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Heterogeneous wireless sensor networks (HWSNs) are increasingly deployed in critical
applications such as smart cities, environmental monitoring, and military operations.
These networks, consisting of sensor nodes with varied computational capabilities, offer
improved efficiency and flexibility but also introduce significant security challenges,
particularly vulnerabilities to blackhole attacks that can disrupt communication and
compromise network integrity. Existing security mechanisms often struggle to effectively
address such attacks while maintaining a balance between real-time detection and
resource constraints. This review evaluates existing blackhole attack detection strategies
for HWSNS, with particular attention to collaborative architectures where low-power and
high-power sensor nodes operate under a centralized sink node. The analysis highlights
detection modules that monitor network behavior, perform threat classification, and
trigger appropriate countermeasures to ensure secure and reliable communication.
Overall, the reviewed strategies demonstrate improvements in detection accuracy while

preserving energy efficiency,

making them suitable for resource-constrained

heterogeneous environments.

1. INTRODUCTION

1.1 Background on wireless sensor networks and transition
to heterogeneous wireless sensor networks

Wireless sensor networks (WSNs) are collections of
spatially distributed sensor nodes designed to cooperatively
monitor physical or environmental conditions such as
temperature, sound, vibration, or motion. WSNs were
traditionally made up of homogeneous sensor nodes, each of
which had comparable processing power, energy resources,
communication capabilities, and network functions [1]. These
networks have been used extensively in industrial automation,
healthcare, environmental monitoring, and military
surveillance. However, the shortcomings of homogeneous
WSNs, particularly with regard to energy economy,
processing load, and communication range, became evident as
the need for increasingly sophisticated and scalable
applications increased [2].

To address these challenges, researchers have introduced
heterogeneous wireless sensor networks (HWSNs). The
capacities of nodes in HWSNs vary; some have more energy

reserves, more computational capacity, or a longer
communication range. Increased network longevity,
dependability, and scalability are provided by this

heterogeneity [3]. Strong nodes, for example, can act as cluster
leaders, combining information from lower-tier nodes and
sending it to the base station. Although HWSNSs increase
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overall flexibility and efficiency, they also create new security
flaws since attackers can target high-capability nodes to cause
the most disruption.

1.2 Blackhole attacks: Definition, impact, and the need for
detection mechanisms

In WSNs and HWSNs, a blackhole attack is a serious
security risk in which a malevolent node deceptively positions
itself as possessing the quickest or best route to the target (such
as the base station). It creates a "black hole" in the network by
silently dropping packets rather than forwarding them once it
has begun accepting them. Even one blackhole node can cause
significant network disruptions in multi-hop communication
networks, such as WSNs, because nodes mostly depend on
their neighbors to convey data [4, 5]. This can result in packet
loss, reduced throughput, and energy waste from needless
retransmissions.

The effects of blackhole assaults are even more severe in
HWSNs. When compromised, high-capability nodes like
cluster heads or fusion nodes can deceive a sizable section of
the network, impairing scalability and dependability.
Conventional routing systems are weak because they
frequently lack the tools to dynamically assess a node's
reliability [6]. Therefore, protecting the availability,
confidentiality, and integrity of the data being sensed and sent
depends on identifying blackhole assaults. To guarantee the
safe and reliable operation of contemporary sensor networks,
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specific detection methods designed for diverse configurations
must be developed.

1.3 Scope and objectives of the survey

The objective of this survey is to provide a thorough
analysis of the state of security protocols and detection
systems intended to thwart blackhole attacks in HWSNs.
Although there is a wealth of research on intrusion detection
in homogeneous WSNs, a more concentrated study is
necessary due to the special features of HWSNs, including
node variety, fluctuating energy profiles, and hierarchical
topologies. In the context of HWSNs, the goal is to identify,
categorize, and assess current blackhole detection methods,
emphasizing their designs, detection tactics, performance
indicators, and suitability for practical applications.

A taxonomy of current methods will also be provided by the
survey, which will group them into routing-based, AI/ML-
based, trust-based, and hybrid models. It will identify research
gaps through comparison analysis, such as computational
overheads in detection models, energy inefficiencies, or a lack
of standardized datasets. The ultimate goal of this work is to
give researchers and developers a starting point for creating
scalable, lightweight security mechanisms that adapt to
changing threats in diverse WSN contexts. The survey
advances the development of safe and robust WSN
infrastructures by highlighting important issues and
suggesting future paths.

2. OVERVIEW OF HETEROGENEOUS WIRELESS
SENSOR NETWORKS

2.1 Definition and architecture

Sensor networks that comprise nodes with varying energy,
computing power, communication range, and sensing features
are known as HWSNs. HWSNs add a combination of
resource-constrained sensor nodes and more potent nodes like
cluster heads, fusion centers, or gateways, in contrast to
conventional homogeneous WSNs, where every node has the
same hardware and purpose. Better network performance and
resource optimization are made possible by this hierarchical
architecture. Typically, an HWSN is organized into tiers, with
low-tier sensor nodes collecting data and high-tier nodes
handling data processing, aggregation, and base station
connection. These layers frequently have a grid-based or
clustered architecture to promote effective communication and
energy efficiency [7, 8]. HWSNs' architectural adaptability
makes them appropriate for use in healthcare, military
systems, and smart environments, but it also makes network
management more difficult, particularly when it comes to
putting in place consistent and effective security measures.

2.2 Types of heterogeneity (energy, computation, sensing,
communication)

Heterogeneity in HWSNs arises from variations in node
capabilities, which can be broadly classified into four types:
energy, computation, sensing, and communication
heterogeneity.

Energy heterogeneity refers to differences in battery
capacity or energy harvesting capabilities among nodes. High-
energy nodes are often assigned roles such as cluster heads or
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aggregators.

Computation heterogeneity occurs when some nodes have
more powerful CPUs or memory, enabling them to perform
complex processing tasks like encryption or anomaly
detection.

Sensing heterogeneity is present when nodes are equipped
with different types of sensors (e.g., temperature, gas,
pressure), allowing for multi-modal environmental
monitoring.

Communication heterogeneity refers to differences in
transmission range or bandwidth; nodes may use varying
communication protocols (e.g., Zigbee, Wi-Fi) depending on
their role.

These heterogeneous traits enable flexible and robust
network design but pose significant challenges for
standardizing security mechanisms that can adapt to all node
types effectively.

2.3 Benefits and challenges of heterogeneous wireless
sensor networks in security protocol design

Numerous advantages provided by HWSNs improve the
overall effectiveness and flexibility of networks. High-
capability nodes are assigned specific roles, which improves
scalability, network lifetime, and data processing efficiency.
For example, cluster heads can aggregate data and identify
anomalies before forwarding information to the base station,
which reduces communication overhead and enhances
security by enabling early threat detection. However, this
heterogeneity also introduces significant challenges for
security protocol design. If a cluster head is compromised, an
entire subnetwork may be exposed, making high-tier nodes
attractive targets for attackers. Security protocols must also
consider the unequal distribution of resource availability
among nodes. While high-tier nodes can employ more
complex detection and response mechanisms, lightweight
security techniques must be sufficiently robust to protect low-
tier nodes without excessive resource consumption [9].
Therefore, adaptive, scalable, and context-aware protocols are
required to ensure secure communication and maintain trust
across diverse node types, which remains challenging given
the limited processing and energy capabilities of many
network segments.

3. BLACKHOLE ATTACKS IN WIRELESS SENSOR
NETWORKS AND HETEROGENEOUS WIRELESS
SENSOR NETWORKS

3.1 Mechanism of a blackhole attack

In a WSN, a blackhole attack is a kind of network-layer
security risk when a malevolent node deceptively positions
itself as having the quickest or most effective route to the
target, usually the base station. Because they think the rogue
node is a trustworthy middleman, nearby nodes use it to transit
their data after learning about it. When the blackhole node
begins receiving data packets, it secretly drops them rather
than forwarding them, causing significant data loss and
interfering with network connections [10].

This attack takes advantage of the fact that several WSN
routing protocols, like AODV or DSR, are trust-based and do
not automatically confirm the legitimacy of routing packets.
These protocols are appropriate for contexts with few



resources because of their simplicity and low overhead, but
they are also susceptible to manipulation. Detection becomes
considerably more difficult when attackers use numerous
compromised nodes to perform coordinated blackhole attacks
[11]. By decreasing the packet delivery ratio (PDR), raising
latency, and using more energy as a result of route rediscovery
or retransmissions, these attacks impair network performance.

3.2 Attack scenarios and adversarial models

Depending on the capabilities and objectives of the
opponent, blackhole attacks might appear in a variety of ways.
One malevolent node interferes with communication in its
immediate vicinity in a single-node assault. A cooperative
blackhole attack involves several malevolent nodes working
together to deceive and intercept data over a larger area,
causing a more extensive disruption to the network. In
clustered topologies, where a hacked cluster head might
impact a whole collection of sensor nodes, these attacks are
very dangerous. Adversaries might be internal, where malware
or physical access compromises legitimate nodes, or external,
when the attacker introduces rogue nodes onto the network
[12]. The mobility, processing power, and energy availability
of adversarial models can also differ. By sporadically
forwarding some packets or altering behavior in response to
feedback from network monitoring, a skilled attacker who is
familiar with the routing protocol and network layout can vary
its approach to avoid detection.

Designing efficient detection techniques requires an
understanding of these models. Both static and dynamic
attackers must be taken into consideration by protocols, which
must also be able to differentiate between malicious activity
and normal problems like packet loss brought on by
congestion or node failure.

3.3 Specific risks in heterogeneous wireless sensor
networks compared to homogeneous wireless sensor
networks

Compared to homogeneous networks, HWSNs are
particularly vulnerable to blackhole attacks. Certain nodes in
HWSNS, including cluster heads or gateway nodes, have more
energy stores, processing power, and communication ranges
than others. These nodes frequently have key roles in routing
and data aggregation. Therefore, communication can be
disrupted for a large chunk of the network, not just a small
neighborhood, if a high-tier node is compromised or behaves
maliciously.

Because HWSNSs are hierarchical, lower-tier sensor nodes
rely significantly on upper-tier nodes to relay information to
the base station. At a higher level, a blackhole node can
efficiently function as a sink or a bottleneck, collecting and
discarding  significant amounts of important data.
Furthermore, because of node variability, HWSNs frequently
lack consistent trust models, which makes it more challenging
to apply uniform security measures throughout the network.
The mobility or re-tasking of high-tier nodes in dynamic
contexts presents an additional risk. Attackers can escape
static detection techniques by launching adaptive blackhole
attacks by taking advantage of this mobility or role change
[13]. Therefore, in order to effectively combat these increased
risks, security procedures in HWSNs need to be more resilient
and context-aware.

2313

3.4 Real-world implications and case examples

Blackhole attacks in WSNs and HWSNs have significant
practical ramifications, especially in mission-sensitive fields
like healthcare, environmental monitoring, and military
surveillance. A whole mission may fail, and human lives may
be lost, for example, if a blackhole node ignores detection
signals regarding enemy activity or landmines in a combat
situation. Similar to this, blackhole attacks in smart agriculture
may result in the loss of sensor data needed for crop protection
or irrigation, which could lower yields or cause financial harm.
One prominent example comes from smart grid systems,
which use sensor networks to keep an eye on infrastructure and
electrical lines. A blackhole attack might delay emergency
responses by making it impossible to notice power outages or
tampering events. Disaster management systems that use
WSNs to identify fires, gas leaks, or structural damage are
another example. The impact of the disaster may grow, and
rescue efforts may be delayed if blackhole assaults stop alert
messages from getting to the command center [14]. These
situations highlight the need for real-time blackhole mitigation
and detection systems. Furthermore, the ramifications of such
assaults can spread to larger digital ecosystems as WSNs
interface with the Internet of Things (IoT), which emphasizes
the need for robust and intelligent security procedures.

4. TAXONOMY OF DETECTION AND PREVENTION
TECHNIQUES

4.1 Classification based on routing-based protocols

Routing-based protocols concentrate on improving or
modifying existing routing techniques in order to identify and
stop blackhole attacks. These methods include additional
verification procedures such as route confirmation, sequence
number validation, and acknowledgment schemes while
utilizing the framework of conventional routing protocols
(AODV, DSR, LEACH, etc.). These protocols detect nodes
that maliciously drop data packets or advertise bogus routes by
monitoring route request (RREQ) and route reply (RREP)
messages. To find irregularities, common methods include
cross-verifying route information with nearby nodes or
employing extra control packets, such as two-hop
acknowledgments. Routing-based solutions are generally
lightweight in terms of computation, making them suitable for
resource-constrained nodes in both homogeneous and
heterogeneous WSNs. However, many of these approaches
assume uniform node capabilities and do not explicitly
differentiate between low-energy and high-capability nodes
during routing and monitoring operations. Their reliance on
network topology and routing behavior can limit effectiveness
in dynamic or large-scale environments where routing paths
frequently change [15]. Additionally, repeated route validation
and control message exchanges may introduce increased
communication overhead, which can disproportionately affect
low-tier nodes with limited energy and processing resources.

4.2 Classification based on trust-based systems

Trust-based systems use node behavior to determine a
node's credibility in the network, which serves as the
foundation for spotting malicious nodes like blackhole
attackers. These systems provide each node a trust score based
on parameters including packet forwarding rates, node



dependability, and past contacts. To stop more disruptions,
nodes with low trust levels are marked as suspicious and
excluded from routing decisions. Trust models can be
distributed, enabling nodes to compute trust locally based on
their observations, or centralized, where a base station
maintains trust ratings [16]. Because trust-based systems take
into account different node roles and capabilities, they are
especially useful in HWSNs. By regularly assessing how high-
tier nodes (such as cluster heads) behave in hierarchical
organizations, they aid in their security. Although trust-based
procedures increase adaptability and resilience, they must be
carefully calibrated to prevent false positives or needless
energy consumption brought on by ongoing trust updates and
monitoring [6]. Additionally, they can have trouble fending off
coordinated attackers who can tamper with trust
measurements.

4.3 Classification based on machine learning/artificial
intelligence-based approaches

Methods based on artificial intelligence (Al) and machine
learning (ML) use data-driven strategies to identify unusual
activity suggestive of blackhole assaults. These methods entail
using labeled datasets that distinguish between benign and
malevolent network behavior to train models (such as decision
trees, support vector machines, and deep neural networks).
These algorithms may identify nodes as malicious or
legitimate in real time by examining characteristics including
routing patterns, sequence numbers, and packet delivery rates
[17]. By identifying intricate patterns in expansive or dynamic
WSN environments, sophisticated techniques like deep
learning (DL) or ensemble learning can increase detection
accuracy.

Because HWSNs have high-capability nodes that can
manage computationally demanding activities like model
training and inference, ML/Al-based approaches are
especially advantageous for these networks [18]. These
methods could, however, provide new difficulties, such as the
requirement for extensive datasets, processing overhead, and
energy usage. Moreover, ML-based models must be updated
and retrained on a regular basis because their efficacy rests on
their capacity to adjust to changing attack tactics.

4.4 Classification based on cryptographic-based protocols

By guaranteeing data integrity, confidentiality, and
authenticity, cryptographic-based protocols seek to secure
communication channels and authenticate nodes in order to
stop blackhole assaults. These methods use hash functions,
digital signatures, encryption algorithms, and key
management systems to prevent tampering with routing data.
For example, nodes may employ lightweight cryptographic
techniques (like AES and ECC) to confirm the authenticity of
secure control messages or route ads. By requiring
authentication credentials that are only known by genuine
nodes, cryptographic techniques also stop adversaries from
introducing fictitious routing information.

To lessen the strain on low-energy nodes, cryptographic
solutions in HWSNs frequently use high-capability nodes for
secure data aggregation and key distribution. Cryptographic-
based protocols can be resource-intensive; it's important to
strike a balance between security strength and energy
efficiency, even if they provide strong protection against both
internal and external threats. Effective implementation of
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these protocols still faces major obstacles in the areas of key
management, scalability, and the possibility of compromised
nodes disclosing cryptographic material.

4.5 Classification based on hybrid models

To offer a more thorough defense against blackhole attacks,
hybrid models include several detection techniques, including
ML, cryptography, trust assessment, and routing-based
approaches. Hybrid models mitigate individual limits while
improving detection accuracy, adaptability, and resilience by
utilizing the advantages of each technique. For instance, a
hybrid protocol may combine cryptographic authentication
and trust-based monitoring to better identify and isolate hostile
nodes and protect routing data from manipulation.
Additionally, to enhance anomaly detection in dynamic
contexts, ML models can be combined with conventional
routing checks.

Because of the network's hierarchical structure and diverse
node capabilities, hybrid techniques are especially beneficial
in HWSNs. Low-tier nodes manage simple activities like basic
trust evaluation, while high-tier nodes can carry out
sophisticated computations (such as encryption or ML
analysis). Hybrid systems must be carefully designed to
preserve efficiency because they can increase complexity,
communication overhead, and energy usage [18]. Hybrid
models offer a potential approach to protecting HWSNs from
advanced blackhole assaults in spite of these difficulties.

4.6 Detection criteria and evaluation parameters

A number of performance indicators and detection criteria
are taken into consideration in order to assess how well
blackhole detection and prevention strategies work. Packet
forwarding behavior, routing control message analysis, node
trustworthiness, and traffic anomaly detection are examples of
common detection criteria. The capacity of protocols to
correctly detect malicious nodes while reducing false positives
and false negatives is the basis for their evaluation. Key
evaluation parameters include:

* PDR: Measures successful data packet delivery despite
attacks.

* Detection Accuracy: The rate at which malicious nodes are
correctly identified.

* Energy Consumption: Evaluates the energy overhead
introduced by security mechanisms.
End-to-End Delay: Measures
communication latency.

» Throughput: Assesses the network’s data transmission
efficiency.

* False Positive/Negative Rates: Indicates the reliability of
detection mechanisms.

* Routing Overhead: Additional control messages required
for detection and prevention.

Researchers can determine trade-offs between security
strength and network performance by examining these factors
using a variety of methodologies. This information will help
them build protocols that are optimal for heterogeneous WSN
environments.

A comparative review of different blackhole attack
detection strategies in HWSNSs, arranged according to their
underlying techniques, is given in Table 1. It provides insight
into their applicability for various network settings and
resource restrictions by highlighting important detection
criteria, evaluation metrics, strengths, and limits.

. the impact on



Table 1. A comparative overview of various blackhole attack detection approaches in heterogeneous wireless sensor networks
(HWSNs)

Approach Detection Criteria

Evaluation Metrics

Strengths Limitations

Route reply verification,

Routing-Based .
sequence number analysis,

Packet delivery ratio (PDR),
routing overhead, detection

Lightweight, suitable Vulnerable to dynamic

Protocols forwarding check latency for low-power nodes topology changes
Trust-Based Node 'behaV1'or, packgt "ljr.ust score accuracy, false Adaptl.ve, sulFable May fail under collusion or
forwarding ratio, historical ~ positive rate (FPR), packet loss, for hierarchical . .
Systems . ) . limited observations
interactions energy consumption HWSNs
Anomaly detection via Detection accuracy, false High detection Requires datasets, retraining,

ML/Al-Based statistical learning and

Approaches pattern recognition
Cryptographic .Auth.entication, data
Protocols integrity, and.rnessage
encryption
Combined trust, routing
Hybrid Models  checks, ML or encryption-

based techniques

positive/negative rates, model
training time, computation
overhead
Encryption overhead, key
distribution time, packet integrity
rate, end-to-end delay
Comprehensive accuracy,
energy-efficiency trade-off, PDR,
detection coverage

accuracy, adapts to
evolving threats

and more energy on some
nodes

High energy/computation
demands, especially on low-
tier nodes

Strong protection
against tampering

Balances detection
accuracy and
robustness

Complexity in design,
potential for higher overhead

5. SURVEY OF SECURITY PROTOCOLS FOR
BLACKHOLE DETECTION

Blackhole attacks pose a significant threat to the reliability
of WSNs. This section reviews recent security protocols for
blackhole attack detection, emphasizing detection
mechanisms, performance trade-offs, and suitability for
heterogeneous deployments.

Khan et al. [16] presented a trust-based optimized reporting
scheme designed to detect and prevent blackhole attacks in
constrained routing environments such as RPL-based Low-
Power and Lossy Networks (LLNs). The proposed protocol
computes direct and indirect trust values for neighboring
nodes using metrics including honesty, energy, unselfishness,
and similarity, and employs a delta-threshold mechanism with
a forgetting curve to dynamically weight recent behavior. This
approach enables the root or sink node to make more reliable
decisions about malicious behavior while reducing false
positives and reporting overhead. The scheme also balances
detection accuracy with minimal communication and
processing costs, addressing a crucial challenge in resource-
limited HWSN deployments where energy efficiency and
timeliness are essential. Through simulation and evaluation,
the authors demonstrate improved detection performance
compared to conventional static threshold methods, making
this security protocol a valuable strategy for blackhole
detection in HWSNS.

Ramesh et al. [18] proposed an energy-aware and adaptive
intrusion detection system (IDS) tailored for WSNs that
targets both blackhole and wormhole attacks. The security
framework leverages DL techniques combined with advanced
feature generation and adaptive learning to improve detection
accuracy while minimizing energy consumption, which is
critical in resource-constrained environments. Specifically,
the method uses generative adversarial networks (GANs) for
generating distinguishing attack features, meta-heuristic
optimization such as the whale optimization algorithm (WOA)
for parameter tuning, and deep Q-learning for adaptive
learning of attack patterns, ensuring the model can respond to
evolving threats in real time. Simulation results demonstrate
that this hybrid approach achieves high detection accuracy,
recall, and specificity compared with traditional ML and DL
models, highlighting its suitability for real-time deployment in
heterogeneous sensor environments.
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Ramesh et al. [18] introduced an energy aware adaptive
intrusion detection and prevention framework to detect
blackhole and grayhole attacks with improved accuracy and
reduced false alarms. The protocol integrates the Generative
adversarial networks (GAN) and whale optimization
algorithm to learn the attack behavior. Simulation results
indicate that the hybrid IDS achieves higher detection rates
and lower energy consumption than traditional standalone IDS
methods, making it suitable for resource-constrained
heterogeneous environments. Importantly, the study analyzes
the trade-offs between detection accuracy, energy overhead,
and scalability, providing insight into how multi-layer security
protocols can be effectively deployed in diverse wireless
sensor deployments.

Ghugar et al. [19] presented DLTIDS, a dual-layer trust-
based IDS designed to detect blackhole attacks in WSNs. Two
complementary trust mechanisms are employed by the system.
By identifying nodes as either suspect or trusted, the first layer
assesses direct trust based on node behavior, particularly
packet forwarding and hop count. To further examine node
activity and confirm malicious intent, the second layer uses a
watchdog mechanism. Cluster leaders are essential to the
coordination of trust evaluations and data aggregation. To
trace and verify network paths, DLTIDS keeps track of three
tables: route, source, and destination. It looks for irregularities
by comparing sequence numbers and hop counts. The system
is evaluated using both watchdog-based and conventional
AODV methods after being simulated in MATLAB. The
findings demonstrate reduced false alarm rates, enhanced
detection accuracy, and trust stability, particularly at higher
network densities. DLTIDS is robust against blackhole and
jamming attacks and demonstrates adaptability to dynamic
WSN environments. Its dual-layer structure makes it a reliable
and scalable solution for real-time WSN security.

Khan et al. [20] proposed an artificial neural network
(ANN)-based mechanism to detect routing attacks in WSNss,
targeting blackhole, grayhole, and wormhole threats. The
method makes use of a feed-forward ANN that was trained
using characteristics such as the number of packets, energy
consumption, and node trust level. The NS2 simulator is used
to implement the model, which was trained using the
CICIDS2017 dataset. To increase classification and decrease
false positives, it makes use of a three-layer ANN (input,
hidden, and output) with optimum parameters. Training on



labeled data and testing on unlabeled real-time traffic are the
two stages of detection. The ANN demonstrated resilience
against a range of routing hazards with an accuracy of 99.49%
and a detection rate of 99.21%. According to simulation
results, performance was consistent across attack scenarios

with low energy usage and packet loss. The technology
outperforms traditional techniques by maintaining reliable
packet delivery even during attacks. This work highlights the
viability of ANN models for real-time intrusion detection in
resource-constrained, energy-sensitive WSN environments.

Table 2. A comparative analysis of various blackhole attack detection techniques in wireless sensor networks (WSN5s)

Protocol Name / . Detection . Applicability R
Paper Approach Architecture Mechanism Performance Metrics to HWSNs Strengths Limitations
. . End-to-end delay, . .
[21] AES-Based Slgnature Distributed Symmetric key packet delivery ratio  Moderate Low communication Requires key
Detection cryptography delay management

Fuzzy logic with
Genetic algorithm

(PDR)

[22] Fuzzy-GA-TLBO Centralized (GA) a1.1d teaching- Computational cost Limited Low computational Cent.rallzed natu.r(?
Model learning-based cost may hinder scalability
optimization
(TLBO)
Deep learning (DL)- . . . True detection rate . High detection ~ Requires substantial
23] Based Detection Distributed DL classifiers (TDR) High probability training data
. . Packet loss ratio . . .
Encryption with Deep ~ Cluster- . . High data delivery Computational
[24] Neural Networks based Encryption and DL (PLR),(;Iellr;;ghput, High with minimal delay overhead
[25] JDICA Technique Distributed Joint .detec.tlon and PDR, TDR, Cnergy 1o derate High accuracy, Potential energy
isolation consumption reduced delay consumption
126] Blockchalg-Based Distributed Blockgham .ledger PDR, throughput, High Effect}ve mahc19us Blockchain overhead
Detection verification delay node identification
. . May require
27] Warning message Distributed Behav1'or-l')ased PDI_{, FPR, false Moderate Improved PDR, low additional
counter (WMC) monitoring negative rate (FNR) false rates .
communication
[28] GA with XGBOOSt Distributed GA and XGBoost TDR High High detection rate Comp utatlgnal
Classifier complexity
. . False detection rate . . .
[29] Cluster-Ba_sc?d Voting Cluster-based Voting among (FDR), energy High Low FDR, negligible ~ Requires reha_ble
Decision cluster nodes . energy use cluster formation
consumption
Table 3. A Comparative analysis of various blackhole attack detection techniques in wireless sensor networks (WSNs)
Paper Technique / Model Used Ti:}?;l]l;l;:::e ¢ Performance Metrics and Results Limitations
1 3 1 . 0,
Onhqe ensemble learning WSN-DS Detection rates: 96.084 % (heterogeneous Focuses on streaming data; may
[30] (adaptive random forest and ensemble), 97.2% (homogeneous . . .
. . dataset require adaptation for static datasets
hoeffding adaptive tree) ensemble)
Hyt.)rl'd meta—heurlstlg Custom Detection rate: > 85%: warning rate: Emphasizes optimization; spec1ﬁc
[31] combining WOA and sine . . energy consumption metrics not
. . simulation 0.866 .
cosine algorithm detailed
Fitness rate-based WOA with Energy consumption npproved by Combines DL with optlmlz.atlon;
[32] .. - 7.14% over WOA and FireFly; better computational complexity
optimized LSTM . . .
accuracy than conventional LSTM considerations apply
ML classifiers (random WSN-DS Random forest achieved 99.72% Focusgd on mu.l tiple DoS attacks;
[33] specific metrics for blackhole
forest, etc.) dataset accuracy .
attacks not isolated
The trust factor decreases . . Older study; may need updates to
. . Early detection of malicious nodes . .
[34] exponentially with - . align with current WSN standards
. through trust degradation .
consecutive packet drops and technologies
35] i;tzsrzggflwgitil tilegr/?g];/ ) Enhanced PDR and reduced delay Specific simulation parameters and
& protocol compared to standard AODV environments not detailed
Dynamic threshold-based Detection rate: 94.66%; PDR increased . Lo
[36] detection with forged RREQ  NS-2 simulator by 3%; throughput improved by 6.15%; FSOCI\;S/%%\I(;nm\;AIr\IeEIiSr’eaS g;lizzggy
packets end-to-end delay reduced by 6.13% yred P
. . Detailed analysis of blackhole attack Prlmarlly analytl'cal; lacks
[37] Forensic analysis approach - . implementation of
patterns and behaviors . . .
detection/prevention mechanisms
Cognitive intelligence Capable of detecting and preventing Broad approach; specific
[38] framework with Al and big - various attacks, including DoS; resilient ~ performance metrics for blackhole
data analytics to packet drop occurrences attacks are not detailed
Survey of ML techniques for Comprehensive overview of ML-based Survey paper; does not propose a
[39] Y d - approaches for anomaly detection in specific detection/prevention

anomaly detection

WSNs

method
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Kim et al. [21] introduced a detection mechanism utilizing
symmetric key cryptography, specifically AES, combined
with signature-based methods. The goal of this distributed
architecture method is to identify blackhole attacks without
causing appreciable communication lag. Although the
technique is successful in preserving a high PDR and minimal
end-to-end delay, it necessitates strong key management
techniques to manage cryptographic keys throughout the
network.

Almseidin et al. [22] proposed a centralized detection model
integrating fuzzy logic with genetic algorithm (GA) and
teaching-learning-based optimization (TLBO). The goal of
this hybrid strategy is to maximize computational efficiency
without sacrificing detection precision. However, in large-
scale HWSNs, where distributed solutions are frequently more
practical, their centralized nature may provide scaling issues.

Saxe and Berlin [23] developed a DL-based detection
system employing classifiers trained to identify blackhole
attacks. With its high true detection rate (TDR) and distributed
operation, this method is appropriate for dynamic and diverse
situations. The main drawback is the requirement for large
amounts of training data and processing power, which not all
sensor nodes may have easily accessible.

Saravanakumar et al. [24] combined encryption methods
with deep neural networks in a cluster-based architecture to
detect blackhole attacks. This hybrid strategy makes use of
cluster heads' processing power to increase data delivery rates
and reduce latency. However, the combination of DL and
encryption adds computational overhead, which calls for
cautious resource management.

Table 2 provides a comparative analysis of various
blackhole attack detection techniques in WSNs, focusing on
architecture, detection mechanisms, performance metrics, and
applicability to HWSNs. Each method is evaluated for its
strengths and limitations, highlighting trade-offs such as
detection accuracy versus computational or communication
overhead.

Clement Sunder and Shanmugam [25] introduced the
JDICA technique, a distributed method focusing on joint
detection and isolation of malicious nodes. By lowering
latency and increasing PDR, this strategy raises network
efficiency overall. However, the longevity of sensor nodes
may be impacted by the energy consumption related to
ongoing monitoring and isolation procedures.

Abdelrahman et al. [26] implemented a blockchain-based
detection mechanism, utilizing the immutable ledger to verify
node behavior and detect anomalies. This distributed method
improves throughput and guarantees efficient detection of
rogue nodes. The increased overhead brought about by
blockchain operations, which could have an impact on
processing time and energy usage, is one of the trade-offs.

Terence and Purushothaman [27] proposed the warning
message counter (WMC) method, a behavior-based
monitoring system operating in a distributed architecture. This
method maintains low false positive and negative rates while
increasing the PDR by examining node behavior and
delivering warnings. Network traffic may increase if more
communication is required to spread warnings.

Ashfaq et al. [28] developed a detection system combining
GA with the XGBoost classifier in a distributed setup. Because
of its high detection rate, this technique is useful for spotting
blackhole attacks. However, such models may not be as
applicable in contexts with limited resources due to the
computational complexity involved in training and deploying

2317

them.

Liu and Wu [29] presented a cluster-based voting decision
method, where cluster nodes collaboratively decide on the
legitimacy of data packets. This method meets the
requirements of HWSNs by achieving low FDRs and low
energy usage. The stability and dependability of cluster
formations are necessary for this strategy to be effective.

Table 3 offers a comparative analysis of various blackhole
attack detection techniques in WSNs, focusing on the
simulation tools or datasets used, achieved performance
metrics, and limitations of each approach. It includes both ML
and meta-heuristic models such as Random Forest, LSTM, and
hybrid optimization algorithms. The table highlights detection
accuracy, energy efficiency, and improvements in packet
delivery or delay metrics. While some techniques show high
accuracy, others emphasize adaptive learning or trust-based
mechanisms. However, limitations like computational
complexity, lack of simulation detail, or applicability to only
specific network types are also noted.

5.1 Discussion of trends, performance gaps, and innovative
approaches

5.1.1 Several trends emerge from the literature

* Adoption of AI/ML: There is a clear trend toward using
ML and DL approaches (e.g., Random Forest, XGBoost,
LSTM) for detecting complex or evolving attacks in WSNss,
particularly HWSNSs.

* Hybrid Approaches: Solutions increasingly combine
techniques such as cryptography, trust models, and ML to
improve robustness and adaptability (e.g., GA-XGBoost [28],
Fuzzy-GA-TLBO [22]).

* Distributed Detection Models: Many techniques favor
distributed architectures for scalability and resilience,
especially in large and dynamic networks.

» Focus on Energy Efficiency: With the rise of energy-
constrained deployments, several models emphasize reduced
computation and communication overhead (e.g., cluster-based
and low-FDR solutions).

* Behavior-Based Monitoring: Trust-based and behavior-
driven models (like WMC) are being used to detect malicious
patterns without needing heavy computation.

5.2 Limitations and open challenges in blackhole attack
detection

* Lack of Real-Time Validation: Many models perform well
in simulation but may not adapt easily to real-time or field
conditions.

* Limited Benchmarking: Datasets like WSN-DS are used
repeatedly; however, these do not always reflect
heterogeneous or real-world traffic conditions.

* Insufficient Focus on HWSNs: While some models claim
applicability to HWSNs, many do not account for the diversity
in node capability, energy availability, and communication
range.

* Overhead from Advanced Techniques: Cryptographic and
DL models, while accurate, can impose significant processing
and energy burdens, especially on lower-tier nodes.

* Scalability Issues: Centralized models or those requiring
heavy coordination (e.g., Fuzzy-GA-TLBO) face challenges
in scaling to large networks.



5.3 Few novel methodologies for blackhole detection in
heterogeneous wireless sensor networks, including deep
learning and blockchain-based systems

* Ensemble Learning [40]: Adaptive ensemble models (e.g.,
Random Forest, XGBoost, Hoeffding Tree) offer high
accuracy and resilience to concept drift in streaming data
environments.

* LSTM-Based Detection [41]: DL with LSTM enables
modeling of sequential behavior in routing, improving
detection of stealthy attacks like blackholes.

* Blockchain-Based Detection [42]: Using distributed
ledgers to verify node behavior adds tamper-resistance and
traceability to network monitoring.

* Trust Degradation Metrics: Exponential trust reduction
strategies help identify persistent malicious nodes by
analyzing patterns of packet drops.

* Voting Mechanisms in Clusters: Consensus-based
validation among cluster nodes enhances robustness and
reduces FDRs.

5.4 Adaptability of existing protocols from homogeneous
wireless sensor networks to heterogeneous models

Although many intrusion detection protocols were initially
created for homogeneous WSNs, they are still not very
adaptable to HWSNSs unless they are changed. Networks with
heterogeneous node capabilities are incompatible with
protocols that assume uniform energy or bandwidth.
Nonetheless, certain models can be easily adapted to HWSNSs,
particularly trust-based, cluster-based, and mobile agent-based
architectures. For example:

* Cluster-based IDS can leverage high-power nodes as
aggregators or monitors.

* ML models like ensemble learners can handle data from
heterogeneous sources if designed with dynamic feature
weighting.

Sensor Network\ .-~

Z

’

Low-Power Sensor Node

Security and Attack Detection|

ra

Attack Detection Module

* Distributed trust-based systems can be adapted for local
anomaly detection across tiered nodes.

Overall, successful adaptation requires that protocols
recognize node role and resource diversity, offload complex
computation to capable nodes (high-power), and enable
lightweight participation for energy-constrained nodes.

The framework overview for HWSNs integrates intelligent,
time-sensitive attack detection mechanisms to support secure
network communication against blackhole attacks. The
network is structured into three major layers: The Sensor
Network, Processing and Management, and Security and
Attack Detection. In the Sensor Network layer, low-power
sensor nodes with limited resources perform basic sensing
tasks and transmit raw data to nearby high-power sensor
nodes, which possess enhanced aggregation, processing, and
communication capabilities. The high-power nodes aggregate
the sensed data and forward it to the central sink node within
the Processing and Management layer. The sink node collects
behavior and communication patterns from multiple nodes and
forwards the structured behavior data to a time-aware attack
detection module in the Security and Attack Detection layer.

The detection module utilizes sequential behavior analysis
to identify anomalous activities such as packet drops and
suspicious routing patterns associated with blackhole attacks.
Once an anomaly is identified, the information is passed to a
response engine responsible for generating alerts, isolating
compromised nodes, and updating routing paths to ensure
secure network operation. The response engine then
communicates routing decisions back to the sink node and the
high-power nodes, maintaining the continuity and integrity of
data transmission. This modular, learning-based detection
architecture supports adaptability to evolving attack behaviors
while preserving energy efficiency and meeting the real-time
requirements of heterogeneous wireless sensor deployments.
Figure 1 shows an overview of HWSN-based attack detection.
Table 4 shows the design considerations for security protocols
in HWSNS.
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Figure 1. An overview for heterogeneous wireless sensor network (HWSN) based attack detection
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Table 4. Design considerations

Design Consideration

Description

Energy Efficiency

Scalability

Heterogeneity Awareness
Accuracy and Low FDRs
Lightweight Implementation
Real-Time Detection and Responsiveness
Robustness Against Collusion and
Mobility

Trust Management

Interoperability with Routing Protocols
Distributed vs. Centralized Detection
Balance
Resilience and Fault Tolerance
Adaptability to Evolving Attacks
Secure Data Aggregation and
Communication

Minimize computational and communication overhead to preserve energy, especially on

low-power nodes.

Ensure effectiveness in large-scale, dense, and expanding networks without performance

degradation.

Account for varied node capabilities and distribute detection tasks appropriately.
Achieve high detection accuracy with minimal false positives/negatives to avoid disruptions.
Design simple algorithms that require minimal memory, processing, and bandwidth.
Detect and respond to attacks quickly to minimize data loss and communication disruption.

Handle both single/cooperative attacks and adapt to dynamic, mobile topologies.

Use dynamic, context-aware trust evaluation to distinguish malicious nodes from faulty

ones.

Integrate seamlessly with existing energy-efficient and hierarchical routing protocols.
Balance distributed detection to reduce overhead while avoiding single points of failure.

Maintain functionality and security even when nodes fail or are compromised.
Adapt to new blackhole strategies through learning or flexible detection rules.

Ensure secure data handling and prevent tampering despite routing disruptions.

6. CONCLUSIONS

This paper presented a comprehensive survey and analysis
of security protocols for blackhole attack detection in HWSNS.
Through a structured taxonomy and detailed review, the study
highlights that trust-based, routing-aware, hybrid models and
lightweight learning-assisted approaches are among the most
promising strategies for HWSNs, particularly when aligned
with node heterogeneity in terms of energy, computation, and
communication capability. The analysis reveals critical trade-
offs between detection accuracy, communication overhead,
scalability, and energy consumption, which significantly
influence the practical applicability of existing solutions in
real-world deployments. The survey also shows that many
existing protocols achieve strong performance in controlled or
simulation environments but often lack explicit consideration
of heterogeneous node roles, real-time constraints, and
scalability to large networks. Approaches that leverage higher-
capability nodes or centralized sinks for monitoring and
decision-making tend to offer better resilience, while overly
complex cryptographic or computation-heavy techniques can
impose excessive burdens on low-tier nodes. These findings
emphasize the need for adaptive, energy-aware, and role-
aware security designs in HWSNs. Based on the insights
gained from the surveyed literature, a generalized coordinated
detection and response framework—where low-power and
high-power nodes collaborate under a centralized sink—
emerges as a practical design direction for improving
blackhole attack resilience. Future research should focus on
extending such frameworks to handle more complex attacks,
including wormhole, Sybil, and greyhole attacks, while
maintaining low overhead. Additional directions include
incorporating  lightweight cryptographic = mechanisms,
adaptive and context-aware detection models, real-world
testbed validation, mobility support, and decentralized trust
management approaches, such as blockchain, to further
enhance robustness and adaptability in heterogeneous wireless
sensor environments.
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