traffic segmentation, while DBSCAN’s
lower DBI with t-SNE (1.29) underscores its capability to
isolate irregular, low-density anomalies.

6.1.5 Hierarchical Clustering vs. Gaussian Mixture Models

Low similarity (23-28% ARI) confirms their divergent
clustering objectives. Hierarchical Clustering excels in
creating distinct clusters for clear traffic categorization,
whereas GMM is suited for probabilistic modeling of blended
attack patterns.



6.2 Individual algorithm performance profiles

To further illustrate the unique characteristics and practical
implications of each clustering method for DNS security, we
present individual performance profiles in Table 1. These

profiles include key operational metrics such as cluster count,
noise detection rate, and computational time, evaluated under
three data representations: raw (no reduction), PCA-reduced,
and t-SNE-reduced data.

Table 1. Individual performance profiles of clustering algorithms on the Domain Name System (DNS) data

Avg. Computation

Algorithm  Data Representation  Clusters Noise Points  Silhouette Score DB Index Time (s)
Raw (84D) 8 - 0.52 2.15 8.1
K-means PCA (2D) 8 - 0.68 1.58 12.4
t-SNE (2D) 8 - 0.72 1.45 14.1
Raw (84D) 3 22.5% 0.31 2.88 15.3
DBSCAN PCA (2D) 5 12.3% 0.56 1.42 18.7
t-SNE (2D) 6 8.1% 0.61 1.29 22.3
Raw (84D) 8 - 0.49 2.03 124.5
Hierarchical PCA (2D) 8 - 0.74 1.32 45.2
t-SNE (2D) 8 - 0.76 1.21 48.9
Raw (84D) 8 - 0.38 2.94 89.7
GMM PCA (2D) 8 - 0.51 1.85 36.5
t-SNE (2D) 8 - 0.58 1.67 39.8
Note: "-" indicates the algorithm does not explicitly label noise. "Raw (84D)" refers to clustering on the original 84-dimensional standardized data without

dimensionality reduction. Computational time includes clustering only (dimensionality reduction time excluded for fair comparison). Noise points for DBSCAN
represent queries flagged as anomalies. PCA: principal component analysis; t-SNE: t-distributed Stochastic Neighbor Embedding; GMM: Gaussian
Mixture Models.

Interpretation of Individual Profiles:

Raw Data Performance (Baseline): Clustering directly on
the 84-dimensional standardized data yielded the lowest
Silhouette Scores and highest Davies-Bouldin indices across
all algorithms, indicating poor cluster separation in high-
dimensional space. DBSCAN on raw data flagged 22.5% of
queries as noise, an unrealistically high anomaly rate
suggesting the "curse of dimensionality" severely affects
density estimation. Hierarchical clustering exhibited the
highest computational time (124.5 seconds), while K-means
remained the fastest.

Dimensionality Reduction Impact: Both PCA and t-SNE
significantly improved clustering quality. PCA provided the
most balanced improvement, enhancing Silhouette Scores by
0.16-0.25 across algorithms while significantly reducing
computational time for Hierarchical and GMM. t-SNE
delivered the best final metrics, particularly for DBSCAN (DB
Index: 1.29) and Hierarchical clustering (DB Index: 1.21), by
preserving local structures essential for DNS anomaly
detection.

K-means: Showed consistent 8-cluster discovery across all
representations, with t-SNE providing the best cohesion
(Silhouette: 0.72). The algorithm proved robust to
dimensionality, with the smallest performance gap between
raw and reduced data.

DBSCAN: Demonstrated the most dramatic transformation
with dimensionality reduction. On raw data, it over-detected
noise (22.5%) and found only 3 clusters, but t-SNE enabled
discovery of 6 meaningful clusters with only 8.1% noise, a
realistic anomaly rate for DNS traffic.

Hierarchical Clustering: Benefited enormously from
dimensionality reduction, with computation time dropping by
~65% and cluster quality significantly improving. The stable
8-cluster output across conditions suggests it captures
fundamental DNS traffic categories.

GMM: Similarly showed major improvement with
reduction, particularly in managing overlapping clusters. The
probabilistic model struggled with high-dimensional data
(Silhouette: 0.38) but became effective at identifying blended
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behaviors with t-SNE (Silhouette: 0.58).

Security Implications: These profiles confirm that
dimensionality reduction is not merely optional but essential
for effective DNS anomaly detection. PCA offers a practical
balance for real-time systems, while t-SNE provides superior
detection at higher computational cost. The choice depends on
operational constraints: PCA for monitoring with resource
limits, t-SNE for forensic analysis where detection accuracy is
paramount.

6.3 Visualizations and interpretations

The following figures illustrate the clustering outcomes for
each algorithm applied to PCA-reduced and t-SNE-reduced
DNS data. Color coding enhances visualization clarity, with
each distinct color representing a specific cluster identified by
the algorithm; thus, data points sharing the same color are
grouped based on similarity. These visualizations offer
insights into how each algorithm partitions DNS traffic,
highlighting their respective capabilities in addressing diverse
clustering challenges.
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Figure 3 shows that DBSCAN effectively identifies clusters
of varying densities while isolating noise points (depicted in
black). This capability is particularly valuable for detecting
DNS anomalies, as such outliers may represent suspicious or
malicious activity. The figure further illustrates DBSCAN's
s adaptability to nonlinear structures, with t-SNE preserving

local density relationships essential for this algorithm.
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Figure 2 demonstrates that K-means produces spherical,
well-separated clusters, indicating its suitability for
categorizing distinct traffic patterns.
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Figure 4 produces a nested structure that’s beneficial for

visualizing hierarchical relationships in DNS data. This
method allows for multi-level analysis, making it easier to
explore sub-clusters that may correspond to different types of
traffic or threat levels.

Figure 5 shows that GMM clustering captures overlapping
clusters, which suits DNS data that includes mixed behaviors.
The probabilistic nature of GMM helps in recognizing DNS
traffic where benign and suspicious queries may blend
together, which is essential for detecting complex attack
patterns.

These visualizations highlight the unique -clustering
behaviors of each algorithm. K-means and Hierarchical
Clustering work well for well-defined groups, whereas
DBSCAN and GMM reveal insights into DNS anomalies and
overlapping patterns, respectively. The choice of algorithm
depends on the specific characteristics of the DNS traffic being
analyzed.

6.4 Supplementary performance metrics

Table 2 provides a summary of how each algorithm
performed across different metrics.

Table 2. Summary of key metrics

Compared Clustering PCA t-SNE Silhouette Silhouette DB Index DB Index
Algorithms Similarity (%)  Similarity (%) PCA t-SNE PCA t-SNE
K-means vs. DBSCAN 57.46 64.61 0.68 0.72 1.58 1.45
K-means vs. Hierarchical 95.7 92.59 0.74 0.76 1.32 1.21
K-means vs. GMM 14.37 27.94 0.51 0.58 1.85 1.67
DBSCAN vs. 51.38 64.7 0.56 0.61 1.42 1.29
Hierarchical

Note: PCA: principal component analysis; t-SNE: t-distributed Stochastic Neighbor Embedding; GMM: Gaussian Mixture Models.
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Figure 6. Algorithm similarity on principal component
analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE)

To complement these results, the following figures illustrate
these metrics across PCA and t-SNE dimensions:

Figure 6 shows how similarly the algorithms cluster the
data. High similarity scores, such as those between K-means
and Hierarchical Clustering, indicate strong agreement in
identifying well-defined clusters.

Figure 7 shows the Silhouette Scores measure how well-
separated clusters are. Higher scores for Hierarchical
Clustering reflect cohesive clusters, whereas GMM’s lower
scores capture its tendency for overlap.

Figure 8 shows the DB Index for each algorithm pair under
PCA and t-SNE representations. A lower DB Index indicates
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better cluster separation. The results demonstrate that t-SNE
reduction consistently yields superior separation (lower DB
Index) compared to PCA across all algorithm pairs. Notably,
the K-means and Hierarchical pair achieved the best
separation (DB Index = 1.21 with t-SNE), while K-means and
GMM exhibited the weakest separation (DB Index = 1.85 with
PCA), consistent with their fundamentally different hard
versus soft clustering approaches.

Algorithm Silhouette Scores on PCA and t-SKNE
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Figure 7. Algorithm silhouette scores on principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE)

6.5 Security implications of clustering results

The observed clustering behaviors provide direct insights



for DNS threat detection:

K-means and Hierarchical Clustering are optimal for
baseline traffic profiling, where clear separation exists
between benign and known malicious query patterns (e.g.,
standard lookups vs. known C2 domains).
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Figure 8. Algorithm DB Index on principal component
analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE)

DBSCAN’s noise detection (8.1% with t-SNE) aligns with
realistic anomaly rates in operational DNS logs, making it
suitable for unsupervised alerting without labeled data. Its
ability to isolate low-density points directly flags suspicious
activities such as scanning or rare query bursts.

GMM’s overlapping clusters model stealthy attack
behaviors where malicious queries blend with legitimate
traffic, such as low-volume data exfiltration or DNS tunneling.

t-SNE enhanced DBSCAN achieved the lowest DBI (1.29),
confirming its strength in isolating irregular threat patterns,
crucial for targeted threat hunting in high-dimensional DNS
data.

These results indicate that no single algorithm suffices for
all DNS threat types; instead, a representation-aware hybrid
approach is needed.

7. DISCUSSION
7.1 Summary of key findings

Our systematic comparison reveals that clustering
performance is highly dependent on data representation.
Dimensionality reduction (especially t-SNE) significantly
improves cluster separation and anomaly detection. K-means
and Hierarchical Clustering excel in well-defined traffic
segmentation, while DBSCAN and GMM offer
complementary strengths for irregular and overlapping threat
patterns.

7.2 Impact of dimensionality reduction

PCA provided a computationally efficient representation
that improved clustering over raw data, but its linearity limited
detection of complex DNS threats. t-SNE preserved local
structures essential for density-based algorithms like
DBSCAN, yielding the best anomaly separation at higher
computational cost, making it suitable for forensic analysis
rather than real-time monitoring.
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7.3 Implications for Domain Name System security

Anomaly Detection: DBSCAN’s noise points
correspond to suspicious queries (e.g., DDoS probes,
C2 traffic), enabling unsupervised alerting.

Behavioral Overlap: GMM identifies blended threats
where malicious activity mimics normal traffic, such as
slow exfiltration attacks.

Hybrid Recommendation: A layered approach using K-
means/Hierarchical  for traffic  profiling and
DBSCAN/GMM for deep anomaly analysis can
balance detection breadth and depth, enhancing
adaptive DNS security systems.

8. CONCLUSIONS

This study has systematically evaluated four clustering
algorithms: K-means, DBSCAN, Hierarchical Clustering, and
GMM, for DNS anomaly detection across raw, PCA-reduced,
and t-SNE-reduced data. Our results demonstrate that
clustering performance is highly dependent on data
representation, with t-SNE significantly enhancing anomaly
separation for density-based methods like DBSCAN. K-means
and Hierarchical Clustering proved effective for well-
separated traffic patterns, while DBSCAN and GMM offered
advantages for detecting irregular and overlapping threats,
respectively.

The findings suggest that no single algorithm is universally
optimal for DNS security. A hybrid, representation-aware
approach, combining methods based on traffic characteristics
and preprocessing strategy, could improve detection
robustness. However, real-world deployment faces challenges,
including the computational cost of t-SNE and GMM,
sensitivity to parameter tuning, and the static nature of the
dataset used.

Future work should explore incremental clustering for
streaming DNS data, ensemble methods to leverage multiple
algorithmic perspectives, and integration with threat
intelligence for validation. Further investigation into
lightweight dimensionality reduction techniques and real-time
applicability will be essential for operational deployment.
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