
Adaptive Clustering Approaches for Domain Name System Anomaly Detection: 

Comparative Performance Analysis 

Khaoula Radi1* , Mohamed Moughit2

1 Laboratory of Science and Technology for Engineers (LASTI), National School of Applied Sciences (ENSA), Sultan Moulay 

Slimane University, Khouribga 25000, Morocco 
2 Artificial Intelligence Mechanical and Civil Engineering Laboratory (AIMCE), National Higher School of Arts and Crafts 

(ENSAM), Hassan II University (UH2C), Casablanca 20670, Morocco 

Corresponding Author Email: khaoularadi102@gmail.com 

Copyright: ©2026 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.151113 ABSTRACT 

Received: 22 October 2025 

Revised: 23 November 2025 

Accepted: 26 November 2025 

Available online: 30 November 2025 

The Domain Name System (DNS) is exploited for sophisticated threats like botnet control, 

evading signature-based detection. This study evaluates four unsupervised clustering 

algorithms: K-means, DBSCAN, Hierarchical Clustering, and Gaussian Mixture Models 

(GMM), on 100,001 DNS queries with 84 features. Parameters were optimized via 

GridSearchCV, with comparisons across raw data, principal component analysis (PCA), 

and t-distributed Stochastic Neighbor Embedding (t-SNE). Results show dimensionality 

reduction is critical: raw data yielded poor separation (Davies-Bouldin Index (DB Index) 

up to 2.94), while t-SNE enabled DBSCAN to achieve the best cluster separation (DB 

Index = 1.29). K-means and Hierarchical Clustering showed strong agreement (96% 

similarity on PCA data), whereas GMM effectively modeled overlapping stealthy attack 

behaviors. Cross-algorithm similarity varied dramatically (K-means vs. GMM: 14-28%), 

highlighting that consensus depends heavily on data representation. These findings 

demonstrate performance is highly representation-dependent, providing empirical support 

for hybrid DNS security systems that select algorithms based on threat characteristics and 

preprocessing strategy. Real-time deployment faces computational constraints, 

motivating future work in optimized implementations. 
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1. INTRODUCTION

In today’s interconnected world, Domain Name System 

(DNS) is fundamental to how we access the internet, 

translating easy-to-remember domain names into IP addresses. 

It enables users to locate resources efficiently. However, this 

essential service has also become a target for cybercriminals, 

who use DNS for various malicious activities, from botnet 

command-and-control to covert data exfiltration. Traditional 

defense mechanisms, which often rely on predefined 

signatures, struggle to detect these increasingly sophisticated 

and evolving threats. Consequently, there is growing interest 

in applying clustering techniques to DNS data: by analyzing 

patterns in an unsupervised manner, clustering can help us 

catch unusual activity that we might otherwise miss. 

Previous research has taken a closer look at how different 

clustering algorithms perform in the context of DNS analysis 

[1], but often with a focus on single methods or limited 

comparisons. For example, prior research has demonstrated 

that K-means works well for identifying distinct, well-defined 

clusters, while others have highlighted the advantages of 

DBSCAN for capturing more irregular, complex patterns. 

Meanwhile, hierarchical clustering and Gaussian Mixture 

Models (GMM) also have their advocates, each bringing 

unique strengths to the table. However, we still lack a 

thorough, side-by-side comparison of these methods to 

evaluate their performance under similar conditions. 

In this study, we have gone beyond single-method 

evaluations. We have applied K-means, DBSCAN, 

Hierarchical Clustering, and GMM to a dataset of 100,001 

DNS query records, each with 84 features ranging from IP 

addresses and timestamps to protocol types and DNS 

responses. These features were carefully preprocessed to make 

them usable for clustering, involving steps like encoding 

categorical variables, balancing classes with Synthetic 

Minority Over-sampling Technique (SMOTE), engineering 

new features, and standardizing the data for consistency. 

We also employed two dimensionality reduction 

techniques: principal component analysis (PCA) and t-

distributed Stochastic Neighbor Embedding (t-SNE), to see 

how they might affect our results. PCA helps capture the 

overall variance in the data [2], while t-SNE focuses on local 

relationships, which can be especially useful for algorithms 

like DBSCAN that thrive on density-based distinctions. 

This paper aims to address the following key questions: 

1. How well do different clustering algorithms detect

unusual patterns in DNS data, and how do they

compare when evaluated using metrics like the

Silhouette Score, DB Index, and similarity measures?

2. What insights can be gained regarding the unique
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strengths of each clustering method by comparing them 

directly on both PCA and t-SNE-reduced data?  

3. What does this comparison tell us about the potential 

for using a combination of clustering algorithms to 

improve DNS-based anomaly detection?  

This work makes the following key contributions to DNS 

anomaly detection: 

A Systematic Comparative Framework with Cross-

Algorithm Similarity Analysis: We provide the first side-by-

side evaluation of four fundamentally different clustering 

algorithms (K-means, DBSCAN, Hierarchical Clustering, and 

GMM) on real-world DNS log data. Unlike previous studies 

that evaluate algorithms in isolation, we directly compare 

clustering results using similarity metrics (Adjusted Rand 

Index (ARI)) to quantify agreement and divergence between 

methods across different data representations. 

Dimensionality Reduction Analysis for DNS: We 

systematically analyze how both linear PCA and non-linear t-

SNE dimensionality reduction fundamentally alter clustering 

performance for DNS security applications. Our analysis 

includes a three-way comparison: raw 84-dimensional data vs. 

PCA-reduced vs. t-SNE-reduced representations. 

DNS-Specific Performance Profiles with Similarity 

Insights: We develop comprehensive algorithm profiles that 

not only measure individual performance but also analyze 

pairwise similarities, revealing that K-means and Hierarchical 

Clustering show 96% agreement on PCA data while diverging 

significantly with other methods, insights critical for ensemble 

design. 

Empirical Foundation for Representation-Aware Detection: 

Our findings demonstrate that clustering performance and 

algorithm agreement are highly dependent on data 

representation, providing the empirical basis for designing 

future hybrid DNS security systems that leverage multiple 

clustering perspectives. 

In the end, our findings provide insights into how these 

algorithms can be leveraged for better DNS security. Our 

findings suggest that there is no one-size-fits-all solution. K-

means and Hierarchical Clustering perform well when clusters 

are clearly separated, but DBSCAN and GMM offer unique 

advantages for detecting anomalies and handling overlapping 

data. By understanding the relative strengths and limitations of 

these methods, we can better equip cybersecurity systems to 

spot DNS-based threats before they escalate. 

The remainder of this paper is organized as follows. We 

start with Section 2, Methodology, where we provide 

foundational definitions and theoretical insights into the 

methods used in this study, such as categorical encoding, 

dimensionality reduction, and clustering. This section lays the 

groundwork for understanding the techniques applied later in 

the analysis. 

Next, Section 3 focuses on the Proposed Method, detailing 

the stages of our analytical framework. This section outlines 

how DNS data is collected and preprocessed, describes the 

dimensionality reduction techniques like PCA and t-SNE, and 

introduces the clustering algorithms we used. Each step is 

designed to enhance our approach to anomaly detection within 

DNS traffic. 

In Section 4, we discuss the Experimental Setup, which 

includes a deep dive into the DNS log dataset, its attributes, 

and the comprehensive preprocessing steps we employed. We 

describe how the data was cleaned, balanced using SMOTE, 

and transformed to prepare it for clustering analysis. 

Finally, Section 5 deals with the Results and Analysis. Here, 

we compare the performance of K-means, DBSCAN, 

Hierarchical Clustering, and GMM, using evaluation metrics 

like the Silhouette Score and DB Index. We interpret the 

clustering results in the context of DNS traffic, assessing each 

algorithm’s ability to capture patterns and detect anomalies. 

 

 

2. RELATED WORKS 
 

Bilge et al. [3] proposed a system for detecting botnet 

command and control (C2) servers through behavioral analysis 

of DNS traffic. By correlating domain resolution behaviors 

with temporal patterns, they achieved over 90% accuracy in 

identifying malicious domains. Their work complements our 

study by emphasizing the importance of DNS patterns in 

detecting anomalies, although their focus was on supervised 

techniques, while ours employs unsupervised clustering. 

Antonakakis et al. [4] introduced a system for identifying 

malicious domains using DNS traffic features from 

authoritative name servers. With a precision rate of 98%, their 

work highlighted the potential of DNS-based malware 

detection. While their methodology relied heavily on domain 

reputation and supervised learning, our approach broadens the 

scope by utilizing unsupervised clustering for a wider range of 

anomalies. 

Kumari et al. [5] applied K-means clustering to network 

traffic data to detect anomalies by identifying outliers in 

clustered data. Their work focuses on clustering based on 

statistical attributes of network traffic to group normal and 

anomalous traffic effectively. Their results demonstrate that 

K-means can effectively partition data into distinct clusters, 

identifying outliers that indicate anomalies in network 

behavior. While their study demonstrates the effectiveness of 

K-means clustering for detection, our study builds upon this 

by investigating multiple clustering algorithms to address a 

wider range of DNS-based anomalies. 

Liu et al. [6] proposed a hierarchical clustering method 

designed to dynamically detect anomalies in cross-domain 

network data. The approach adjusts cluster granularity 

adaptively to ensure highly sensitive anomaly detection in 

imbalanced datasets. Their results highlight the method's 

effectiveness in separating traffic anomalies from normal 

patterns, with robustness against initial parameter selection 

issues. Our study aligns with this work in leveraging 

hierarchical clustering but differs in focusing exclusively on 

DNS traffic anomalies.  

Ichise et al. [7] investigated machine learning-based 

detection and mitigation of anomalous DNS traffic. The 

authors analyze DNS-specific attacks such as botnet 

command-and-control and propose methods for their timely 

identification and mitigation. The study demonstrates the 

efficacy of machine learning for managing DNS anomalies, 

highlighting its potential in reducing false negatives in security 

operations. While this study focuses on supervised machine 

learning for anomaly detection, our research contrasts by using 

unsupervised clustering, enabling broader detection of 

unknown patterns without requiring labeled data. 

Additionally, we evaluate the relative performance of different 

clustering methods to optimize DNS anomaly detection 

comprehensively. 

While the mentioned studies demonstrate significant 

advancements in DNS security, they predominantly rely on 

supervised learning or focus on specific threat types such as 

botnets. In contrast, our work introduces a fully unsupervised 
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framework that leverages multiple clustering algorithms to 

detect a broader spectrum of DNS anomalies without requiring 

labeled data. Unlike supervised approaches, which depend on 

known attack signatures and are thus limited to detecting 

previously seen threats, our method can identify novel and 

evolving attack patterns through pattern discovery in 

unlabeled DNS traffic. Furthermore, while prior clustering-

based studies often evaluate algorithms in isolation, our 

framework incorporates cross-algorithm similarity analysis 

and evaluates the impact of dimensionality reduction, 

providing a more holistic view of algorithm behavior and 

representation sensitivity. This enables the design of adaptive, 

hybrid detection systems that can dynamically select 

algorithms based on data characteristics, a contribution not 

addressed in existing literature. 
 

 

3. MATERIALS AND METHODS 

 
3.1 Categorical encoding 
 

Categorical features are converted to numeric values using 

Label Encoding, which assigns a unique integer to each 

category. For nominal variables, One-Hot Encoding was 

considered to avoid imposing unintended ordinal relationships 

[8]. 

 

3.2 Synthetic Minority Over-sampling Technique  

 

SMOTE was applied to address class imbalance by 

generating synthetic samples for minority classes. New 

samples are created by interpolating between similar 

instances, preserving data distribution and reducing overfitting 

[9]. 

 

3.3 Standardization 

 

Features were standardized to a mean of zero and a standard 

deviation of one to ensure equal contribution in distance-based 

clustering algorithms, such as K-means and GMM [10]. 

 

3.4 Dimensionality reduction 

 

PCA reduces dimensionality by projecting data onto 

orthogonal axes of maximum variance [11]. 

T-SNE preserves local data structures by minimizing 

Kullback-Leibler divergence between high- and low-

dimensional similarity distributions [12]. Both methods were 

evaluated to assess their impact on clustering performance. 

 

3.5 Clustering algorithms 

 

K-means partitions data into k spherical clusters by 

minimizing within-cluster variance [13, 14]. It is efficient but 

sensitive to centroid initialization. 

DBSCAN identifies clusters of arbitrary shape based on 

density, classifying low-density points as noise [15]. 

Hierarchical Clustering builds a tree of clusters using 

agglomerative linkage, suitable for nested structures [16]. 

GMM perform soft clustering by fitting multiple Gaussian 

distributions, accommodating overlapping clusters [17]. 

 

3.6 Evaluation metrics 

 

Silhouette Score measures cluster cohesion and separation, 

ranging from -1 to 1 [18]. 

DB Index quantifies the average similarity between clusters, 

with lower values indicating better separation [19]. 

Adjusted Rand Index (ARI) was used to assess similarity 

between clustering results across algorithms. 

 

3.7 Innovative aspects of our framework 

 

Unlike prior studies that evaluate clustering methods in 

isolation, our work introduces cross-algorithm similarity 

analysis using ARI. We systematically compare performance 

across three data representations: raw (84D), PCA-reduced, 

and t-SNE-reduced. This multi-perspective evaluation 

provides novel insights into how preprocessing influences 

DNS anomaly detection and informs hybrid security system 

design. 

 

3.8 Parameter tuning and implementation details 

 

For reproducibility, we detail the specific parameters used 

for each algorithm. To ensure optimal performance, we 

employed systematic hyperparameter tuning using 

GridSearchCV where applicable, with 5-fold cross-validation 

and silhouette score as the primary evaluation metric. 

Dimensionality Reduction: 

PCA was configured with n_components = 0.95 to retain 

95% variance, while for 2D visualization we used 

n_components = 2. t-SNE parameters were set to standard 

values: perplexity = 30, learning_rate = 200, n_iter = 1000, 

with Euclidean distance. The t-SNE perplexity was validated 

through a limited search over values [15, 30, 50], with 

perplexity = 30 yielding the most stable embeddings as 

measured by trustworthiness score. 

Clustering Algorithms: 

• K-means: The optimal number of clusters was 

determined using the Elbow Method, plotting the 

within-cluster sum of squares (WCSS) against potential 

k values in the range [4, 6, 8, 10, 12, 15]. The "elbow 

point" occurred at k = 8, indicating diminishing returns 

in variance reduction beyond this point. This was 

validated through GridSearchCV over the same range, 

with k = 8 consistently maximizing the average 

silhouette score. We used init = 'k-means++' and 

max_iter = 300. 

• DBSCAN: Parameters were optimized through a grid 

search over eps values [0.3, 0.5, 0.7, 1.0] and 

min_samples values [5, 10, 15]. The combination eps = 

0.5 and min_samples = 10 yielded the highest 

silhouette score while maintaining reasonable cluster 

discovery. 

• Hierarchical Clustering: We used Agglomerative 

clustering with Ward linkage and Euclidean affinity. 

GridSearchCV was applied over n_clusters [4, 6, 8, 10, 

12] and linkage types ['ward', 'complete', 'average'], 

with n_clusters = 8 and linkage = 'ward' performing 

best. 

• GMM: A comprehensive grid search was conducted 

over n_components [4, 6, 8, 10, 12] and 

covariance_type ['spherical', 'tied', 'diag', 'full']. The 

optimal configuration was n_components = 8 with 

covariance_type = 'full', maximizing the Bayesian 

Information Criterion (BIC). 

Evaluation Framework for GridSearchCV: 

For all grid searches, we used 5-fold cross-validation with 
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silhouette score as the primary evaluation metric. For 

algorithms requiring stability assessment (particularly GMM), 

we also considered the BIC to balance model fit and 

complexity. Random seeds were fixed (random_state = 42) 

throughout to ensure reproducibility. 

Final Evaluation Metrics: 

Cluster similarity between algorithm pairs was measured 

using the ARI. Final clustering quality was assessed using both 

the Silhouette Score and DB Index, both computed with 

Euclidean distance on the standardized feature space. 

All implementations used scikit-learn (v1.3+) with 

consistent random seeding to ensure reproducible optimization 

and evaluation. 

 

 

4. PROPOSED METHOD 

 

The proposed method, as illustrated in Figure 1, aims to 

effectively analyze DNS log data for anomaly detection and 

cybersecurity insights. This method is divided into four main 

stages to prepare the data and enhance clustering effectiveness. 

 

 
 

Figure 1. Proposed method workflow for Domain Name 

System (DNS) log analysis and anomaly detection 

 

The proposed workflow comprises the following stages: 

1. Data Collection and Preprocessing: The DNS log 

dataset, comprising 100,001 records and 84 attributes, 

is initially cleaned to remove noise and handle missing 

values. Categorical variables are encoded into 

numerical formats, and SMOTE is applied to address 

any class imbalances, especially for response codes 

linked to potential threats. Feature engineering further 

refines the dataset, while standardization ensures 

uniformity across numerical attributes.  

2. Dimensionality Reduction: To facilitate clustering, 

PCA and t-SNE are employed. PCA maximizes 

variance and captures global data structures, while t-

SNE preserves local neighborhood structures, which is 

critical for density-based clustering methods used in 

anomaly detection. 

3. Clustering Techniques: Four clustering algorithms 

are applied to identify patterns in the preprocessed data:  

• K-means: effective for identifying well-separated 

clusters.  

• DBSCAN: Effective for detecting anomalies and 

handling noise in irregular clusters.  

• Hierarchical Clustering: Useful for uncovering 

nested and hierarchical data structures.  

• GMM: Provides probabilistic clustering, capturing 

overlapping clusters that can indicate transitional 

DNS behaviors. 

4. Evaluation and Anomaly Detection: The clustering 

results are evaluated using metrics like the Silhouette 

Score and DB Index. DBSCAN’s ability to identify 

outliers also aids in isolating anomalous DNS 

activities, providing valuable insights for cybersecurity 

applications.  

This approach provides a comprehensive framework for 

analyzing DNS traffic data, leveraging the strengths of 

multiple clustering methods to reveal hidden patterns and 

potential threats. Each stage in the process contributes to a 

robust analysis that supports improved threat detection and 

understanding of DNS query behaviors. 

 

 

5. EXPERIMENTAL SETUP 

 

5.1 Dataset overview 

 

The DNS log dataset utilized in this study was sourced from 

a cybersecurity firm specializing in network traffic analysis 

and threat detection. It contains 100,001 records and consists 

of 84 attributes associated with DNS query activities, 

capturing a variety of data points that are crucial for 

identifying and analyzing potential security threats within 

network traffic [20]. The attributes encompass both 

categorical and numerical data, including:  

• Timestamp: The precise date and time of each DNS 

query. This attribute is essential for identifying 

temporal patterns and trends in query activity, such as 

burst patterns during specific times of the day, which 

may suggest coordinated attacks or anomalies.  

• Source IP Address: Represents the IP address from 

which each DNS query originates. This attribute is 

critical for tracing back the source of traffic, identifying 

potential attackers, and detecting unusual query 

volumes from a single IP that may indicate malicious 

scanning or botnet activity.  

• Destination IP Address: Provides the IP address of the 

DNS server that was queried. By examining the 

destination addresses, one can detect unusual patterns 

such as repeated queries to specific domains associated 

with malicious infrastructure or uncommon DNS 

servers outside of normal operating regions.  

• Protocol Type: Indicates the protocol (typically TCP 

or UDP) used to send the DNS query. DNS over TCP 

is less common and is often associated with larger 

query payloads or more secure transactions, whereas 

UDP is the standard protocol for regular DNS queries. 

This distinction helps in identifying non-standard DNS 

usage, which can be indicative of tunneling attacks. 
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• Query Type: Specifies the type of DNS record 

requested, such as A (IPv4 address), AAAA (IPv6 

address), MX(mail exchange), or TXT (text records). 

Certain query types may be linked to specific attack 

vectors; for instance, TXT record requests may suggest 

attempts to exploit DNS as a covert channel for data 

exfiltration.  

• Response Code: Captures the DNS response code for 

each query, such as NOERROR (successful query), 

NXDOMAIN (non-existent domain), and SERVFAIL 

(server failure). High frequencies of NXDOMAIN 

responses may suggest reconnaissance activities or 

phishing attempts where attackers probe for inactive or 

misspelled domains.  

• DNS Answer: Contains the response data provided by 

the DNS server, which could include IP addresses, 

canonical names, or other relevant details. Analysis of 

DNS answers can reveal information about the queried 

domains, including those that may be part of known 

malicious networks or flagged in threat intelligence 

databases. 

 

5.2 Preprocessing 

 

Preprocessing involved multiple steps to ensure the dataset 

was clean, consistent, and ready for analysis. Key 

preprocessing steps included:  

• Data Cleaning: Missing Values: The dataset was 

examined for missing values, which were imputed 

using mean imputation for numerical data and mode 

imputation for categorical data where necessary. In 

cases where missing data points were significant, entire 

records were excluded from the analysis to maintain 

data integrity. Noise Reduction: Irrelevant or redundant 

attributes, such as administrative metadata, were 

removed to streamline the dataset. This step focused on 

retaining only those fields that contribute to 

understanding DNS query behavior.  

• Encoding Categorical Data: For categorical features 

like ’protocol’, ’query type’, and ’response code’, 

scikit-learn’s LabelEncoder was used to convert these 

into numerical values. This encoding transformed non-

numeric fields into integer representations that 

clustering algorithms could process efficiently.  

• Handling Imbalanced Data: Preliminary analysis 

revealed that certain response codes appeared 

disproportionately compared to others. To mitigate 

potential biases, SMOTE is applied to create a balanced 

dataset, especially for response codes indicative of 

potentially malicious queries.  

• Feature Engineering: New features were derived 

from existing attributes to enhance the dataset's 

descriptive power. For instance, query duration was 

calculated by measuring the difference between request 

and response timestamps for queries involving multiple 

records. Additionally, source IP query frequency was 

included to identify repeated queries from specific IP 

addresses, often a hallmark of automated or malicious 

behavior.  

• Standardization: All numerical features are 

standardized using scikit-learn’s StandardScaler to 

ensure a mean of zero and a standard deviation of one. 

Standardization mitigates the impact of feature scale 

differences, enabling the algorithms to focus on feature 

relationships without scale bias.  

• Dimensionality Reduction Preparation: To prepare 

for dimensionality reduction, the dataset was split into 

subsets tailored for PCA and t-SNE analysis. For PCA, 

a more extensive subset retaining the majority of 

variance was selected, while t-SNE was applied to a 

subset optimized for local neighborhood structure. 

By applying these preprocessing techniques, the dataset was 

transformed into a structured, analyzable format that enabled 

effective application of clustering methods. The detailed 

preprocessing steps ensured the dataset’s integrity and 

enhanced the accuracy of subsequent analyses, which focused 

on uncovering hidden patterns in DNS queries linked to 

cybersecurity threats. 

 

 

6. RESULTS AND ANALYSIS 

 

6.1 Comparative performance of clustering algorithms 

 

6.1.1 K-means vs. DBSCAN 

K-means and DBSCAN showed moderate similarity (57–

65% ARI), reflecting their different clustering philosophies. 

K-means achieved higher Silhouette Scores (0.68 PCA, 0.72 

t-SNE), indicating well-separated clusters suitable for clear 

traffic patterns. DBSCAN yielded lower Silhouette Scores 

(0.56 PCA, 0.61 t-SNE) due to noise inclusion, but its superior 

DB Index (1.29 with t-SNE) confirms effective separation of 

irregular clusters, highlighting its utility for anomaly detection 

in noisy DNS traffic. 

 

6.1.2 K-means vs. Hierarchical Clustering 

K-means and Hierarchical Clustering showed strong 

agreement (96% ARI with PCA, 93% with t-SNE), 

demonstrating consistent detection of well-defined DNS 

traffic patterns. Hierarchical Clustering achieved marginally 

higher Silhouette Scores (0.74 PCA, 0.76 t-SNE) and lower 

DBI values (1.32 PCA, 1.21 t-SNE), confirming a slight 

advantage in producing cohesive, well-separated clusters. 

 

6.1.3 K-means vs. Gaussian Mixture Models 

The low similarity between K-means and GMM (14–28% 

ARI) reflects their fundamentally different approaches: hard 

vs. soft clustering. GMM’s lower Silhouette Scores (0.51 

PCA, 0.58 t-SNE) and higher DBI values (1.85 PCA, 1.67 t-

SNE) indicate their strength in modeling overlapping traffic 

behaviors, relevant for stealthy attacks that blend with normal 

queries. 

 

6.1.4 DBSCAN vs. Hierarchical Clustering 

Moderate similarity (51–65% ARI) was observed. 

Hierarchical Clustering produced higher Silhouette Scores, 

favoring structured traffic segmentation, while DBSCAN’s 

lower DBI with t-SNE (1.29) underscores its capability to 

isolate irregular, low-density anomalies. 

 

6.1.5 Hierarchical Clustering vs. Gaussian Mixture Models  

Low similarity (23–28% ARI) confirms their divergent 

clustering objectives. Hierarchical Clustering excels in 

creating distinct clusters for clear traffic categorization, 

whereas GMM is suited for probabilistic modeling of blended 

attack patterns.
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6.2 Individual algorithm performance profiles 

 

To further illustrate the unique characteristics and practical 

implications of each clustering method for DNS security, we 

present individual performance profiles in Table 1. These 

profiles include key operational metrics such as cluster count, 

noise detection rate, and computational time, evaluated under 

three data representations: raw (no reduction), PCA-reduced, 

and t-SNE-reduced data. 

 

Table 1. Individual performance profiles of clustering algorithms on the Domain Name System (DNS) data 

 

Algorithm Data Representation Clusters Noise Points Silhouette Score DB Index 
Avg. Computation 

Time (s) 

K-means 

Raw (84D) 8 – 0.52 2.15 8.1 

PCA (2D) 8 – 0.68 1.58 12.4 

t-SNE (2D) 8 – 0.72 1.45 14.1 

DBSCAN 

Raw (84D) 3 22.5% 0.31 2.88 15.3 

PCA (2D) 5 12.3% 0.56 1.42 18.7 

t-SNE (2D) 6 8.1% 0.61 1.29 22.3 

Hierarchical 

Raw (84D) 8 – 0.49 2.03 124.5 

PCA (2D) 8 – 0.74 1.32 45.2 

t-SNE (2D) 8 – 0.76 1.21 48.9 

GMM 

Raw (84D) 8 – 0.38 2.94 89.7 

PCA (2D) 8 – 0.51 1.85 36.5 

t-SNE (2D) 8 – 0.58 1.67 39.8 
Note: "–" indicates the algorithm does not explicitly label noise. "Raw (84D)" refers to clustering on the original 84-dimensional standardized data without 

dimensionality reduction. Computational time includes clustering only (dimensionality reduction time excluded for fair comparison). Noise points for DBSCAN 

represent queries flagged as anomalies. PCA: principal component analysis; t-SNE: t-distributed Stochastic Neighbor Embedding; GMM: Gaussian 

Mixture Models. 

 

Interpretation of Individual Profiles: 

Raw Data Performance (Baseline): Clustering directly on 

the 84-dimensional standardized data yielded the lowest 

Silhouette Scores and highest Davies-Bouldin indices across 

all algorithms, indicating poor cluster separation in high-

dimensional space. DBSCAN on raw data flagged 22.5% of 

queries as noise, an unrealistically high anomaly rate 

suggesting the "curse of dimensionality" severely affects 

density estimation. Hierarchical clustering exhibited the 

highest computational time (124.5 seconds), while K-means 

remained the fastest. 

Dimensionality Reduction Impact: Both PCA and t-SNE 

significantly improved clustering quality. PCA provided the 

most balanced improvement, enhancing Silhouette Scores by 

0.16–0.25 across algorithms while significantly reducing 

computational time for Hierarchical and GMM. t-SNE 

delivered the best final metrics, particularly for DBSCAN (DB 

Index: 1.29) and Hierarchical clustering (DB Index: 1.21), by 

preserving local structures essential for DNS anomaly 

detection. 

K-means: Showed consistent 8-cluster discovery across all 

representations, with t-SNE providing the best cohesion 

(Silhouette: 0.72). The algorithm proved robust to 

dimensionality, with the smallest performance gap between 

raw and reduced data. 

DBSCAN: Demonstrated the most dramatic transformation 

with dimensionality reduction. On raw data, it over-detected 

noise (22.5%) and found only 3 clusters, but t-SNE enabled 

discovery of 6 meaningful clusters with only 8.1% noise, a 

realistic anomaly rate for DNS traffic. 

Hierarchical Clustering: Benefited enormously from 

dimensionality reduction, with computation time dropping by 

~65% and cluster quality significantly improving. The stable 

8-cluster output across conditions suggests it captures 

fundamental DNS traffic categories. 

GMM: Similarly showed major improvement with 

reduction, particularly in managing overlapping clusters. The 

probabilistic model struggled with high-dimensional data 

(Silhouette: 0.38) but became effective at identifying blended 

behaviors with t-SNE (Silhouette: 0.58). 

Security Implications: These profiles confirm that 

dimensionality reduction is not merely optional but essential 

for effective DNS anomaly detection. PCA offers a practical 

balance for real-time systems, while t-SNE provides superior 

detection at higher computational cost. The choice depends on 

operational constraints: PCA for monitoring with resource 

limits, t-SNE for forensic analysis where detection accuracy is 

paramount. 

 

6.3 Visualizations and interpretations 

 

The following figures illustrate the clustering outcomes for 

each algorithm applied to PCA-reduced and t-SNE-reduced 

DNS data. Color coding enhances visualization clarity, with 

each distinct color representing a specific cluster identified by 

the algorithm; thus, data points sharing the same color are 

grouped based on similarity. These visualizations offer 

insights into how each algorithm partitions DNS traffic, 

highlighting their respective capabilities in addressing diverse 

clustering challenges. 

 

 
(a) Results on principal component analysis (PCA) 
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(b) Results on t-distributed stochastic neighbor embedding (t-

SNE) 

 

Figure 2. K-means clustering representations 

 

 
(a) Results on principal component analysis (PCA) 

 

 
(b) Results on t-distributed stochastic neighbor embedding (t-

SNE) 

 

Figure 3. DBSCAN clustering representations 

 

Figure 2 demonstrates that K-means produces spherical, 

well-separated clusters, indicating its suitability for 

categorizing distinct traffic patterns. 

 
(a) Results on principal component analysis (PCA) 

 

 
(b) Results on t-distributed stochastic neighbor embedding (t-

SNE) 

 

Figure 4. Hierarchical clustering representations 

 

Figure 3 shows that DBSCAN effectively identifies clusters 

of varying densities while isolating noise points (depicted in 

black). This capability is particularly valuable for detecting 

DNS anomalies, as such outliers may represent suspicious or 

malicious activity. The figure further illustrates DBSCAN's 

adaptability to nonlinear structures, with t-SNE preserving 

local density relationships essential for this algorithm. 

 

 
(a) Results on principal component analysis (PCA) 
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(b) Results on t-distributed stochastic neighbor embedding (t-

SNE) 

 

Figure 5. GMM Clustering representations 

 

Figure 4 produces a nested structure that’s beneficial for 

visualizing hierarchical relationships in DNS data. This 

method allows for multi-level analysis, making it easier to 

explore sub-clusters that may correspond to different types of 

traffic or threat levels. 

Figure 5 shows that GMM clustering captures overlapping 

clusters, which suits DNS data that includes mixed behaviors. 

The probabilistic nature of GMM helps in recognizing DNS 

traffic where benign and suspicious queries may blend 

together, which is essential for detecting complex attack 

patterns. 

These visualizations highlight the unique clustering 

behaviors of each algorithm. K-means and Hierarchical 

Clustering work well for well-defined groups, whereas 

DBSCAN and GMM reveal insights into DNS anomalies and 

overlapping patterns, respectively. The choice of algorithm 

depends on the specific characteristics of the DNS traffic being 

analyzed. 

 

6.4 Supplementary performance metrics 

 

Table 2 provides a summary of how each algorithm 

performed across different metrics. 

 

Table 2. Summary of key metrics 

 
Compared Clustering 

Algorithms 

PCA  

Similarity (%) 

t-SNE 

Similarity (%)  

Silhouette 

PCA 

Silhouette  

t-SNE 

DB Index  

PCA 

DB Index  

t-SNE 

K-means vs. DBSCAN 57.46 64.61 0.68 0.72 1.58 1.45 

K-means vs. Hierarchical 95.7 92.59 0.74 0.76 1.32 1.21 

K-means vs. GMM 14.37 27.94 0.51 0.58 1.85 1.67 

DBSCAN vs. 

Hierarchical 
51.38 64.7 0.56 0.61 1.42 1.29 

Note: PCA: principal component analysis; t-SNE: t-distributed Stochastic Neighbor Embedding; GMM: Gaussian Mixture Models. 

 

 
 

Figure 6. Algorithm similarity on principal component 

analysis (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE) 

 

To complement these results, the following figures illustrate 

these metrics across PCA and t-SNE dimensions:  

Figure 6 shows how similarly the algorithms cluster the 

data. High similarity scores, such as those between K-means 

and Hierarchical Clustering, indicate strong agreement in 

identifying well-defined clusters. 

Figure 7 shows the Silhouette Scores measure how well-

separated clusters are. Higher scores for Hierarchical 

Clustering reflect cohesive clusters, whereas GMM’s lower 

scores capture its tendency for overlap. 

Figure 8 shows the DB Index for each algorithm pair under 

PCA and t-SNE representations. A lower DB Index indicates 

better cluster separation. The results demonstrate that t-SNE 

reduction consistently yields superior separation (lower DB 

Index) compared to PCA across all algorithm pairs. Notably, 

the K-means and Hierarchical pair achieved the best 

separation (DB Index = 1.21 with t-SNE), while K-means and 

GMM exhibited the weakest separation (DB Index = 1.85 with 

PCA), consistent with their fundamentally different hard 

versus soft clustering approaches. 

 

 
 

Figure 7. Algorithm silhouette scores on principal 

component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) 

 

6.5 Security implications of clustering results 

 

The observed clustering behaviors provide direct insights 
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for DNS threat detection: 

K-means and Hierarchical Clustering are optimal for 

baseline traffic profiling, where clear separation exists 

between benign and known malicious query patterns (e.g., 

standard lookups vs. known C2 domains). 

 

 
 

Figure 8. Algorithm DB Index on principal component 

analysis (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE) 

 

DBSCAN’s noise detection (8.1% with t-SNE) aligns with 

realistic anomaly rates in operational DNS logs, making it 

suitable for unsupervised alerting without labeled data. Its 

ability to isolate low-density points directly flags suspicious 

activities such as scanning or rare query bursts. 

GMM’s overlapping clusters model stealthy attack 

behaviors where malicious queries blend with legitimate 

traffic, such as low-volume data exfiltration or DNS tunneling. 

t-SNE enhanced DBSCAN achieved the lowest DBI (1.29), 

confirming its strength in isolating irregular threat patterns, 

crucial for targeted threat hunting in high-dimensional DNS 

data. 

These results indicate that no single algorithm suffices for 

all DNS threat types; instead, a representation-aware hybrid 

approach is needed. 

 

 

7. DISCUSSION 

 

7.1 Summary of key findings 

 

Our systematic comparison reveals that clustering 

performance is highly dependent on data representation. 

Dimensionality reduction (especially t-SNE) significantly 

improves cluster separation and anomaly detection. K-means 

and Hierarchical Clustering excel in well-defined traffic 

segmentation, while DBSCAN and GMM offer 

complementary strengths for irregular and overlapping threat 

patterns. 

 

7.2 Impact of dimensionality reduction 

 

PCA provided a computationally efficient representation 

that improved clustering over raw data, but its linearity limited 

detection of complex DNS threats. t-SNE preserved local 

structures essential for density-based algorithms like 

DBSCAN, yielding the best anomaly separation at higher 

computational cost, making it suitable for forensic analysis 

rather than real-time monitoring. 

 

7.3 Implications for Domain Name System security 

 

• Anomaly Detection: DBSCAN’s noise points 

correspond to suspicious queries (e.g., DDoS probes, 

C2 traffic), enabling unsupervised alerting. 

• Behavioral Overlap: GMM identifies blended threats 

where malicious activity mimics normal traffic, such as 

slow exfiltration attacks. 

• Hybrid Recommendation: A layered approach using K-

means/Hierarchical for traffic profiling and 

DBSCAN/GMM for deep anomaly analysis can 

balance detection breadth and depth, enhancing 

adaptive DNS security systems. 

 

 

8. CONCLUSIONS 

 

This study has systematically evaluated four clustering 

algorithms: K-means, DBSCAN, Hierarchical Clustering, and 

GMM, for DNS anomaly detection across raw, PCA-reduced, 

and t-SNE-reduced data. Our results demonstrate that 

clustering performance is highly dependent on data 

representation, with t-SNE significantly enhancing anomaly 

separation for density-based methods like DBSCAN. K-means 

and Hierarchical Clustering proved effective for well-

separated traffic patterns, while DBSCAN and GMM offered 

advantages for detecting irregular and overlapping threats, 

respectively. 

The findings suggest that no single algorithm is universally 

optimal for DNS security. A hybrid, representation-aware 

approach, combining methods based on traffic characteristics 

and preprocessing strategy, could improve detection 

robustness. However, real-world deployment faces challenges, 

including the computational cost of t-SNE and GMM, 

sensitivity to parameter tuning, and the static nature of the 

dataset used. 

Future work should explore incremental clustering for 

streaming DNS data, ensemble methods to leverage multiple 

algorithmic perspectives, and integration with threat 

intelligence for validation. Further investigation into 

lightweight dimensionality reduction techniques and real-time 

applicability will be essential for operational deployment. 
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