
Evaluating Blackhole Attack Detection Strategies for Secure Heterogeneous Wireless Sensor 
Networks 

Sonali Prashant Bhoite1,2* , Ganapati A. Patil1

1 Department of Computer Science and Engineering, JSPM University, Pune 412207, India 
2 Department of Information Technology, Vishwakarma Institute of Technology, Pune 411037, India 

Corresponding Author Email: sonalibhoite7@gmail.com 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.151111 ABSTRACT 

Received: 20 October 2025 
Revised: 21 November 2025 
Accepted: 26 November 2025 
Available online: 30 November 2025 

Heterogeneous wireless sensor networks (HWSNs) are increasingly deployed in critical 
applications such as smart cities, environmental monitoring, and military operations. 
These networks, consisting of sensor nodes with varied computational capabilities, offer 
improved efficiency and flexibility but also introduce significant security challenges, 
particularly vulnerabilities to blackhole attacks that can disrupt communication and 
compromise network integrity. Existing security mechanisms often struggle to effectively 
address such attacks while maintaining a balance between real-time detection and 
resource constraints. This review evaluates existing blackhole attack detection strategies 
for HWSNs, with particular attention to collaborative architectures where low-power and 
high-power sensor nodes operate under a centralized sink node. The analysis highlights 
detection modules that monitor network behavior, perform threat classification, and 
trigger appropriate countermeasures to ensure secure and reliable communication. 
Overall, the reviewed strategies demonstrate improvements in detection accuracy while 
preserving energy efficiency, making them suitable for resource-constrained 
heterogeneous environments. 
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1. INTRODUCTION

1.1 Background on wireless sensor networks and transition 
to heterogeneous wireless sensor networks  

Wireless sensor networks (WSNs) are collections of 
spatially distributed sensor nodes designed to cooperatively 
monitor physical or environmental conditions such as 
temperature, sound, vibration, or motion. WSNs were 
traditionally made up of homogeneous sensor nodes, each of 
which had comparable processing power, energy resources, 
communication capabilities, and network functions [1]. These 
networks have been used extensively in industrial automation, 
healthcare, environmental monitoring, and military 
surveillance. However, the shortcomings of homogeneous 
WSNs, particularly with regard to energy economy, 
processing load, and communication range, became evident as 
the need for increasingly sophisticated and scalable 
applications increased [2]. 

To address these challenges, researchers have introduced 
heterogeneous wireless sensor networks (HWSNs). The 
capacities of nodes in HWSNs vary; some have more energy 
reserves, more computational capacity, or a longer 
communication range. Increased network longevity, 
dependability, and scalability are provided by this 
heterogeneity [3]. Strong nodes, for example, can act as cluster 
leaders, combining information from lower-tier nodes and 
sending it to the base station. Although HWSNs increase 

overall flexibility and efficiency, they also create new security 
flaws since attackers can target high-capability nodes to cause 
the most disruption. 

1.2 Blackhole attacks: Definition, impact, and the need for 
detection mechanisms 

In WSNs and HWSNs, a blackhole attack is a serious 
security risk in which a malevolent node deceptively positions 
itself as possessing the quickest or best route to the target (such 
as the base station). It creates a "black hole" in the network by 
silently dropping packets rather than forwarding them once it 
has begun accepting them. Even one blackhole node can cause 
significant network disruptions in multi-hop communication 
networks, such as WSNs, because nodes mostly depend on 
their neighbors to convey data [4, 5]. This can result in packet 
loss, reduced throughput, and energy waste from needless 
retransmissions. 

The effects of blackhole assaults are even more severe in 
HWSNs. When compromised, high-capability nodes like 
cluster heads or fusion nodes can deceive a sizable section of 
the network, impairing scalability and dependability. 
Conventional routing systems are weak because they 
frequently lack the tools to dynamically assess a node's 
reliability [6]. Therefore, protecting the availability, 
confidentiality, and integrity of the data being sensed and sent 
depends on identifying blackhole assaults. To guarantee the 
safe and reliable operation of contemporary sensor networks, 
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specific detection methods designed for diverse configurations 
must be developed. 
 
1.3 Scope and objectives of the survey 

 
The objective of this survey is to provide a thorough 

analysis of the state of security protocols and detection 
systems intended to thwart blackhole attacks in HWSNs. 
Although there is a wealth of research on intrusion detection 
in homogeneous WSNs, a more concentrated study is 
necessary due to the special features of HWSNs, including 
node variety, fluctuating energy profiles, and hierarchical 
topologies. In the context of HWSNs, the goal is to identify, 
categorize, and assess current blackhole detection methods, 
emphasizing their designs, detection tactics, performance 
indicators, and suitability for practical applications. 

A taxonomy of current methods will also be provided by the 
survey, which will group them into routing-based, AI/ML-
based, trust-based, and hybrid models. It will identify research 
gaps through comparison analysis, such as computational 
overheads in detection models, energy inefficiencies, or a lack 
of standardized datasets. The ultimate goal of this work is to 
give researchers and developers a starting point for creating 
scalable, lightweight security mechanisms that adapt to 
changing threats in diverse WSN contexts. The survey 
advances the development of safe and robust WSN 
infrastructures by highlighting important issues and 
suggesting future paths. 
 
 
2. OVERVIEW OF HETEROGENEOUS WIRELESS 
SENSOR NETWORKS  
 
2.1 Definition and architecture 

 
Sensor networks that comprise nodes with varying energy, 

computing power, communication range, and sensing features 
are known as HWSNs. HWSNs add a combination of 
resource-constrained sensor nodes and more potent nodes like 
cluster heads, fusion centers, or gateways, in contrast to 
conventional homogeneous WSNs, where every node has the 
same hardware and purpose. Better network performance and 
resource optimization are made possible by this hierarchical 
architecture. Typically, an HWSN is organized into tiers, with 
low-tier sensor nodes collecting data and high-tier nodes 
handling data processing, aggregation, and base station 
connection. These layers frequently have a grid-based or 
clustered architecture to promote effective communication and 
energy efficiency [7, 8]. HWSNs' architectural adaptability 
makes them appropriate for use in healthcare, military 
systems, and smart environments, but it also makes network 
management more difficult, particularly when it comes to 
putting in place consistent and effective security measures. 
 
2.2 Types of heterogeneity (energy, computation, sensing, 
communication) 

 
Heterogeneity in HWSNs arises from variations in node 

capabilities, which can be broadly classified into four types: 
energy, computation, sensing, and communication 
heterogeneity. 

Energy heterogeneity refers to differences in battery 
capacity or energy harvesting capabilities among nodes. High-
energy nodes are often assigned roles such as cluster heads or 

aggregators. 
Computation heterogeneity occurs when some nodes have 

more powerful CPUs or memory, enabling them to perform 
complex processing tasks like encryption or anomaly 
detection. 

Sensing heterogeneity is present when nodes are equipped 
with different types of sensors (e.g., temperature, gas, 
pressure), allowing for multi-modal environmental 
monitoring. 

Communication heterogeneity refers to differences in 
transmission range or bandwidth; nodes may use varying 
communication protocols (e.g., Zigbee, Wi-Fi) depending on 
their role. 

These heterogeneous traits enable flexible and robust 
network design but pose significant challenges for 
standardizing security mechanisms that can adapt to all node 
types effectively. 
 
2.3 Benefits and challenges of heterogeneous wireless 
sensor networks in security protocol design 

 
Numerous advantages provided by HWSNs improve the 

overall effectiveness and flexibility of networks. High-
capability nodes are assigned specific roles, which improves 
scalability, network lifetime, and data processing efficiency. 
For example, cluster heads can aggregate data and identify 
anomalies before forwarding information to the base station, 
which reduces communication overhead and enhances 
security by enabling early threat detection. However, this 
heterogeneity also introduces significant challenges for 
security protocol design. If a cluster head is compromised, an 
entire subnetwork may be exposed, making high-tier nodes 
attractive targets for attackers. Security protocols must also 
consider the unequal distribution of resource availability 
among nodes. While high-tier nodes can employ more 
complex detection and response mechanisms, lightweight 
security techniques must be sufficiently robust to protect low-
tier nodes without excessive resource consumption [9]. 
Therefore, adaptive, scalable, and context-aware protocols are 
required to ensure secure communication and maintain trust 
across diverse node types, which remains challenging given 
the limited processing and energy capabilities of many 
network segments. 
 
 
3. BLACKHOLE ATTACKS IN WIRELESS SENSOR 
NETWORKS AND HETEROGENEOUS WIRELESS 
SENSOR NETWORKS 
 
3.1 Mechanism of a blackhole attack 

 
In a WSN, a blackhole attack is a kind of network-layer 

security risk when a malevolent node deceptively positions 
itself as having the quickest or most effective route to the 
target, usually the base station. Because they think the rogue 
node is a trustworthy middleman, nearby nodes use it to transit 
their data after learning about it. When the blackhole node 
begins receiving data packets, it secretly drops them rather 
than forwarding them, causing significant data loss and 
interfering with network connections [10]. 

This attack takes advantage of the fact that several WSN 
routing protocols, like AODV or DSR, are trust-based and do 
not automatically confirm the legitimacy of routing packets. 
These protocols are appropriate for contexts with few 
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resources because of their simplicity and low overhead, but 
they are also susceptible to manipulation. Detection becomes 
considerably more difficult when attackers use numerous 
compromised nodes to perform coordinated blackhole attacks 
[11]. By decreasing the packet delivery ratio (PDR), raising 
latency, and using more energy as a result of route rediscovery 
or retransmissions, these attacks impair network performance. 
 
3.2 Attack scenarios and adversarial models 

 
Depending on the capabilities and objectives of the 

opponent, blackhole attacks might appear in a variety of ways. 
One malevolent node interferes with communication in its 
immediate vicinity in a single-node assault. A cooperative 
blackhole attack involves several malevolent nodes working 
together to deceive and intercept data over a larger area, 
causing a more extensive disruption to the network. In 
clustered topologies, where a hacked cluster head might 
impact a whole collection of sensor nodes, these attacks are 
very dangerous. Adversaries might be internal, where malware 
or physical access compromises legitimate nodes, or external, 
when the attacker introduces rogue nodes onto the network 
[12]. The mobility, processing power, and energy availability 
of adversarial models can also differ. By sporadically 
forwarding some packets or altering behavior in response to 
feedback from network monitoring, a skilled attacker who is 
familiar with the routing protocol and network layout can vary 
its approach to avoid detection. 

Designing efficient detection techniques requires an 
understanding of these models. Both static and dynamic 
attackers must be taken into consideration by protocols, which 
must also be able to differentiate between malicious activity 
and normal problems like packet loss brought on by 
congestion or node failure. 
 
3.3 Specific risks in heterogeneous wireless sensor 
networks compared to homogeneous wireless sensor 
networks 

 
Compared to homogeneous networks, HWSNs are 

particularly vulnerable to blackhole attacks. Certain nodes in 
HWSNs, including cluster heads or gateway nodes, have more 
energy stores, processing power, and communication ranges 
than others. These nodes frequently have key roles in routing 
and data aggregation. Therefore, communication can be 
disrupted for a large chunk of the network, not just a small 
neighborhood, if a high-tier node is compromised or behaves 
maliciously. 

Because HWSNs are hierarchical, lower-tier sensor nodes 
rely significantly on upper-tier nodes to relay information to 
the base station. At a higher level, a blackhole node can 
efficiently function as a sink or a bottleneck, collecting and 
discarding significant amounts of important data. 
Furthermore, because of node variability, HWSNs frequently 
lack consistent trust models, which makes it more challenging 
to apply uniform security measures throughout the network. 
The mobility or re-tasking of high-tier nodes in dynamic 
contexts presents an additional risk. Attackers can escape 
static detection techniques by launching adaptive blackhole 
attacks by taking advantage of this mobility or role change 
[13]. Therefore, in order to effectively combat these increased 
risks, security procedures in HWSNs need to be more resilient 
and context-aware. 
 

3.4 Real-world implications and case examples 
 
Blackhole attacks in WSNs and HWSNs have significant 

practical ramifications, especially in mission-sensitive fields 
like healthcare, environmental monitoring, and military 
surveillance. A whole mission may fail, and human lives may 
be lost, for example, if a blackhole node ignores detection 
signals regarding enemy activity or landmines in a combat 
situation. Similar to this, blackhole attacks in smart agriculture 
may result in the loss of sensor data needed for crop protection 
or irrigation, which could lower yields or cause financial harm. 
One prominent example comes from smart grid systems, 
which use sensor networks to keep an eye on infrastructure and 
electrical lines. A blackhole attack might delay emergency 
responses by making it impossible to notice power outages or 
tampering events. Disaster management systems that use 
WSNs to identify fires, gas leaks, or structural damage are 
another example. The impact of the disaster may grow, and 
rescue efforts may be delayed if blackhole assaults stop alert 
messages from getting to the command center [14]. These 
situations highlight the need for real-time blackhole mitigation 
and detection systems. Furthermore, the ramifications of such 
assaults can spread to larger digital ecosystems as WSNs 
interface with the Internet of Things (IoT), which emphasizes 
the need for robust and intelligent security procedures. 
 
 
4. TAXONOMY OF DETECTION AND PREVENTION 
TECHNIQUES 
 
4.1 Classification based on routing-based protocols 

 
Routing-based protocols concentrate on improving or 

modifying existing routing techniques in order to identify and 
stop blackhole attacks. These methods include additional 
verification procedures such as route confirmation, sequence 
number validation, and acknowledgment schemes while 
utilizing the framework of conventional routing protocols 
(AODV, DSR, LEACH, etc.). These protocols detect nodes 
that maliciously drop data packets or advertise bogus routes by 
monitoring route request (RREQ) and route reply (RREP) 
messages. To find irregularities, common methods include 
cross-verifying route information with nearby nodes or 
employing extra control packets, such as two-hop 
acknowledgments. Routing-based solutions are generally 
lightweight in terms of computation, making them suitable for 
resource-constrained nodes in both homogeneous and 
heterogeneous WSNs. However, many of these approaches 
assume uniform node capabilities and do not explicitly 
differentiate between low-energy and high-capability nodes 
during routing and monitoring operations. Their reliance on 
network topology and routing behavior can limit effectiveness 
in dynamic or large-scale environments where routing paths 
frequently change [15]. Additionally, repeated route validation 
and control message exchanges may introduce increased 
communication overhead, which can disproportionately affect 
low-tier nodes with limited energy and processing resources. 
 
4.2 Classification based on trust-based systems 

 
Trust-based systems use node behavior to determine a 

node's credibility in the network, which serves as the 
foundation for spotting malicious nodes like blackhole 
attackers. These systems provide each node a trust score based 
on parameters including packet forwarding rates, node 
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dependability, and past contacts. To stop more disruptions, 
nodes with low trust levels are marked as suspicious and 
excluded from routing decisions. Trust models can be 
distributed, enabling nodes to compute trust locally based on 
their observations, or centralized, where a base station 
maintains trust ratings [16]. Because trust-based systems take 
into account different node roles and capabilities, they are 
especially useful in HWSNs. By regularly assessing how high-
tier nodes (such as cluster heads) behave in hierarchical 
organizations, they aid in their security. Although trust-based 
procedures increase adaptability and resilience, they must be 
carefully calibrated to prevent false positives or needless 
energy consumption brought on by ongoing trust updates and 
monitoring [6]. Additionally, they can have trouble fending off 
coordinated attackers who can tamper with trust 
measurements. 
 
4.3 Classification based on machine learning/artificial 
intelligence-based approaches 

 
Methods based on artificial intelligence (AI) and machine 

learning (ML) use data-driven strategies to identify unusual 
activity suggestive of blackhole assaults. These methods entail 
using labeled datasets that distinguish between benign and 
malevolent network behavior to train models (such as decision 
trees, support vector machines, and deep neural networks). 
These algorithms may identify nodes as malicious or 
legitimate in real time by examining characteristics including 
routing patterns, sequence numbers, and packet delivery rates 
[17]. By identifying intricate patterns in expansive or dynamic 
WSN environments, sophisticated techniques like deep 
learning (DL) or ensemble learning can increase detection 
accuracy. 

Because HWSNs have high-capability nodes that can 
manage computationally demanding activities like model 
training and inference, ML/AI-based approaches are 
especially advantageous for these networks [18]. These 
methods could, however, provide new difficulties, such as the 
requirement for extensive datasets, processing overhead, and 
energy usage. Moreover, ML-based models must be updated 
and retrained on a regular basis because their efficacy rests on 
their capacity to adjust to changing attack tactics. 
 
4.4 Classification based on cryptographic-based protocols 

 
By guaranteeing data integrity, confidentiality, and 

authenticity, cryptographic-based protocols seek to secure 
communication channels and authenticate nodes in order to 
stop blackhole assaults. These methods use hash functions, 
digital signatures, encryption algorithms, and key 
management systems to prevent tampering with routing data. 
For example, nodes may employ lightweight cryptographic 
techniques (like AES and ECC) to confirm the authenticity of 
secure control messages or route ads. By requiring 
authentication credentials that are only known by genuine 
nodes, cryptographic techniques also stop adversaries from 
introducing fictitious routing information. 

To lessen the strain on low-energy nodes, cryptographic 
solutions in HWSNs frequently use high-capability nodes for 
secure data aggregation and key distribution. Cryptographic-
based protocols can be resource-intensive; it's important to 
strike a balance between security strength and energy 
efficiency, even if they provide strong protection against both 
internal and external threats. Effective implementation of 

these protocols still faces major obstacles in the areas of key 
management, scalability, and the possibility of compromised 
nodes disclosing cryptographic material. 

 
4.5 Classification based on hybrid models 

 
To offer a more thorough defense against blackhole attacks, 

hybrid models include several detection techniques, including 
ML, cryptography, trust assessment, and routing-based 
approaches. Hybrid models mitigate individual limits while 
improving detection accuracy, adaptability, and resilience by 
utilizing the advantages of each technique. For instance, a 
hybrid protocol may combine cryptographic authentication 
and trust-based monitoring to better identify and isolate hostile 
nodes and protect routing data from manipulation. 
Additionally, to enhance anomaly detection in dynamic 
contexts, ML models can be combined with conventional 
routing checks. 

Because of the network's hierarchical structure and diverse 
node capabilities, hybrid techniques are especially beneficial 
in HWSNs. Low-tier nodes manage simple activities like basic 
trust evaluation, while high-tier nodes can carry out 
sophisticated computations (such as encryption or ML 
analysis). Hybrid systems must be carefully designed to 
preserve efficiency because they can increase complexity, 
communication overhead, and energy usage [18]. Hybrid 
models offer a potential approach to protecting HWSNs from 
advanced blackhole assaults in spite of these difficulties. 
 
4.6 Detection criteria and evaluation parameters 

 
A number of performance indicators and detection criteria 

are taken into consideration in order to assess how well 
blackhole detection and prevention strategies work. Packet 
forwarding behavior, routing control message analysis, node 
trustworthiness, and traffic anomaly detection are examples of 
common detection criteria. The capacity of protocols to 
correctly detect malicious nodes while reducing false positives 
and false negatives is the basis for their evaluation. Key 
evaluation parameters include: 

• PDR: Measures successful data packet delivery despite 
attacks. 

• Detection Accuracy: The rate at which malicious nodes are 
correctly identified. 

• Energy Consumption: Evaluates the energy overhead 
introduced by security mechanisms. 

• End-to-End Delay: Measures the impact on 
communication latency. 

• Throughput: Assesses the network’s data transmission 
efficiency. 

• False Positive/Negative Rates: Indicates the reliability of 
detection mechanisms. 

• Routing Overhead: Additional control messages required 
for detection and prevention. 

Researchers can determine trade-offs between security 
strength and network performance by examining these factors 
using a variety of methodologies. This information will help 
them build protocols that are optimal for heterogeneous WSN 
environments. 

A comparative review of different blackhole attack 
detection strategies in HWSNs, arranged according to their 
underlying techniques, is given in Table 1. It provides insight 
into their applicability for various network settings and 
resource restrictions by highlighting important detection 
criteria, evaluation metrics, strengths, and limits. 
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Table 1. A comparative overview of various blackhole attack detection approaches in heterogeneous wireless sensor networks 
(HWSNs) 

 
Approach Detection Criteria Evaluation Metrics Strengths Limitations 

Routing-Based 
Protocols 

Route reply verification, 
sequence number analysis, 

forwarding check 

Packet delivery ratio (PDR), 
routing overhead, detection 

latency 

Lightweight, suitable 
for low-power nodes 

Vulnerable to dynamic 
topology changes 

Trust-Based 
Systems 

Node behavior, packet 
forwarding ratio, historical 

interactions 

Trust score accuracy, false 
positive rate (FPR), packet loss, 

energy consumption 

Adaptive, suitable 
for hierarchical 

HWSNs 

May fail under collusion or 
limited observations 

ML/AI-Based 
Approaches 

Anomaly detection via 
statistical learning and 

pattern recognition 

Detection accuracy, false 
positive/negative rates, model 

training time, computation 
overhead 

High detection 
accuracy, adapts to 

evolving threats 

Requires datasets, retraining, 
and more energy on some 

nodes 

Cryptographic 
Protocols 

Authentication, data 
integrity, and message 

encryption 

Encryption overhead, key 
distribution time, packet integrity 

rate, end-to-end delay 

Strong protection 
against tampering 

High energy/computation 
demands, especially on low-

tier nodes 

Hybrid Models 
Combined trust, routing 

checks, ML or encryption-
based techniques 

Comprehensive accuracy, 
energy-efficiency trade-off, PDR, 

detection coverage 

Balances detection 
accuracy and 

robustness 

Complexity in design, 
potential for higher overhead 

 
 
5. SURVEY OF SECURITY PROTOCOLS FOR 
BLACKHOLE DETECTION 

 
Blackhole attacks pose a significant threat to the reliability 

of WSNs. This section reviews recent security protocols for 
blackhole attack detection, emphasizing detection 
mechanisms, performance trade-offs, and suitability for 
heterogeneous deployments. 

Khan et al. [16] presented a trust-based optimized reporting 
scheme designed to detect and prevent blackhole attacks in 
constrained routing environments such as RPL-based Low-
Power and Lossy Networks (LLNs). The proposed protocol 
computes direct and indirect trust values for neighboring 
nodes using metrics including honesty, energy, unselfishness, 
and similarity, and employs a delta-threshold mechanism with 
a forgetting curve to dynamically weight recent behavior. This 
approach enables the root or sink node to make more reliable 
decisions about malicious behavior while reducing false 
positives and reporting overhead. The scheme also balances 
detection accuracy with minimal communication and 
processing costs, addressing a crucial challenge in resource-
limited HWSN deployments where energy efficiency and 
timeliness are essential. Through simulation and evaluation, 
the authors demonstrate improved detection performance 
compared to conventional static threshold methods, making 
this security protocol a valuable strategy for blackhole 
detection in HWSNs.  

Ramesh et al. [18] proposed an energy-aware and adaptive 
intrusion detection system (IDS) tailored for WSNs that 
targets both blackhole and wormhole attacks. The security 
framework leverages DL techniques combined with advanced 
feature generation and adaptive learning to improve detection 
accuracy while minimizing energy consumption, which is 
critical in resource-constrained environments. Specifically, 
the method uses generative adversarial networks (GANs) for 
generating distinguishing attack features, meta-heuristic 
optimization such as the whale optimization algorithm (WOA) 
for parameter tuning, and deep Q-learning for adaptive 
learning of attack patterns, ensuring the model can respond to 
evolving threats in real time. Simulation results demonstrate 
that this hybrid approach achieves high detection accuracy, 
recall, and specificity compared with traditional ML and DL 
models, highlighting its suitability for real-time deployment in 
heterogeneous sensor environments. 

Ramesh et al. [18] introduced an energy aware adaptive 
intrusion detection and prevention framework to detect 
blackhole and grayhole attacks with improved accuracy and 
reduced false alarms. The protocol integrates the Generative 
adversarial networks (GAN) and whale optimization 
algorithm to learn the attack behavior. Simulation results 
indicate that the hybrid IDS achieves higher detection rates 
and lower energy consumption than traditional standalone IDS 
methods, making it suitable for resource-constrained 
heterogeneous environments. Importantly, the study analyzes 
the trade-offs between detection accuracy, energy overhead, 
and scalability, providing insight into how multi-layer security 
protocols can be effectively deployed in diverse wireless 
sensor deployments. 

Ghugar et al. [19] presented DLTIDS, a dual-layer trust-
based IDS designed to detect blackhole attacks in WSNs. Two 
complementary trust mechanisms are employed by the system. 
By identifying nodes as either suspect or trusted, the first layer 
assesses direct trust based on node behavior, particularly 
packet forwarding and hop count. To further examine node 
activity and confirm malicious intent, the second layer uses a 
watchdog mechanism. Cluster leaders are essential to the 
coordination of trust evaluations and data aggregation. To 
trace and verify network paths, DLTIDS keeps track of three 
tables: route, source, and destination. It looks for irregularities 
by comparing sequence numbers and hop counts. The system 
is evaluated using both watchdog-based and conventional 
AODV methods after being simulated in MATLAB. The 
findings demonstrate reduced false alarm rates, enhanced 
detection accuracy, and trust stability, particularly at higher 
network densities. DLTIDS is robust against blackhole and 
jamming attacks and demonstrates adaptability to dynamic 
WSN environments. Its dual-layer structure makes it a reliable 
and scalable solution for real-time WSN security. 

Khan et al. [20] proposed an artificial neural network 
(ANN)-based mechanism to detect routing attacks in WSNs, 
targeting blackhole, grayhole, and wormhole threats. The 
method makes use of a feed-forward ANN that was trained 
using characteristics such as the number of packets, energy 
consumption, and node trust level. The NS2 simulator is used 
to implement the model, which was trained using the 
CICIDS2017 dataset. To increase classification and decrease 
false positives, it makes use of a three-layer ANN (input, 
hidden, and output) with optimum parameters. Training on 
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labeled data and testing on unlabeled real-time traffic are the 
two stages of detection. The ANN demonstrated resilience 
against a range of routing hazards with an accuracy of 99.49% 
and a detection rate of 99.21%. According to simulation 
results, performance was consistent across attack scenarios 

with low energy usage and packet loss. The technology 
outperforms traditional techniques by maintaining reliable 
packet delivery even during attacks. This work highlights the 
viability of ANN models for real-time intrusion detection in 
resource-constrained, energy-sensitive WSN environments.  

 
Table 2. A comparative analysis of various blackhole attack detection techniques in wireless sensor networks (WSNs) 

 

Paper Protocol Name / 
Approach Architecture Detection 

Mechanism Performance Metrics Applicability 
to HWSNs Strengths Limitations 

[21] AES-Based Signature 
Detection Distributed Symmetric key 

cryptography 

End-to-end delay, 
packet delivery ratio 

(PDR) 
Moderate Low communication 

delay 
Requires key 
management 

[22] Fuzzy-GA-TLBO 
Model Centralized 

Fuzzy logic with 
Genetic algorithm 

(GA) and teaching-
learning-based 
optimization 

(TLBO) 

Computational cost Limited Low computational 
cost 

Centralized nature 
may hinder scalability 

[23] Deep learning (DL)-
Based Detection Distributed DL classifiers True detection rate 

(TDR) High High detection 
probability 

Requires substantial 
training data 

[24] Encryption with Deep 
Neural Networks 

Cluster-
based Encryption and DL 

Packet loss ratio 
(PLR), throughput, 

delay 
High High data delivery 

with minimal delay 
Computational 

overhead 

[25] JDICA Technique Distributed Joint detection and 
isolation 

PDR, TDR, energy 
consumption Moderate High accuracy, 

reduced delay 
Potential energy 

consumption 

[26] Blockchain-Based 
Detection Distributed Blockchain ledger 

verification 
PDR, throughput, 

delay High Effective malicious 
node identification Blockchain overhead 

[27] Warning message 
counter (WMC) Distributed Behavior-based 

monitoring 
PDR, FPR, false 

negative rate (FNR) Moderate Improved PDR, low 
false rates 

May require 
additional 

communication 

[28] GA with XGBoost 
Classifier Distributed GA and XGBoost TDR High High detection rate Computational 

complexity 

[29] Cluster-Based Voting 
Decision Cluster-based Voting among 

cluster nodes 

False detection rate 
(FDR), energy 
consumption 

High Low FDR, negligible 
energy use 

Requires reliable 
cluster formation 

 
Table 3. A Comparative analysis of various blackhole attack detection techniques in wireless sensor networks (WSNs) 

 

Paper Technique / Model Used Simulation 
Tool / Dataset Performance Metrics and Results Limitations 

[30] 
Online ensemble learning 

(adaptive random forest and 
hoeffding adaptive tree) 

WSN-DS 
dataset 

Detection rates: 96.84% (heterogeneous 
ensemble), 97.2% (homogeneous 

ensemble) 

Focuses on streaming data; may 
require adaptation for static datasets 

[31] 
Hybrid meta-heuristic 

combining WOA and sine 
cosine algorithm 

Custom 
simulation 

Detection rate: > 85%; warning rate: 
0.866 

Emphasizes optimization; specific 
energy consumption metrics not 

detailed 

[32] Fitness rate-based WOA with 
optimized LSTM - 

Energy consumption improved by 
7.14% over WOA and FireFly; better 

accuracy than conventional LSTM 

Combines DL with optimization; 
computational complexity 

considerations apply 

[33] ML classifiers (random 
forest, etc.) 

WSN-DS 
dataset 

Random forest achieved 99.72% 
accuracy 

Focused on multiple DoS attacks; 
specific metrics for blackhole 

attacks not isolated 

[34] 
The trust factor decreases 

exponentially with 
consecutive packet drops 

- Early detection of malicious nodes 
through trust degradation 

Older study; may need updates to 
align with current WSN standards 

and technologies 

[35] 
IDS and digital signature 

integration with the AODV 
protocol 

- Enhanced PDR and reduced delay 
compared to standard AODV 

Specific simulation parameters and 
environments not detailed 

[36] 
Dynamic threshold-based 

detection with forged RREQ 
packets 

NS-2 simulator 
Detection rate: 94.66%; PDR increased 
by 3%; throughput improved by 6.15%; 

end-to-end delay reduced by 6.13% 

Focused on VANETs; applicability 
to WSNs may require adaptation 

[37] Forensic analysis approach - Detailed analysis of blackhole attack 
patterns and behaviors 

Primarily analytical; lacks 
implementation of 

detection/prevention mechanisms 

[38] 
Cognitive intelligence 

framework with AI and big 
data analytics 

- 
Capable of detecting and preventing 

various attacks, including DoS; resilient 
to packet drop occurrences 

Broad approach; specific 
performance metrics for blackhole 

attacks are not detailed 

[39] Survey of ML techniques for 
anomaly detection - 

Comprehensive overview of ML-based 
approaches for anomaly detection in 

WSNs 

Survey paper; does not propose a 
specific detection/prevention 

method 
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Kim et al. [21] introduced a detection mechanism utilizing 
symmetric key cryptography, specifically AES, combined 
with signature-based methods. The goal of this distributed 
architecture method is to identify blackhole attacks without 
causing appreciable communication lag. Although the 
technique is successful in preserving a high PDR and minimal 
end-to-end delay, it necessitates strong key management 
techniques to manage cryptographic keys throughout the 
network. 

Almseidin et al. [22] proposed a centralized detection model 
integrating fuzzy logic with genetic algorithm (GA) and 
teaching-learning-based optimization (TLBO). The goal of 
this hybrid strategy is to maximize computational efficiency 
without sacrificing detection precision. However, in large-
scale HWSNs, where distributed solutions are frequently more 
practical, their centralized nature may provide scaling issues. 

Saxe and Berlin [23] developed a DL-based detection 
system employing classifiers trained to identify blackhole 
attacks. With its high true detection rate (TDR) and distributed 
operation, this method is appropriate for dynamic and diverse 
situations. The main drawback is the requirement for large 
amounts of training data and processing power, which not all 
sensor nodes may have easily accessible. 

Saravanakumar et al. [24] combined encryption methods 
with deep neural networks in a cluster-based architecture to 
detect blackhole attacks. This hybrid strategy makes use of 
cluster heads' processing power to increase data delivery rates 
and reduce latency. However, the combination of DL and 
encryption adds computational overhead, which calls for 
cautious resource management. 

Table 2 provides a comparative analysis of various 
blackhole attack detection techniques in WSNs, focusing on 
architecture, detection mechanisms, performance metrics, and 
applicability to HWSNs. Each method is evaluated for its 
strengths and limitations, highlighting trade-offs such as 
detection accuracy versus computational or communication 
overhead. 

Clement Sunder and Shanmugam [25] introduced the 
JDICA technique, a distributed method focusing on joint 
detection and isolation of malicious nodes. By lowering 
latency and increasing PDR, this strategy raises network 
efficiency overall. However, the longevity of sensor nodes 
may be impacted by the energy consumption related to 
ongoing monitoring and isolation procedures. 

Abdelrahman et al. [26] implemented a blockchain-based 
detection mechanism, utilizing the immutable ledger to verify 
node behavior and detect anomalies. This distributed method 
improves throughput and guarantees efficient detection of 
rogue nodes. The increased overhead brought about by 
blockchain operations, which could have an impact on 
processing time and energy usage, is one of the trade-offs. 

Terence and Purushothaman [27] proposed the warning 
message counter (WMC) method, a behavior-based 
monitoring system operating in a distributed architecture. This 
method maintains low false positive and negative rates while 
increasing the PDR by examining node behavior and 
delivering warnings. Network traffic may increase if more 
communication is required to spread warnings. 

Ashfaq et al. [28] developed a detection system combining 
GA with the XGBoost classifier in a distributed setup. Because 
of its high detection rate, this technique is useful for spotting 
blackhole attacks. However, such models may not be as 
applicable in contexts with limited resources due to the 
computational complexity involved in training and deploying 

them. 
Liu and Wu [29] presented a cluster-based voting decision 

method, where cluster nodes collaboratively decide on the 
legitimacy of data packets. This method meets the 
requirements of HWSNs by achieving low FDRs and low 
energy usage. The stability and dependability of cluster 
formations are necessary for this strategy to be effective. 

Table 3 offers a comparative analysis of various blackhole 
attack detection techniques in WSNs, focusing on the 
simulation tools or datasets used, achieved performance 
metrics, and limitations of each approach. It includes both ML 
and meta-heuristic models such as Random Forest, LSTM, and 
hybrid optimization algorithms. The table highlights detection 
accuracy, energy efficiency, and improvements in packet 
delivery or delay metrics. While some techniques show high 
accuracy, others emphasize adaptive learning or trust-based 
mechanisms. However, limitations like computational 
complexity, lack of simulation detail, or applicability to only 
specific network types are also noted. 
 
5.1 Discussion of trends, performance gaps, and innovative 
approaches 
 
5.1.1 Several trends emerge from the literature 

• Adoption of AI/ML: There is a clear trend toward using 
ML and DL approaches (e.g., Random Forest, XGBoost, 
LSTM) for detecting complex or evolving attacks in WSNs, 
particularly HWSNs. 

• Hybrid Approaches: Solutions increasingly combine 
techniques such as cryptography, trust models, and ML to 
improve robustness and adaptability (e.g., GA-XGBoost [28], 
Fuzzy-GA-TLBO [22]). 

• Distributed Detection Models: Many techniques favor 
distributed architectures for scalability and resilience, 
especially in large and dynamic networks. 

• Focus on Energy Efficiency: With the rise of energy-
constrained deployments, several models emphasize reduced 
computation and communication overhead (e.g., cluster-based 
and low-FDR solutions). 

• Behavior-Based Monitoring: Trust-based and behavior-
driven models (like WMC) are being used to detect malicious 
patterns without needing heavy computation. 

 
5.2 Limitations and open challenges in blackhole attack 
detection 

 
• Lack of Real-Time Validation: Many models perform well 

in simulation but may not adapt easily to real-time or field 
conditions. 

• Limited Benchmarking: Datasets like WSN-DS are used 
repeatedly; however, these do not always reflect 
heterogeneous or real-world traffic conditions. 

• Insufficient Focus on HWSNs: While some models claim 
applicability to HWSNs, many do not account for the diversity 
in node capability, energy availability, and communication 
range. 

• Overhead from Advanced Techniques: Cryptographic and 
DL models, while accurate, can impose significant processing 
and energy burdens, especially on lower-tier nodes. 

• Scalability Issues: Centralized models or those requiring 
heavy coordination (e.g., Fuzzy-GA-TLBO) face challenges 
in scaling to large networks. 
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5.3 Few novel methodologies for blackhole detection in 
heterogeneous wireless sensor networks, including deep 
learning and blockchain-based systems 

 
• Ensemble Learning [40]: Adaptive ensemble models (e.g., 

Random Forest, XGBoost, Hoeffding Tree) offer high 
accuracy and resilience to concept drift in streaming data 
environments. 

• LSTM-Based Detection [41]: DL with LSTM enables 
modeling of sequential behavior in routing, improving 
detection of stealthy attacks like blackholes. 

• Blockchain-Based Detection [42]: Using distributed 
ledgers to verify node behavior adds tamper-resistance and 
traceability to network monitoring. 

• Trust Degradation Metrics: Exponential trust reduction 
strategies help identify persistent malicious nodes by 
analyzing patterns of packet drops. 

• Voting Mechanisms in Clusters: Consensus-based 
validation among cluster nodes enhances robustness and 
reduces FDRs. 

 
5.4 Adaptability of existing protocols from homogeneous 
wireless sensor networks to heterogeneous models 

 
Although many intrusion detection protocols were initially 

created for homogeneous WSNs, they are still not very 
adaptable to HWSNs unless they are changed. Networks with 
heterogeneous node capabilities are incompatible with 
protocols that assume uniform energy or bandwidth. 
Nonetheless, certain models can be easily adapted to HWSNs, 
particularly trust-based, cluster-based, and mobile agent-based 
architectures. For example: 

• Cluster-based IDS can leverage high-power nodes as 
aggregators or monitors. 

• ML models like ensemble learners can handle data from 
heterogeneous sources if designed with dynamic feature 
weighting. 

• Distributed trust-based systems can be adapted for local 
anomaly detection across tiered nodes. 

Overall, successful adaptation requires that protocols 
recognize node role and resource diversity, offload complex 
computation to capable nodes (high-power), and enable 
lightweight participation for energy-constrained nodes. 

The framework overview for HWSNs integrates intelligent, 
time-sensitive attack detection mechanisms to support secure 
network communication against blackhole attacks. The 
network is structured into three major layers: The Sensor 
Network, Processing and Management, and Security and 
Attack Detection. In the Sensor Network layer, low-power 
sensor nodes with limited resources perform basic sensing 
tasks and transmit raw data to nearby high-power sensor 
nodes, which possess enhanced aggregation, processing, and 
communication capabilities. The high-power nodes aggregate 
the sensed data and forward it to the central sink node within 
the Processing and Management layer. The sink node collects 
behavior and communication patterns from multiple nodes and 
forwards the structured behavior data to a time-aware attack 
detection module in the Security and Attack Detection layer. 

The detection module utilizes sequential behavior analysis 
to identify anomalous activities such as packet drops and 
suspicious routing patterns associated with blackhole attacks. 
Once an anomaly is identified, the information is passed to a 
response engine responsible for generating alerts, isolating 
compromised nodes, and updating routing paths to ensure 
secure network operation. The response engine then 
communicates routing decisions back to the sink node and the 
high-power nodes, maintaining the continuity and integrity of 
data transmission. This modular, learning-based detection 
architecture supports adaptability to evolving attack behaviors 
while preserving energy efficiency and meeting the real-time 
requirements of heterogeneous wireless sensor deployments. 
Figure 1 shows an overview of HWSN-based attack detection. 
Table 4 shows the design considerations for security protocols 
in HWSNs.

 

 
 

Figure 1. An overview for heterogeneous wireless sensor network (HWSN) based attack detection 
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Table 4. Design considerations 
 

Design Consideration Description 

Energy Efficiency Minimize computational and communication overhead to preserve energy, especially on 
low-power nodes. 

Scalability Ensure effectiveness in large-scale, dense, and expanding networks without performance 
degradation. 

Heterogeneity Awareness Account for varied node capabilities and distribute detection tasks appropriately. 
Accuracy and Low FDRs Achieve high detection accuracy with minimal false positives/negatives to avoid disruptions. 

Lightweight Implementation Design simple algorithms that require minimal memory, processing, and bandwidth. 
Real-Time Detection and Responsiveness Detect and respond to attacks quickly to minimize data loss and communication disruption. 

Robustness Against Collusion and 
Mobility Handle both single/cooperative attacks and adapt to dynamic, mobile topologies. 

Trust Management Use dynamic, context-aware trust evaluation to distinguish malicious nodes from faulty 
ones. 

Interoperability with Routing Protocols Integrate seamlessly with existing energy-efficient and hierarchical routing protocols. 
Distributed vs. Centralized Detection 

Balance Balance distributed detection to reduce overhead while avoiding single points of failure. 

Resilience and Fault Tolerance Maintain functionality and security even when nodes fail or are compromised. 
Adaptability to Evolving Attacks Adapt to new blackhole strategies through learning or flexible detection rules. 

Secure Data Aggregation and 
Communication Ensure secure data handling and prevent tampering despite routing disruptions. 

 
 
6. CONCLUSIONS 

 
This paper presented a comprehensive survey and analysis 

of security protocols for blackhole attack detection in HWSNs. 
Through a structured taxonomy and detailed review, the study 
highlights that trust-based, routing-aware, hybrid models and 
lightweight learning-assisted approaches are among the most 
promising strategies for HWSNs, particularly when aligned 
with node heterogeneity in terms of energy, computation, and 
communication capability. The analysis reveals critical trade-
offs between detection accuracy, communication overhead, 
scalability, and energy consumption, which significantly 
influence the practical applicability of existing solutions in 
real-world deployments. The survey also shows that many 
existing protocols achieve strong performance in controlled or 
simulation environments but often lack explicit consideration 
of heterogeneous node roles, real-time constraints, and 
scalability to large networks. Approaches that leverage higher-
capability nodes or centralized sinks for monitoring and 
decision-making tend to offer better resilience, while overly 
complex cryptographic or computation-heavy techniques can 
impose excessive burdens on low-tier nodes. These findings 
emphasize the need for adaptive, energy-aware, and role-
aware security designs in HWSNs. Based on the insights 
gained from the surveyed literature, a generalized coordinated 
detection and response framework—where low-power and 
high-power nodes collaborate under a centralized sink—
emerges as a practical design direction for improving 
blackhole attack resilience. Future research should focus on 
extending such frameworks to handle more complex attacks, 
including wormhole, Sybil, and greyhole attacks, while 
maintaining low overhead. Additional directions include 
incorporating lightweight cryptographic mechanisms, 
adaptive and context-aware detection models, real-world 
testbed validation, mobility support, and decentralized trust 
management approaches, such as blockchain, to further 
enhance robustness and adaptability in heterogeneous wireless 
sensor environments. 
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