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Cloud computing provides significant flexibility and scalability; however, it is still 
susceptible to Distributed Denial of Service (DDoS) attacks, which pose a risk to service 
availability. This research presents an improved mitigation framework that incorporates 
the Knowledge Understanding Assessment Defense (KUAD) method within a private 
cloud environment utilizing OwnCloud. Simulations of Goldeneye-based DDoS attacks 
were conducted, with network performance being monitored through the use of Snort, 
Wireshark, nload, and iPerf. The attack resulted in a significant rise in network load, 
elevating jitter from an average of 0.1561 ms to 0.1519 ms and amplifying packet loss 
from 0.24% to 0.89%. The mitigation phase, which involved blocking attacker IP 
addresses, effectively restored service stability, minimized jitter, and greatly decreased 
packet loss. The results indicate that the KUAD framework facilitates the acquisition of 
forensic evidence while also allowing for prompt recovery through its built-in mitigation 
mechanism. The research presents a practical and adaptive defense model aimed at 
strengthening private cloud resilience in the face of DDoS attacks. 
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1. INTRODUCTION

The development of cloud computing has transformed the
landscape of data storage and processing, providing 
remarkable scalability and cost-effectiveness. This technology 
allows for flexible data storage and access over the internet, 
providing users with the ability to retrieve information 
anytime and from any location. Nonetheless, connectivity 
through networks poses significant obstacles regarding the 
safeguarding of data. While conventional methods for 
encryption and decryption can successfully safeguard data, the 
decryption phase frequently demands significant 
computational power and may present possible security 
weaknesses [1]. At this stage, data is exposed to risks 
including cyberattacks and unauthorized access. To address 
these issues, innovative techniques such as homomorphic 
encryption and secret sharing have been developed as 
promising approaches. These techniques allow for 
computations to occur directly on encrypted data, eliminating 
the necessity for prior decryption and ensuring data 
confidentiality is preserved during processing in the cloud 
computing environment. These innovations signify an 
essential advancement in establishing a secure, efficient, and 
privacy-preserving cloud infrastructure that can effectively 
support contemporary digital ecosystems [2]. Furthermore, 
additional studies have suggested a clear geometric embedding 
inspired by the Coulomb approach to improve analytical 

resilience to local noise while maintaining computational 
efficiency. This method enhances cryptographic techniques by 
stabilizing data representation, which in turn facilitates more 
secure and efficient analysis in intricate cloud-based systems 
[3].  

The advancement of data security approaches has resulted 
in notable progress due to innovations in encryption, 
decryption, and authentication mechanisms. The ongoing 
enhancements have strengthened the core of cloud security 
architecture, facilitated superior safeguarding of sensitive 
data, and created a more robust environment against emerging 
cyber threats [4]. Nonetheless, a primary difficulty in data 
security remains in the utilization of lengthy encryption keys. 
While extended keys can augment security, they 
simultaneously prolong encryption duration and diminish 
overall system performance [5]. Conversely, conventional 
authentication mechanisms, such as password-based systems, 
continue to be susceptible to numerous attack vectors, 
including credential theft and account hijacking. Biometric 
identification methods provide enhanced security through the 
use of physical or behavioral traits, although they possess 
intrinsic limitations. Vulnerabilities to spoofing, diminished 
accuracy due to alterations in users' physical conditions, and 
apprehensions regarding the privacy of biometric data pose 
persistent challenges that must be resolved in the deployment 
of authentication mechanisms within cloud computing 
environments [6]. Practical implementations have shown that 
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the coupling of biometric authentication with ECC encryption 
yields promising results in private cloud computing 
environments. This hybrid paradigm enhances the secrecy and 
integrity of stored data while facilitating more rapid 
encryption and decryption procedures than conventional RSA-
based systems [7]. However, the integration of this method 
into cloud infrastructures requires additional research, 
especially on scalability and data privacy considerations [8].  

Technical issues and cloud computing security also face 
challenges in detecting and preventing attacks [9]. 
Conventional Intrusion Detection and Prevention Systems 
(IDS/IPS) are only effective against known attack patterns, 
making them less capable of identifying zero-day attacks [10, 
11]. Similarly, single-password or unimodal biometric 
authentication methods remain vulnerable to spoofing and 
phishing, highlighting the need for multifactor authentication 
[12]. Furthermore, traditional encryption algorithms are often 
inefficient on resource-constrained devices, making 
lightweight encryption approaches increasingly relevant [13]. 
Emerging technologies such as blockchain and machine 
learning (ML) are being integrated to enhance cloud security, 
although challenges remain in terms of scalability and 
computational complexity [14]. In the context of the Internet 
of Things (IoT), increasingly complex cyber threats have been 
addressed through the integration of ML and Deep Learning 
(DL) within IDS [15]. Therefore, there is an urgent need for 
adaptive and comprehensive cloud security solutions that 
combine multiple approaches [16].  

Cloud computing serves as a fundamental component of 
contemporary information technology (IT) infrastructure; 
however, notable security challenges remain to be resolved 
[17]. The primary vulnerability of cloud computing is its 
susceptibility to Distributed Denial of Service (DDoS) attacks, 
which can disrupt service availability by overwhelming the 
server with excessive traffic [18]. A significant issue in data 
security involves the use of insufficient encryption and 
ineffective key management, which may result in the exposure 
of sensitive information [19]. Risks are generally mitigated 
through encryption methods and access control mechanisms as 
primary strategies [20]. Additionally, the application of attack 
mitigation strategies in Software-Defined Networking (SDN), 
applicable to both cloud and IoT infrastructures, can enhance 
detection and prevention mechanisms [21-23]. Nonetheless, a 
significant gap persists in the integration of AI-based methods 
with adaptive cloud security strategies [24]. A combination of 
behavioral analysis and ML has been proposed as an effective 
solution for detecting insider threats [25, 26]. 

The implementation of complex techniques to enhance 
cloud security presents ongoing challenges, especially 
regarding personal data protection and cybersecurity issues 
[27]. Additionally, energy consumption in the implementation 
of cloud security necessitates careful consideration due to its 
substantial power usage, which is comparable to that of 
supercomputing systems. Research on performance and 
energy efficiency has been carried out utilizing the Exa Mon 
framework, which employs a compositional methodology [28, 
29]. The Improved Bald Eagle Search (IBES) algorithm has 
been proposed for the optimization of cloud resource 
allocation, presenting a more efficient alternative to traditional 
optimization methods [30]. Recent studies point out that 
cybersecurity is essential for protecting cloud systems against 
threats, including data ownership inconsistencies and security 
exploitations [31]. The zero-trust strategy has gained 
significance in risk management, as it effectively mitigates 

unauthorized access and privilege escalation [32]. 
Furthermore, it contributes to shaping positive users. 
Additionally, it plays a role in influencing favorable user 
perceptions of the security level associated with cloud services 
[33]. A promising approach is the application of deep 
reinforcement learning to enhance access control mechanisms 
[34]. User trust in cloud service providers is fundamentally 
influenced by the provider's capacity to manage and safeguard 
sensitive data [35]. The adoption of more secure cloud 
solutions is constrained by several factors, including 
uncertainty, a limited number of competent providers, and 
inadequate risk management capabilities in both public and 
private organizations [36]. Recent studies have emphasized 
the significance of optimization techniques, such as the pre-
copy approach, in cloud container migration, as they can 
decrease service downtime and mitigate security risks during 
migration processes [37]. This study presents a unique 
contribution by applying the Knowledge Understanding 
Assessment Defense (KUAD) framework to a private cloud 
service utilizing OwnCloud to address Goldeneye DDoS 
attacks, an area that has not been thoroughly explored thus far. 
The literature indicates that while many studies have enhanced 
cloud security via encryption schemes, intrusion detection 
systems, and AI-driven models, the majority of approaches are 
confined to either preventive or reactive mechanisms. Limited 
frameworks offer a cohesive lifecycle that integrates attack 
detection, forensic analysis, and active recovery into a single 
workflow. Furthermore, current methodologies frequently 
neglect the feedback dynamics between forensic investigation 
and real-time mitigation. This gap leads to the current study, 
which presents the KUAD framework as a comprehensive 
method that identifies and analyzes DDoS attacks while also 
restoring system functionality through adaptive mitigation. 
This research seeks to fill a methodological gap, contributing 
to both theoretical and practical advancements in cloud 
security resilience. This paper is structured as follows. Section 
2 outlines the research methodology, detailing the KUAD 
framework and its integration into the OwnCloud-based 
private cloud environment. Section 3 presents the 
experimental setup, attack simulation, and analysis results 
related to the Goldeneye DDoS mitigation process. Section 4 
discusses the disposition phase and its significance in 
improving post-attack recovery and system resilience. Section 
5 concludes the paper by summarizing the key findings and 
proposing directions for future research. This research 
introduces a methodological innovation by integrating a 
mitigation and recovery stage within the KUAD framework, 
thereby establishing a continuous feedback loop that connects 
attack detection, forensic validation, and system stabilization. 
Previous studies utilizing the Network Forensic Development 
Life Cycle (NFDLC) or related frameworks reach conclusions 
focused on fact-finding, lacking mechanisms for real-time 
response or service restoration. 

 
 

2. RESEARCH METHOD 
 
Previous research that underlies this research examined the 

creation of a method utilizing the NFDLC, with the Open 
Journal System (OJS) as the subject of investigation, 
specifically targeting a Trojan variant identified as Gacor [38]. 
Early forensic models, especially the NFDLC, prioritize 
systematic approaches for recognizing attack patterns, 
collecting evidence, and verifying digital artifacts. NFDLC, 
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while effective in forensic investigation, concludes with 
evidence analysis and lacks integration of real-time mitigation 
or system recovery. Research utilizing NFDLC, including 
forensic analysis of OJS, has shown effective detection 
capabilities; however, it has not addressed the need for 
mechanisms to stabilize system performance during attacks. 

The second research paper employed the same research 
subject and attack type but utilized a different methodological 
approach, transitioning from NFDLC to the KUAD method. 
This research illustrates that integrating the mitigation phase 
before disposition significantly enhances the field of digital 
forensics. 

In contrast to previous methods that generally concluded 
with fact-finding, KUAD innovatively integrates a system 
recovery phase aimed at restoring the environment to its pre-

attack condition. Figure 1 illustrates that the mitigation phase 
follows the execution stage. The KUAD method [39] 
integrates the execution and implementation phases due to the 
similarity of activities performed in both stages. This research 
presents the KUAD framework, which offers a hybrid 
approach that integrates forensic acquisition, attack validation, 
mitigation, and recovery into a single lifecycle. Integrating a 
dedicated mitigation phase into the forensic workflow enables 
KUAD to establish a closed-loop system that effectively 
analyzes the attack and restores service conditions. This 
innovation addresses the methodological gap in current 
research, which often distinguishes forensic investigation 
from active defense measures. This consolidation simplifies 
the process and enhances the efficiency and effectiveness of 
the digital forensic investigation workflow. 

 

 
 

Figure 1. Proposed method framework design 
 

As illustrated in Figure 1, this research employs OwnCloud, 
configured as private cloud computing, as the primary research 
object. The framework proposed in this research is original, as 
it has not been previously introduced by other scholars in the 
domain of cloud security. The proposed KUAD framework 
demonstrates effectiveness through its systematic integration 
of knowledge understanding, assessment, and defense stages, 
adhering to the principles of the NFDLC. The KUAD method 
has a sequence of processes for handling cyberattacks, as 
follows: 

1. Initiation 
This stage primarily involves conducting an initial risk 

assessment of end devices and intermediary devices 
concerning potential attack faults. This assessment aids in 
decision-making concerning the software and hardware 
utilized, along with their susceptibility to attacks. 

2. Acquisition 
This stage aims to collect data used in the investigation, thus 

requiring several tools in the form of software. With 
established standards applied to the tools used, the evidence 
obtained can be utilized in subsequent processes. 

3. Execution 
The execution stage represents the integration of the 

implementation and operation stages within the NFDLC 
method. At this stage, data is collected to be used as evidence 
of criminal activity. This process also includes documentation 
so that the acquired data can be utilized without having to 
repeat the process from the beginning. In addition, any 
remediation of an attack must be properly documented as a 
form of preparation and anticipation in case a similar attack 
occurs with the same impact or an even higher level of 
damage. 

4. Mitigation 
This stage addresses the effects of attacks resulting in loss 

and damage to the targeted objects. At this stage, various 
techniques for mitigating cyberattacks are employed, 
categorized into repair and recovery methods. 

5. Disposition 
The final stage is disposition, in which the documents that 

have been prepared and created as part of security measures 
and protective actions for the attacked devices are submitted 

to the top management responsible within the relevant 
institution where the devices were attacked and have been 
mitigated. 

The inclusion of the mitigation phase introduces a feedback 
mechanism that shortens the response loop between detection 
and recovery. This dynamic adaptation aligns with control 
theory, where system stability is maintained through 
corrective feedback when anomalies are detected. The 
relationship among traffic load, jitter variation, and packet loss 
can be described mathematically: an increase in attack 
intensity correlates with a nonlinear increase in both the 
variance of packet arrival time (jitter) and the percentage of 
packet loss. The application of the mitigation stage, 
specifically IP blocking, demonstrates the KUAD method's 
effectiveness in reducing deviations towards equilibrium, 
thereby affirming its ability to restore system performance to 
a steady state. Therefore, the proposed framework is 
theoretically justified as a closed-loop system that enhances 
resilience by combining forensic investigation principles with 
adaptive defense control. 

 
 

3. RESULT AND DISCUSSION 
 
This research simulates an attack on an OwnCloud service 

hosted on a server operating Ubuntu Server 22.04 at IP address 
10.10.10.4. The simulated attack is a DDoS executed using the 
Goldeneye tool from a computer located on a different 
network segment than OwnCloud. The simulation aimed to 
replicate a real-world testing scenario and assess the 
effectiveness of the proposed framework in mitigating these 
attacks. During the network forensics stage, the preparation 
phase for method deployment begins with initiation, as 
illustrated by the specifications of the equipment in Figure 2. 

The attack on the OwnCloud service was carried out from a 
computer located on a different network segment connected 
via a MikroTik CCR1016-12G router. The server hosting the 
OwnCloud service and the computer running Wireshark were 
connected to the router within the same network segment, 
utilizing the router’s switch ports to establish a local network. 
More than 1,000 attack attempts were directed toward the 
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server hosting OwnCloud, and the events were recorded by the 
Snort intrusion detection system installed on the test server. 
The attack simulation was executed from an external computer 
outside the 10.10.10.0 network using a Python script named 
GoldenEye.py with the command:python3 GoldenEye.py 
http://8081/OwnCloud/index.php/-w250-s 250. 

 

 
 

Figure 2. Devices used in the research 
 

The attack activity was successfully captured by Snort, 
indicating that the IP address 125.160.99.68 launched an 
attack against 10.10.10.4, utilizing the Goldeneye tool. It 
should be noted that there is a discrepancy between the port 
specified in the simulation command (port 8081) and the port 
recorded in the log; this is recommended to be reverified in the 
test configuration. Snort’s detection capability was enhanced 
through the customization of rules to identify HTTP GET 
flood patterns and the Goldeneye User-Agent signature. These 
custom rules were added to the Snort configuration file, 
allowing the system to automatically recognize the attack 
pattern and record it in the log swiftly and accurately for 
validation and mitigation purposes. 

The rule was specifically designed to detect HTTP GET 
flood-type DDoS attacks targeting the OwnCloud service at IP 
address 10.10.10.4 on port 8081. The detection results from 
Snort were used as acquisition data and subsequently validated 
using Wireshark to confirm the involvement of the attacker’s 
IP address, as illustrated in Figure 3. This research utilized 
Wireshark on a distinct computer within the same network 
segment as the server to monitor both inbound and outbound 
traffic from the cloud server. 

 

 
 

Figure 3. Network traffic captures using Wireshark 
 
The data traffic to and from the server hosting the 

OwnCloud service reflects the communication between cloud 
users and the active server, which was captured using 
Wireshark. The attacks on the research object were identified 
as originating from IP addresses 125.160.99.68 and 
182.4.101.198; both addresses were recorded not only by 
Snort but also detected through Wireshark. The detection data 
were then validated and presented in tabular form, as shown in 
Table 1.  

The Goldeneye attack's impact on the OwnCloud service 
was analyzed using nload, a Command Line Interface (CLI)-
based bandwidth monitoring tool operating on the Linux 
system. The execution phase involved simulating an attack in 
the form of a DDoS aimed at the OwnCloud server. The 
network activity during the attack was analyzed using 
Wireshark and Apache2 log records. 

 
Table 1. Attacker data validation 

 
No. Time and Date Capture from Wireshark Capture from Snort Valid 
1 2025-07-15 00:53:36.875954190 125.160.99.68 125.160.99.68 ✔ 
2 2025-07-15 00:53:36.876311011 125.160.99.68 125.160.99.68 ✔ 
3 2025-07-15 00:53:36.880768949 125.160.99.68 125.160.99.68 ✔ 
4 2025-07-15 00:53:36.888148780 125.160.99.68 125.160.99.68 ✔ 
5 2025-07-15 00:53:36.888243423 125.160.99.68 125.160.99.68 ✔ 
6 2025-07-15 00:53:54.540158025 182.4.101.198 182.4.101.198 ✔ 
7 2025-07-15 00:53:54.540434310 182.4.101.198 182.4.101.198 ✔ 
8 2025-07-15 00:53:54.541075860 182.4.101.198 182.4.101.198 ✔ 
9 2025-07-15 00:53:54.541292005 182.4.101.198 182.4.101.198 ✔ 

10 2025-07-15 00:53:54.541424551 82.4.101.198 82.4.101.198 ✔ 
 

 
 

Figure 4. Graphical display of the server’s load monitoring 
results during the Goldeneye attack 

This analysis sought to identify attack patterns, trace 
attacker IP addresses, and assess the impact on OwnCloud's 
service performance. Through nload, bandwidth usage could 
be monitored in real time, facilitating network issue diagnosis 
and supporting data traffic management. Server performance 
monitoring utilizing nload was performed as part of the attack 
impact analysis, with the results presented in Figure 4. 

Figure 4 illustrates a significant increase in network traffic 
during the attack period. The incoming traffic shows a sharp 
spike compared to normal conditions, while the outgoing 
traffic remains relatively stable. This pattern indicates an 
intensification of external communication toward the target 
server OwnCloud at IP address 10.10.10.4. Traffic 
measurement was performed using iPerf, where the iPerf 
server was executed on the OwnCloud server and the iPerf 
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client on a separate computer that also ran Wireshark. The 
main performance parameter analysed was jitter, representing 
variations in packet arrival times from the expected interval. 
This parameter is essential for preserving service quality in 
latency-sensitive applications, including video conferencing 
and IP-based voice services. Previous studies addressed packet 
delay and jitter issues in heterogeneous wireless networks 
through the Flag-Based Multi-Path Retransmission 
(FBMRTX) approach [40]. This research calculates the jitter 
parameter using Eq. (1), and packet loss is calculated using Eq. 
(2), both referring to the total number of lost packets during 
transmission. These two parameters are essential indicators for 
evaluating network quality, especially for continuous data 
flow applications that require minimal disruption. In the UDP 
test using iPerf, jitter is computed based on the variation in 
delay between consecutive packets, as defined in RFC 3550 
(RTP/RTCP).  

 

𝐽𝐽 = 𝐽𝐽 +
�(𝐷𝐷𝑖𝑖−1,𝑖𝑖�| − 𝐽𝐽

16
 (1) 

 
𝐷𝐷𝑖𝑖−1,𝑖𝑖 = (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) − (𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖−1) (2) 

 
J is the current jitter (Eq. (1)) value (ms), 𝐷𝐷𝑖𝑖−1,𝑖𝑖  is the 

difference in delay variation between two consecutive packets, 
𝑡𝑡𝑖𝑖 is the time the packet is received at the receiver side, and 𝑇𝑇𝑖𝑖  
= the timestamp of the packet when it is sent. In Eq. (2), 𝑡𝑡𝑖𝑖 and 

𝑡𝑡𝑖𝑖−1 denote the actual or observed times at the i-th and (i−1)-
th events, respectively, while 𝑇𝑇𝑖𝑖  and 𝑇𝑇𝑖𝑖−1 represent the 
expected, ideal, or reference times for the same events. The 
term 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 describes the actual time interval between two 
consecutive events, whereas 𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖−1 defines the ideal time 
interval. The resulting value 𝐷𝐷𝑖𝑖−1,𝑖𝑖  quantifies the difference 
between these two intervals, where a value of zero indicates 
perfect alignment, a positive value indicates a delay relative to 
the reference interval, and a negative value indicates an earlier 
occurrence than expected. Along with the calculation of the 
jitter value, which provides insights into the stability of the 
delay between data packets during the Goldeneye attack, a 
comparison was also conducted between the number of 
packets sent and the number of packets received. This 
comparison, known as Loss/Total Datagram, is calculated 
using the following Eq. (3): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(%) =
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
× 100% (3) 

 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the number of packets sent, and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the 

number of packets received. The jitter and Loss/Total 
Datagram values were calculated based on ping data collected 
before and during the Goldeneye attack on the cloud service. 
The results of these calculations are presented in Table 2 for 
further analysis. 

 
Table 2. Results of jitter and loss / total datagram calculations 

 

No. Before the Attack After the Attack 
Jitter Loss / Total Datagram (%) Jitter Loss / Total Datagram (%) 

1 0.1986 0.0020 0.1465 0.0032 
2 0.2638 0.0025 0.1513 0.0055 
3 0.1333 0.0035 0.1013 0.0054 
4 0.1277 0.0058 0.1118 0.0093 
5 0.1715 0 0.0979 0.0134 
6 0.1006 0.0034 0.2652 0.0191 
7 0.1159 0.0041 0.1277 0.0100 
8 0.1715 0.0019 0.1048 0.0019 
9 0.2229 0.0027 0.0951 0 

10 0.1548 0.0002 0.2826 0 
11 0.1368 0.0031 0.0888 0 
12 0.1236 0.0031 0.1347 0.0001 
13 0.0902 0.0034 0.1027 0 
14 0.0944 0.0022 0.3097 0.0038 
15 0.2062 0.0015 0.1715 0.0098 
16 0.1854 0 0.13819 0.0075 

 
Table 2 presents 16 data rows obtained through iPerf. Data 

analysis shows that the jitter before the attack ranged from 
0.198 ms to 0.185 ms, with an average of 0.156 ms. After the 
attack occurred, the jitter increased slightly, ranging from 
0.146 ms to 0.138 ms, with the average remaining around 
0.1519 ms. This increase indicates a higher degree of time 
fluctuation in the network during the attack, although the 
difference is not significant. The average jitter under both 
conditions can be calculated using the standard mean 
calculation method as follows: 

1. Before the attack  
• Jitter = 0.1561 ms 
• Loss/total = 0.24% 
2. After the attack 
• Jitter = 0.1519 ms 
• Loss/total = 0.89% 
Before the attack occurred, the packet loss rate was 

relatively low, with the Loss/Total Datagram percentage 
ranging from 0% to 0.15%. After the Goldeneye attack, a 
significant increase in packet loss was observed, peaking at 
1.9% during specific intervals, such as between the 6th and 7th 
seconds. This condition can be observed in Figure 5. 

The Loss/Total Datagram values before and after the attack 
were calculated to illustrate the change in network quality. In 
terms of jitter, a slight increase was recorded after the attack, 
although the average value did not show a substantial 
difference. Conversely, the increase in Loss/Total Datagram 
was more pronounced, indicating a degradation in overall data 
transmission quality. While the jitter values remained within 
acceptable tolerance limits, the rise in packet loss suggests 
potential issues in data delivery, particularly affecting 
applications that require high speed and consistency. Figure 5 
illustrates the fluctuations of jitter values and the Loss/Total 
Datagram ratio during the first 16 intervals before the attack, 
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whereas Figure 6 shows the jitter values after the attack, 
represented by the light blue line. 

 

 
 

Figure 5. Graphical representation of jitter and loss/total 
datagram on the OwnCloud service before 

 

 
 

Figure 6. After the mitigation phase was implemented 
 

 
 

Figure 7. The impact of the attack as observed through 
packet loss during the ping process 

 
The red line indicates the Loss/Total Datagram values prior 

to the attack, while the orange line illustrates these values 
subsequent to the attack. The graph indicates that lower values 
of jitter and Loss/Total Datagram correlate with improved 
network quality. An increase in these indicators indicates the 
occurrence of a Goldeneye attack, facilitating effective 
detection of the attack. In addition to monitoring jitter and 
Loss/Total Datagram using iPerf, the ping utility was also 
employed to observe the impact of the attack on the OwnCloud 
service. These observations confirm that the private cloud used 
in this research, which employs the OwnCloud service, is 
vulnerable to Goldeneye attacks, as shown in Figure 7. 

Based on the observations, a mitigation phase is required to 
restore the jitter and Loss/Total Datagram values to their pre-
attack conditions. This recovery is achieved by blocking the IP 
addresses identified as sources of the Goldeneye attack using 

Wireshark. The mitigation phase serves as an active defense 
mechanism within the developed framework. Once the 
attacker IP addresses have been validated through data 
analysis from Wireshark and Snort, the system provides a 
“Block All” function that enables administrators to block all 
IP addresses or subnets involved in the attack directly. The 
blocking process is executed through a shell script using the 
iptables DROP command. This IP blocking procedure 
constitutes a crucial component of the KUAD method 
implemented in this research. The impact of this blocking 
demonstrates that the OwnCloud service condition can be 
restored to its pre-attack state, as shown in Figure 8. 

 

 
 

Figure 8. The impact of Goldeneye attack mitigation as 
observed through packet loss during ping testing 

 
The final stage of this research focuses on the preparation 

of a comprehensive disposition document, which follows a 
standardized format previously applied in related published 
studies. This stage is crucial as it integrates all research 
findings, analytical results, and recommendations obtained 
from the experimental phase. The disposition is not merely a 
summary of results but functions as a strategic guideline that 
can be adopted by decision-makers and system administrators 
in designing effective policies for IT management. 

This research offers actionable insights for preventive and 
corrective measures to improve the security posture of private 
cloud environments. It provides a systematic method for 
identifying vulnerabilities, executing mitigation strategies, 
and assessing recovery processes following an attack. The 
documentation highlights the necessity of ongoing monitoring 
and adaptive defense mechanisms, essential for sustaining 
service reliability and system performance during and 
following cyberattacks, exemplified by the Goldeneye denial-
of-service (DoS) incident. 

Moreover, this framework highlights the role of proactive 
risk assessment and incident response planning as integral 
components of organizational resilience. By integrating these 
strategies, organizations can ensure that their IT infrastructure 
remains stable, secure, and capable of sustaining operational 
efficiency even under potential attack scenarios. Ultimately, 
the disposition developed in this research not only serves as a 
practical tool for operational improvement but also contributes 
to the broader academic discourse on cybersecurity resilience 
in cloud computing systems. It provides a reproducible model 
that other researchers and practitioners can adapt to evaluate 
and strengthen their own defensive architectures against 
evolving threats.  

SDN has been widely adopted as a standard approach for 
mitigating DDoS attacks due to its centralized control and 
dynamic traffic management capabilities. SDN-based 

2328



 

mitigation frameworks typically rely on flow-level monitoring 
and controller-driven policies to detect and block malicious 
traffic in real time. These approaches are effective in large-
scale and highly dynamic networks; however, they introduce 
architectural complexity and dependency on a centralized 
controller, which may itself become a target during an attack. 
Although the experimental evaluation in this research 
primarily focuses on descriptive performance metrics such as 
jitter and packet loss, the results can be contextualized with 
respect to existing DDoS mitigation frameworks. DeepDefend 
and SDN-based models, for instance, rely heavily on 
predefined learning patterns or flow-based policies to detect 
and neutralize attacks. In contrast, the KUAD framework, see 
Table 3, adopts a feedback-oriented approach that not only 
detects anomalies but also triggers immediate corrective 
actions through its integrated mitigation phase. This adaptive 
mechanism minimizes system downtime without requiring 
extensive model retraining or centralized controller 
dependency.  

 
Table 3. Comparison between SDN and KUAD 

 
Aspect SDN-Based Mitigation KUAD Framework 

Architecture Centralized controller Host centric 
Detection Flow based Forensic validation 
Mitigation Flow rule enforcement IP blocking 
Evidence Limited Integrated 
Recovery Implicit Explicit 
Feedback Partial Closed loop 
Suitability Large scale network Private cloud 
Note: SDN = Software-Defined Networking; KUAD = Knowledge 

Understanding Assessment Defense. 
 

From a performance perspective, SDN-based frameworks 
prioritize rapid traffic rerouting and filtering, whereas KUAD 
focuses on stabilizing service-level parameters such as jitter 
and packet loss after an attack is identified. Experimental 
results demonstrate that KUAD effectively restores network 
performance close to normal operating conditions following a 
Goldeneye DDoS attack. Although KUAD does not provide 
global traffic optimization as in SDN architectures, it offers a 
lightweight, adaptive, and evidence-oriented mitigation 
mechanism suitable for private cloud environments. The 
mitigation process in KUAD functions as a closed-loop 
control system that dynamically stabilizes network 
parameters, including jitter and packet loss, during active 
attacks. Subsequent research could improve this study by 
performing comparative benchmarking between KUAD and 
established frameworks to measure its benefits in terms of 
response time, recovery efficiency, and mitigation accuracy. 

This research examines the feasibility and effectiveness of 
the KUAD framework through the application of fundamental 
mitigation techniques and a restricted set of performance 
metrics. Future research will enhance the evaluation by 
integrating advanced mitigation mechanisms, utilizing larger 
datasets, exploring multiple attack scenarios, and conducting 
thorough statistical benchmarking against established 
frameworks, including SDN-based mitigation models. 

 
 

4. CONCLUSIONS 
 
This research examined the use of the KUAD framework to 

reduce Goldeneye-based DDoS attacks within a private cloud 
setting, utilizing OwnCloud. The experimental findings 

demonstrate that Goldeneye attacks substantially impair 
service availability through heightened packet loss and 
destabilization of network performance. The integration of a 
mitigation phase within the forensic workflow allows the 
KUAD framework to facilitate prompt defensive actions that 
restore essential performance metrics to baseline conditions. 
This research primarily contributes by illustrating that digital 
forensic processes can be expanded beyond post-incident 
analysis to facilitate real-time mitigation and recovery efforts. 
In contrast to conventional forensic models that prioritize 
evidence acquisition, KUAD presents a closed-loop lifecycle 
integrating attack detection, validation, mitigation, and system 
stabilization. The experimental results indicate that a 
fundamental mitigation strategy, when integrated into this 
structured framework, can significantly diminish the effects of 
DDoS attacks while maintaining forensic traceability. This 
research is constrained by its dependence on a singular attack 
type, a fundamental IP-blocking countermeasure, and a limited 
range of performance metrics. The results should be viewed as 
evidence of feasibility rather than as a complete performance 
benchmark. This research will be further developed in three 
specific directions. Initially, advanced mitigation techniques, 
including rate limiting, behavioral filtering, and SDN-assisted 
control, will be integrated into the defense phase of KUAD. 
The framework will undergo evaluation against various DDoS 
attack variants and larger traffic datasets to facilitate 
comparative benchmarking and enhance statistical validation. 
Third, the integration of adaptive thresholding and automated 
rule generation will improve the framework's responsiveness 
and scalability within dynamic cloud environments. These 
extensions enable KUAD to develop into a more 
comprehensive and flexible forensic-mitigation framework for 
the security of private cloud infrastructures. 
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