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The need for deep learning (DL) approaches as effective and practical models for attaining
security in wireless sensor networks (WSNs) has grown with the rise of artificial
intelligence applications. With the capacity to identify threats and guarantee data integrity,
DL models improve security efficacy and lower the total risks of different assaults.
Intelligent detection and protection systems are essential for the security of information
transfer since wireless computer networks are vulnerable to several incursions, including
malware, intrusion flows, and security flaws. In order to identify and stop distributed
denial of service (DDoS) assaults, this study will categorize and analyze data transferred
across the virtual computer network using a DL approach known as long short-term
memory (LSTM). In this study, a deep learning (LSTM) algorithm model has been
employed for a virtual cloud WSN and proposed to check security using the UNSW-NB15
dataset and detect/stop the DDoS cyber-attacks flood type. The proposed LSTM deep
learning model has been designed to analyze and classify the flood of the transmitted
dataset inside the WSN by training the internal weights and adjusting their parameter
variations. According to the simulation results, a high training efficiency was recorded,
reaching 99.96% with a very low error rate of 0.04% in training the proposed LSTM

model according to the employed dataset.

1. INTRODUCTION

The variety of cyber-attacks, their use of modern and unique
programming, and the growth of the extent of electronic
breaches by computer and cloud network programmers have
made monitoring cyber-attacks a crucial issue. Distributed
denial of service (DDoS) assaults, however, can be addressed
in two ways. The fundamental process involves offering a
directly equivalent token, and the final method manifests as
tokens. Direct assaults target any flaw in the design of the
information system that might result in harm or even the
termination of service. Additionally, hostile attacks look for
various components that are linked to other components of the
system to attack and skew the information flow and content.
To prevent external and internal intrusions and to protect the
data and information of institutions that use the Internet and
communications networks, there is a growing need to develop
better security schemes for various real-world applications.
Efficient algorithms that collaborate with wireless sensor
networks (WSNs) to offer highly dependable cyber-attack
detection and prevention using a variety of techniques are
suggested to meet these fundamental needs. Evaluation
algorithms and control algorithms are really the two main
algorithms for cyber-security aggregation and cloud
computing planning [1-3]. WSNs' assessment and control
algorithms are made to accomplish "utilitarian goals, such as
closed-loop security objectives. Theoretically, obtaining
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insulation from malevolent attacks on the electronic system is
the main security objective.

Figure 1. Schematic diagram of the wireless sensor networks
(WSNs) construction [3-5]

However, handling all variables and emergency situations
is also necessary to reach the degree of security. Additionally,
when tags and data are gathered from sensors of different
computer network units, including private sensitive data,
security methods must be applied to guarantee the data's
validity. Figure 1 shows a schematic diagram of the WSNs
construction [3-5]. In order to convey and present theoretical
ideas, as well as to exhibit and plan, WSNs organize exercises
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and real-world activities with outstanding projects and stages.

They also combine examination procedures. As basic
advancements, it necessitates outstanding connection
activities amongst PCs, networks, and genuine frameworks.
Since the product is remembered for its equipment and its
standard, innovation is dependent on a variety of trains, such
as embedded frameworks, PCs, communications, and so forth.
The main element involves more than simply calculations,
such as intelligent transportation frameworks, logical devices,
and automobiles, as well as medical equipment. Concerned
experts are presently showing a great deal of interest in the
WSNs initiative [6]. Energy, transport, rainfall, and healthcare
systems are just a few of the contemporary sectors that are
seeing notable advancements in modernization and
monitoring. Concern for management, effectiveness, and
appropriateness has led to an attempt to regulate data security.
This calls for rigorous study in evaluating and integrating real-
world cyber systems, cyber-attack detection, and full
compatibility of the systems, information, communications,
and computing developed in reality.

1.1 Types of cyber-attack techniques

The "WSNs" promise to provide the insurance currently
used in an additional substance highlight that is viable with
protection against attacks and breaks, as well as providing
adaptability—the feature of the framework that is viable with
survival and recovery after the assault or break—is mentioned
in this region for the introductions of this examination. Online
preliminary overpowering is being threatened by appropriate
DDoS assaults. In a DDoS attack, several bundles are
communicated to a designated server, exhausting the
organization's transmission capacity or the casualty's storage.
Programming for DDoS attacks has been around for a while,
and there are several defence techniques available to combat
exclusive-resource attacks. With the use of more advanced
capabilities, the stock of such attacks might then be
successfully prevented or justified. Nevertheless, there are a
vast number of helpless frameworks from which invaders may
select. Figure 2 displays the effect of the denial of service

(DoY) attack [6].
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Figure 2. The effect of the denial of service (DoS) attack [6]

Instead of employing a single server, which is currently
unpersuasive given the notable advancements in Web usage
over the past ten years, attackers leverage these vulnerable
hosts to launch an attack. Furthermore, a single server assault
may be successfully identified. Before launching an attack, an
attacker takes control of many Internet-connected PCs; this
type of PC motor is known as an overseer, and it places these
PCs in a precarious position. The attacker then installs
malicious software, tools, and other hacking techniques to take
advantage of the PCs' flaws and weaknesses and use them to
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enforce orders. Also, Table 1 summarizes the crucial types of
cyber-attack techniques [7, 8].

Table 1. Summary of common cyber-attack techniques [7, 8]

Type of Attack Description
- Fraudulent emails or messages trick
Phishing . . o
users into revealing sensitive data.
Spear Phishing A targeted form of phishing aimed at

specific individuals or organizations.
Malware that encrypts data and
demands ransom to unlock it.
Overloads systems or networks, making

Ransom Ware

Denial of Service

(DoS) services unavailable to legitimate users.
Distributed Denial of ~ Similar to DoS, but attacks are launched
Service (DDoS) from multiple compromised systems.
Man-in-the-Middle Attacker intercepts and possibly alters

(MitM) communication between two parties.
SQL Injection Exploits vulnerabilities in applications

to access or manipulate databases.
Injects malicious scripts into trusted
websites viewed by other users.
Malicious software (viruses, worms,
trojans) is designed to harm or exploit.
Attacks that target vulnerabilities
unknown to the software vendor.
Using stolen credentials to gain
unauthorized access to user accounts.
Repeatedly tries different passwords or
keys to gain access.
Manipulating individuals into divulging
confidential information.
Malware is automatically downloaded
when visiting compromised websites.
Attacks initiated by employees or
trusted individuals within the
organization.

Cross-Site Scripting
(XSS)

Malware
Zero-Day Exploit
Credential Stuffing
Brute Force Attack
Social Engineering

Drive-by Download

Insider Threats

Table 1 above illustrates the most important modern cyber-
attack methods and techniques discovered to date. In fact, the
types of cyber-attacks and breaches are impossible to list, as
they are constantly evolving. Attackers, network, and internet
hackers update their attack techniques and hacking programs
whenever a defense method is introduced, making the topic a
subject of scientific research and study.

1.2 Types of defense techniques

Modern applications, including industrial automation,
healthcare, and environmental monitoring, depend on WSNss.
However, because of their decentralized architecture and
resource limitations, WSNs are susceptible to assaults such as
data injection, Sybil attacks, and jamming. A multi-layered
defense strategy is necessary to protect these networks. It
combines detection tools like Intrusion Detection System
(IDS), trust management, and anomaly monitoring to spot
malicious activity in real time, with prevention strategies like
encryption, authentication, and secure routing protocols to
prevent unwanted access and tampering. By emphasizing
resource economy and flexibility, these methods tackle the
particular WSN constraints of limited energy, scalability, and
dynamic topologies. Their breadth goes beyond protecting
secrecy and data integrity to guarantee network availability
and dependability, allowing WSNs to function dependably in
challenging conditions. Strong defensive tactics are essential
to maintaining the expanding use of WSNs in mission-critical
systems as cyber threats change, underscoring their function



as a pillar of safe Internet of Things (IoT) ecosystems [9, 10].

The cyber protection strategies employed in WSNs to identify

and stop threats are compiled in Table 2.

Table 2. Demonstration of the cyber protection strategies employed in wireless sensor networks (WSNs) to identify and stop

various threats

Type (Detection /

Technique Prevention) Description Examples
. . Secures data confidentiality by converting .
Encryption Prevention data into unreadable formats. AES, RSA, TinySec.
Authentication Protocols Prevention Ensures only authorized nodes join the Digital certificates, HMAC, Two-factor
network. authentication.
Intrusion Detection . Monitors network traffic/node behavior for Anomaly-based IDS, Signature-based
Detection .
Systems (IDS) anomalies. IDS.
Jamming Both Detects and counters radio jamming Frequency hopping, Spread Spectrum
Detection/Mitigation attacks. (DSSS), Energy-aware routing.
Secure Routing Protocols Prevention Protects routing paths from mampqlatlon SPINS, LEAP, INSENS.
(e.g., sinkhole, selective forwarding).
Trust Management . Evaluates node trustworthiness to identify Reputation-based systems, Bayesian
Detection .
Systems malicious actors. trust models.
Physical T'amp o Prevention Detects physical tampering of sensor nodes. Tamper-proof p ackaglng, self-destruct
Detection mechanisms.
Key Management Prevention Secures cryptographlg key distribution and LEAP, Raqdom key pre-distribution,
rotation. Periodic key updates.
Sybil Attack Detection Detection Identifies nodes using multiple fake Resource testing, Rad1q ﬁggerprmtmg,
identities. Neighbor monitoring.
Data Redundancy Checks Detection Validates data integrity t.hrough consistency Majority voting, Qheckgums, Hash-
analysis. based verification.
Firmware/Software . Ensures nodes run updated, patched Secure OTA updates, Secure boot
Prevention e .
Updates software to fix vulnerabilities. mechanisms.
. . Detects abnormal energy consumption Power usage profiling, Threshold-based
Energy Monitoring Detection (e.g., battery-draining attacks). alerts.
Secure Time Prevention Prevents time-based attacks by securing TESLA, Reference Broadcast
Synchronization synchronization protocols. Synchronization (RBS).
Clone/Rephcanon Detection Identifies duplicate malicious nodes. Location-based attestation, Unique
Detection hardware IDs.

Table 3. A summary table of the main deep learning neural network (DLNN) kinds [11-13]

Type Construction Description
Convolutional Neural Convolutional layers, pooling layers, and Processes grid-like data (e.g., images) via filters to detect
Network (CNN) fully connected layers. spatial patterns (edges, textures).
Recurrent Neural Network Basic recurrent layers, sequential Handles sequential data but struggles with long-term
(RNN) input/output. dependencies due to vanishing gradients.
Long Short-Term Memory Memory cells with input, forget, and output Solves RNN limitations by retaining long-term dependencies
(LSTM) gates; recurrent connections. via gated memory cells.
Generative Adversarial Generator and discriminator networks trained Generates synthetic data (images, audio) by competing
Network (GAN) adversarial. networks to improve realism.
Self-attention mechanisms, encoder-decoder Processes sequences in parallel for NLP tasks (translation,
Transformer . N . . .
architecture summarization) via attention weights.

Auto-Encoder

Multilayer Perceptron
(MLP)

Encoder (compression) and decoder
(reconstruction) networks.
Fully connected layers, input-output

mapping.

Reduces data dimensionality for tasks like anomaly detection
or feature learning.
Basic feed forward network for classification/regression on
tabular or simple structured data.

Actuators

Cyber System

Figure 3. General construction of the wireless sensor
networks (WSNs) against cyber-physical system (CPS) [14,

It is important to remember that prevention strategies aim to
thwart attacks before they start. Ongoing or previous assaults
are identified using detection techniques for mitigation. Due
: to resource limitations, hybrid approaches—such as IDS and
P secure routing—are also often used in WSNs. Furthermore, as
WSNs frequently run on a small amount of power, memory,
and processing power, resource efficiency is essential.

In any case, while some CSS kinds are already in use, the
growing popularity of remotely implanted sensors and
actuators is spawning some new uses in fields including
clinical instruments, driverless cars, intelligent designs, and
enhancing the capabilities of already-existing products. Figure
15] 3 presents the general construction of the WSNs against the
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cyber-physical system (CPS) [14, 15].
1.3 Deep learning neural network

Inspired by the human brain, deep learning neural networks
(DLNNSs) are sophisticated computational models that use
layered architectures to identify patterns and reach
conclusions. They are put into practice using frameworks such
as TensorFlow, PyTorch, or Keras, in which input layers
process data, hidden layers transform it (using activation
functions like ReLU or Sigmoid), and output layers finalize
the predictions. The back-propagation and optimization
algorithms (such as Adam and Stochastic Gradient Descent
(SGD)) are used in training in order to reduce loss functions.
GAN:S are used for data creation, CNNs for image processing,
RNNs for sequential data, long short-term memory (LSTM)

networks (a specialized RNN variant for long-term
dependencies), and Transformers for natural language
applications. They are crucial for automating feature

extraction, managing unstructured data (text, photos), and
reaching cutting-edge accuracy in tasks like autonomous
systems, medical diagnostics, and speech recognition. A
summary table of the main DLNN kinds is shown in Table 3
[11-13].

We will describe the LSTM technique, a specialized RNN
variant for long-term dependencies, and the RNN techniques
used in processing sequential time series data in order to
comprehend some of the most significant deep learning (DL)
approaches. Figure 4 demonstrates the construction of the
RNN model [13, 16].

L=2 outputs
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Figure 4. Schematic diagram of the recurrent neural network
(RNN) [13]

As seen in Figure 4, the feedback might be autonomic, or at
the very least, the result of the action that was not totally
predetermined by its preparation strategy. Since an intelligent
lattice is expected to contain backhanded units, the feedback
system's implementation of postponed unit portions with a few
districts leads to a non-linear dynamic style of acting.
Although the methods of inner linking may vary throughout
optional types, they always achieve the same goal and desired
result—applying repetition. The RNNs might handle posting
successions of varying dimensions with display physical
kinetics since they have internal storage. Figure 4 might be
seen as an example of a simple RNN architecture. One may
see that the RNN algorithm design presented in Figure 4 has
common sections that use the aperture X¢-w, ¢ to approximate
the advance instant print as a consequence, x{. The input
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arrangement is handled according to the organization's
timestamp on a regular basis. This approach, the following
samples x; are assessed using the expression below, utilizing
the inputted grouping x:- of the repeated entity o:— and the
enactment capacity as tanh [13, 16]:

X =0W,1,0,_1 + byr),

0;_1 = tanh (W, + U,.0i_, + by) (M

Xt—1

where, the network's components are denoted by Wx, W, U,
and b. As previously described, repetition occurs when the
network performs recall and remembering operations for the
information learnt from training data using the prior findings
as they were entered. Figure 5 shows the LSTM deep learning
structure [16].

Figure 5. Construction of a deep learning long short-term
memory (LSTM) structure [16]

The long-term and short-term assumption network is really

trained here. Figure 6 illustrates the construction of the RNN
deep learning algorithm [13, 16-20].
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Figure 6. The internal structure of the recurrent neural
network (RNN) deep learning main model [18]



DLNNs revolutionize artificial intelligence by enabling
complex data modelling using layered architectures. Their
ability to acquire hierarchical features and their adaptability
across domains—from language to vision—make them
indispensable for modern Al applications.

The detailed structure of the LSTM deep learning algorithm
will be discussed and examined in this project, the proposed
model of the study. The LSTM deep learning algorithm will
consist of several layers, including a learning, input, hidden,
weighted, and output layers.

The flow of time samples X with C features (channels) of
length S through an LSTM layer is seen in this graph. The
output (sometimes referred to as the hidden state) and cell state
at time step t are indicated in the diagram by the symbols ht
and ct, respectively. The first LSTM block computes the first
output and the updated cell state using the network's starting
state and the sequence's first-time step. The block utilizes the

network's current state (C-1, 4-1) at time step ¢. The subsequent
step in the sequence is to compute the output and the updated
cell state ct. The cell state and the concealed state, also referred
to as the output state, make up the layer state. The outputs of
the LSTM layer for that time step are contained in the hidden
state at time step t. Knowledge gained from earlier time steps
is stored in the cell state. The layer adds or subtracts data from
the cell state at each time step. Through gateways, the layer
manages these changes. The cell state and concealed state of
the layer are managed by the following elements. Table 4
presents the cell and hidden states of the layer control
components.

Table 4. The cell and hidden states of the layer control
components [18]

Components Justification
Entered Gate (i) Measure the ccc‘);llltrs(;;: updating the
. Measure the control in the reset
Forgetting Gate (f) (forget) cell state
Cell Candidate (g) Summing mforsrtr:i?:on for the cell
Output Gate (o) cell state control level summed to

the hidden state

Also, the forgetting, updating strategy inside the deep
learning (LSTM) structure is shown in Figure 7 [20].

Forget Update Output
Ci—1 _Q? /;& > C;
S/ g i o
A
hl—l [d r [d = ht
| | | |
X

Figure 7. The forgetting, updating strategy inside the deep
learning (LSTM) structure [20]

Thus, the learnable weights of the LSTM layer are the input
weights W (InputWeights), the recurrent weights R
(RecurrentWeights), and the bias b (Bias). The matrices W, R,
and b are sequences of input weights, frequency weights, and
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bias of each component, respectively. These matrices are
linked as follows [18-22]:

W, R; b;

7 R b

f f f
w=|Jl,LrR=|]b= )

Wy Ry bg

W, R, b,

Such that, i, £, g, and o denote the entrance gate, forget gate,
cell candidate, and resulting gate, respectively. The cell state
at time step t is represented by:

¢ = fOc—y + i, Og; 3)
where, © indicates the Hadamard product (vector-wise
multiplication). Also, the hidden state at time step 7 is
represented by:

hy = 0,00, (c;) “4)
where, o indicates the state activation function. By default, the
LSTM layer function employs the hyperbolic tangent (tanh)
function to evaluate the state activation function. Because deep
neural networks can simulate complicated data using multi-
layered structures, they are transforming artificial intelligence.
They are essential for contemporary Al applications because

of their versatility across domains—from language to vision—
and their capacity to pick up hierarchical information.

2. LITERATURE REVIEW

The topics of WSN cloud security and DL algorithms are
examined in several publications and earlier research projects.
To make clear the most significant issues and difficulties, as
well as the most significant limitations and methods to
overcome them, the most sophisticated and essential papers
and scientific publications that have been presented with such
themes will be compiled and examined in this section. We will
provide a fair scientific backdrop in this evaluation to help
identify the study's difficulties and issues. In the field of
intrusion detection, Ferrag et al. [15] examined DL approaches
in 2020, specifically RNN, CNN, Deep Boltzmann Machine
(DBM), Deep NN (DNN), RBM, DBN, and deep auto-encoder
(DAE). The approaches are analyzed using two datasets: CSE-
CIC-IDS2018 and Bot-IoT. According to the study's findings,
the CNN and DAE methods get the highest accuracy levels,
97% and 98%, respectively, and the highest performance
levels across both datasets. Mahdavifar and Ghorbani [11]
developed another evaluation of DL missions in the
foundation and programming security domains in 2020. They
also examined the projects that employed DL structures for
grouping, interruption placement, virus detection, and site
disfigurement recognition. This study is expanded upon in
2020 by Subashini et al. [16], who reviewed ML and DL
algorithms. Botnet and malware detection in the software area
is mentioned in passing, but their primary focus is on intrusion
and anomaly detection in the infrastructure sector. Cyber-
attacks pertaining to software and infrastructure are also
covered in 2020 by Berman et al. [17] and Hitaj et al. [18]. The
two assessments look at the AE, CNN, RNN, and GAN
topologies used for recovering from cyber-attacks. They focus
on assaults like malware, botnets, and network intrusions. The
unreliability of low-processing devices in IoT contexts is



highlighted by Singla and others. In 2020, Hemdan and
Manjaiah [19] examined studies on the use of big data
analytics for cyber-attack detection and prevention. They
examine the use of DL and Big Data Analytics in Social
Networks, Cloud Computing, and IoT to foresee
contemporary assaults. Wickramasinghe et al. [20] provide a
quick overview of the DL techniques employed in security
implementations in 2020. The researchers look on
organization strategies to enhance the generalizability of DL-
based security systems. They specifically examine the DL
schemes that are utilized to identify software infections and
attacks with unusual recovery in the infrastructure industry.
Harnessing artificial intelligence capabilities to improve
cyber-security for IoT and CPS-related cyber-security
challenges was explored by Godala and Kumar [23].

They talk about the effects of different cyber security
assaults on the application stack and networking. They begin
by providing a summary of security solutions that do not
employ DL, discussing their shortcomings, and then going on
to discuss how contemporary DL findings may improve cyber-
security. Actually, IoT and CPS-focused software and network
infrastructure are examples of DL-based solutions. Belarbi et
al. [24], employed federated DL technology, with pre-training
and aggregation techniques. Contributions: Introduced a
federated learning-based IDS tailored for IoT networks,
emphasizing data privacy and scalability. The study utilized
the TON-IoT dataset to simulate realistic conditions and
compared federated models against centralized counterparts.
Limitations: Performance degradation observed due to data
heterogeneity; reliance on pre-training to mitigate this issue.
Gueriani et al. [25] suggested a Hybrid CNN-LSTM deep
learning model. The contributions were made by developing
an IDS combining CNNs and LSTM networks to capture
spatial and temporal features in IoT traffic. Achieved high
accuracy using the CICIoT2023 and CICIDS2017 datasets.
The limitations are restricted to the potential challenges in
real-time deployment due to computational complexity. Shen
et al. [26] proposed Federated Learning technology with
Ensemble Knowledge Distillation (FLEKD). The study
contributions proposed FLEKD to address data heterogeneity
in IoT networks, enhancing intrusion detection performance
without compromising data privacy. Demonstrated improved
detection rates on the CICIDS2019 dataset. On the other hand,

drawbacks show increased system complexity and potential
communication overhead due to ensemble methods.
Gowdhaman and Dhanapal [27] recommended a ResNet-
Inception DL strategy integrated with Support Vector Machine
(SVM). The research contributions presented a hybrid IDS
leveraging DL for feature extraction and SVM for
classification, achieving 99.46% accuracy on the NSL-KDD
dataset. The study gaps include limited evaluation to a single
dataset; generalizability to other datasets remains untested. Shi
and Li [28] implemented the Artificial Neural Network (ANN)
technique optimized with Particle Swarm Optimization (PSO).
With an emphasis on privacy protection, the study aids in the
creation of an IDS for WSNs and the use of PSO to enhance
ANN performance. The absence of evaluation on a variety of
datasets and the neglect of scalability and adaptation to various
network circumstances are among the limitations. The Wiley
Online Library [25, 27, 29-31].

3. PROBLEM STATEMENT (CHALLENGES)

By analyzing the literature review and researchers'
contributions over the past three years, we can analyze and
classify the latest approaches and techniques used to address
threats and cyber-attacks on WSNs, and the summary is shown
in Table 5. We can analyze, classify, and summarize these
techniques according to data details, contributions, and
benefits, while taking into account the constraints, challenges,
and obstacles outlined. WSNs are being used more and more
in crucial settings where dependable and secure
communication is essential, such as the military, healthcare,
and industrial automation. However, WSNs are extremely
susceptible to a variety of security risks, including data
tampering, eavesdropping, spoofing, and DoS attacks, because
of their resource-constrained nature, which includes limited
processing power, energy, and memory. Adaptive and scalable
security is sometimes lacking from traditional cryptographic
and rule-based techniques, especially when it comes to
unknown and changing attack patterns. Additionally, real-time
threat identification is a constant issue because of WSNs'
dispersed nature and changeable topology. Therefore, creating
strong, intelligent, and low-latency security methods for
WSN:s is still an ongoing research challenge.

Table 5. The most recent published studies' summary

Year Authors Technology Employed Contributions Limitations
2023 Belarbi et al. [24] Federated DL Pr1vacy-preserv1ng IDS fpr IoT Performance affect.ed by
using federated learning data heterogeneity
. . Computational
2024 Gueriani et al. [25] CNN-LSTM Hybrid Model ngh-qccuracy IDS capturing complexity for real-time
spatial-temporal features
deployment
. . Increased system
2024 Shen et al. [26] Federated Leamlpg \ylth Enhanged IDS performange complexity and
Knowledge Distillation addressing data heterogeneity .
communication overhead
Gowdhaman and . High-accuracy hybrid IDS on Limited evaluation on a
- + .
2024 Dhanapal [27] ResNet-Inception DL + SVM NSL-KDD dataset single dataset
2022 Shi and Li [28] ANN with PSO Privacy-focused IDS for WSNs  imited dataset evaluation

and scalability concerns

Note: DL = Deep Learning; CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; SVM = Support Vector Machine; ANN = Artificial
Neural Network; PSO = Particle Swarm Optimization; IDS = Intrusion Detection System; IoT = Internet of Things; WSNs = Wireless Sensor Networks.

4. NOVELTY AND CONTRIBUTIONS

Investigating and evaluating how well DL approaches can
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improve the security of WSNs is the main goal of this project.
The study's specific goal is to develop and assess DL-based
models for the detection and categorization of different



network assaults in WSNs, including CNNs, RNNs, and
LSTM networks. To maintain high accuracy and low false
positive rates, the study will concentrate on creating models
that can function well within the resource limitations of WSN
nodes. To help create intelligent, self-learning security

frameworks, the study will also investigate how interpretable
and flexible these models are in dynamic WSN situations.
Thus, by analyzing the literature review, Table 6 provides a
summary of the novelty and contributions of the proposed
research.

Table 6. Summary of novelty and contributions of the proposed research from analyzing the literature review

Practical
Aspect Proposed Research Feature Novelty Relative to Existing Works Contribution to Wireless Sensor
Network (WSN) Security
proben Do e s ot ootk s prtow e Gt e of
Formulation regression classification with static features. rejec t%(l)ln
Explicit random WSN with 50 . Provides a reproducible lab test-bed
. Many studies use abstract datasets .
WSN Modeling nodes, energy per node, TCP/IP- . L for WSN cyber-physical
like traffic. without explicit WSN topology. simulations.
MATLAB-generated flood-like Floods are usually modeled only as Captures the temporal shape of
Attack Modeling oscillatory DoS streams mixed with labeled records, not as physical attacks and their impact on node
normal data. signals. resources.
Lightweight, 1-layer LSTM (200 . Suitable for resource-aware
. - Simpler and more deployable than . . .
DL Architecture units) + dense + dropout + Mean deep hybrids (ResNet, CNN-LSTM) implementations and rapid
Squared Error (MSE) loss. ? ) ’ prototyping.
Accuracy ~99.95%, prediction . Validates that compact LSTM
. N o Comparable or superior to recent IDS .
Performance efficiency ~99.96%, error rate . . . designs can match state-of-the-art
studies using heavier models.
0.04%. IDS accuracy.
Implementation End-to-end MATLAB 2020b Most literature uses Gives an accessible tool-chain for
pPathwa workflow with WSN, attack Python/TensorFlow on generic control/WSN engineers using
Y generation, and DL. datasets. MATLAB.
5. METHODOLOGY might be classified as a Flooding DoS assault, which sends a

This section will describe and explain, with the use of DL,
the crucial design stages for putting into practice the suggested
IDS security model in order to detect and stop cyber-attacks
and DDoS against WSNs. Information will serve as the
foundation for the operation of our suggested architecture,
which should handle two categories of data: original
information indexes and virus information indexes. Many
kinds of necessary data may be found on reliable websites. For
this study, we used two primary websites for information
processing (github.com and kaggle.com), in addition to re-
presenting certain data utilizing helpful MATLAB program
components. This section will discuss IDS, which uses an Al
(PC-based intelligence) algorithm to detect cyber-attacks and
identify DDoS network incursion executions. In this study,
MATLAB m-file scripts will be used to equip and simulate the
cyber-security architecture details. The proposed cyber-
security architecture includes the following incoming units: 1)
WSN Identification Unit, which displays the network's
characteristics, node count, and related links 2) The input unit
that makes it possible for information and data to enter the
network, 3) A checkpoint or control unit that verifies the state
of data entering the network, 4) The Department of Analysis,
Inspection, and Classification, which offers the
comprehensive assessment and categorization of data posted
on the network, 5) Computer-Based Intelligence's Deep
Learning Algorithm Unit, which oversees the process of
identifying assaults, malware, random flows, and odd software
information and separating them from the data and
information set; and 6) Final inspection and verification unit,
which operates to confirm and verify the movement of
information and data through the network structure and
ensuring that it is free from attack flows or any malicious
software. More precisely, the flood assault used in this study
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large number of requests or traffic in an attempt to deplete
network or node resources (such as bandwidth, CPU, or
battery). Justification: An attacker may use a vibration flood
assault in WSNs by continuously triggering sensor readings
(from vibration sensors, for example), which would cause the
network to analyze and send an excessive amount of data,
much of it useless. This causes service disruption by
consuming power, blocking communication channels, and
sometimes delaying or preventing proper sensing activities. It
also affects potential subcategories by overloading the
network layer and hindering data movement. Another security
issue is the event flooding problem, which results from
continuously triggering sensor events, such as false vibration
signals. Consequently, energy-draining attacks are considered
a subcategory of resource exhaustion attacks. The flowchart in
Figure 8 provides a summary of how the suggested security
architecture for the WSN operates.

Start
L4

Define the WSN Structure
L4

Read the Dataset Stream
T

AV

h V.4

V.4

V.4

h ¥4
Check Security & Accuracy
h ¥4
Display Results
2
End

Figure 8. Flow chart of the suggested wireless sensor
networks (WSNs) security model methodology



Looking at Figure 9, one could notice that the suggested
model starts by specifying the architecture and structure of the
WSN by varying the number of nodes and connections among
them to establish the network's size. After that, the dataset flow
is read, and the cyber-attack flows (floods) are added.
Following attack verification, a deep learning DL-LSTM
approach is used to identify and stop assaults. The findings are
then shown when security and accuracy rates have been
confirmed. Moreover, the operation of the proposed deep
learning (LSTM) algorithm in detecting and preventing cyber-
attack floods will be explained as introduced in Figure 9.

By introducing (N = 10000 tests) to be distinguished to train
the algorithm parameters to the extent that the security rates
are appropriate and an appropriate MSE rate is reached, the
candidate program model explains how the deep learning
(LSTM) algorithm operates based on the training data set. The
primary data transmitted via the communication network is
represented by data information, which is necessary to
comprehend the DL algorithm model. To prepare it for
training, such data are uploaded by gathering them into the
input layer of the LSTM algorithm. To improve
categorization, such data is handled in classification
procedures, which subsequently provide a basic fingerprint
before altering it by obtaining further encoding in accordance
with the basic name. These amounts are then merged in the
pooling layer after the resulting capacitive gains are lowered
by passing them through the ReLU layer. To prepare and

update the algorithm layers to identify the results and infer the
error magnitude and best match, the data is processed in the
internal weight layers after these stages. Also, the dataset type
employed in this study is loaded and examined according to
the settings shown in Table 7. Lastly, Table 8 displays the
remaining variables of the suggested model together with the
settings and control parameters of the suggested LSTM
method.
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Figure 9. The operation of the proposed deep learning
(LSTM) algorithm in detecting and prevention cyber-attacks
floods

Table 7. The dataset type employed in this study is loaded and examined according to the settings

Dataset Description Samples Number Source2
Name
UNSW- Contains DDoS and other attack traffic, labeled for 10 GitHub
NB15 intrusion detection (https://github.com/talhatk/UNSW-NB15)
Table 8. The design specifications of the suggested wireless sensor network (WSN) model
Unit Type Specifications
WSN WSN Nodes Number Data Length / Node Stream Network Connection Nodes Energy
N=50 L=100 Random 1 Joules
Samples Number Data Type Data Distribution Capacity
Data Stream Ns = 10* TCP/IP Gaussian-Like Clean Data 5 Volts
Samples Number Attack Type Attack Distribution Capacity
Attack Flood Ns = 10% Denial of Service (DoS) FIOOd‘Li‘tet;zlic‘”a“’ry 1 Volts
Fully Connected Layer . Max Epoch
Deep Learning Long Neurons Hidden Neurons No. Input/ Output Layer Type Counts
Short-Term Memory 50 200 Sequence-Input 20-50

Regression-Output

6. RESULTS AND DISCUSSION

To stop and secure wireless network invasions, the
suggested technological model is used in this section to
identify malware and cyber-attacks. Artificial intelligence
(deep learning) techniques and software simulations utilizing
the MatLab2020b program are used to verify whether security
criteria are met. Additionally, text logs are emulated using
MATLAB library functions, which are also used to model
distributed DDoS attack flows. With the use of artificial
intelligence techniques and a DL recurrent neural network
(LSTM) algorithm, this model illustrates how DDoS assaults
affect a TCP/IP dataset on a wireless cloud network and how
to manage and identify such intrusions. The proposed model
for detecting and securing WSNs is implemented using
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machine learning, based on the data and design factors
outlined in the previous section. A simulation is then run using
MATLAB to extract, display, and explain the results. Figure
10 shows the implementation diagram of the proposed WSN
architecture design employed to achieve the work
environment.

Moreover, the design details of the proposed LSTM deep
learning model might be demonstrated in Figure 11.

By observing Figure 11, we notice that the implementation
plan of the virtual WSN structure and design randomly
distributes network nodes (N = 50) to ensure fair data transfer
between them to achieve a working environment, where
information data is sent and received between the distributed
nodes, which represent wireless communication stations.
Next, Figure 12 displays the distribution of the (TCP/IP)



dataset stream through the WSN nodes.

By viewing Figure 12, it could be noted that the flow of data
forms for information between the wireless network contracts
simulates the coordination of the TCP/IP Internet protocol and

Where this

13.

fluctuates almost randomly with a price value of the volt.

100

data contains user information and differs

according to the content of this declaration. Also, the cyber-
attacks flood samples are generated and presented in Figure
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Figure 10. The implementation diagram of the proposed wireless sensor network (WSN) architecture design is employed to
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Figure 11. Design details of the proposed long short-term memory (LSTM) deep learning model
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Figure 12. The distribution of the (TCP/IP) dataset stream through the wireless sensor network (WSN) nodes
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Figure 14. Resulting mixed, corrupted stream from adding the

Figure 13. The generated cyber-attacks flood the samples denial of service (DoS) attack flood to the data stream samples
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Figure 15. The flow diagram of the proposed deep learning long short-term memory (LSTM) algorithm layers structure
through applying it to detect and reject the effect of the distributed denial of service (DDoS) cyber-attack floods: (a) MATLAB
command prompt description; (b) Layers graph view
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Tramning on single CPU.

Epoch | Tteration | Time Elapsed | Mini-batch | Mim-batch | Base Learning |

| | | (hhomm=ss) | RMSE | Loss | Rate |
I |
| 1 1 00:00:44 | 11273 | 63536 0.0030 |
| 30 30 00:06:19 | 28.18| 397.2| 0.0050 |
(b)

Figure 16. The training progress diagram of the deep learning algorithm operation as the corrupted mixed flows of network
data enters to its internal layer: (a) Training progress curves; (b) Training progress table summary
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Figure 17. The results of the predicted samples at the output of the trained deep learning (LSTM) algorithm: (a) Long short-
term memory (LSTM) predicted samples; (b) Comparison with original sent data samples
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Figure 18. The efficiency and the error rate result for the prediction indicators of the proposed deep learning long short-term
memory (LSTM) algorithm

As we might observe from Figure 13, the cyber-attacks
flood generated using MATLAB built-in library functions and
acting as a DoS attack, which sends many requests or traffic to
exhaust the node network or resources (such as the frequency
range, the CPU, or the battery). As a result of adding the DoS
attack flood to the data stream samples, the obtained mixed
corrupted stream is demonstrated in Figure 14. By reviewing
Figure 14 above, the signal content resulting from inserting the
flows of the service attack models into the original data models
can be seen. Where we note that the resulting wave has been
affected and distorted because of adding intrusive model flows
despite its small capacity, but it changes the content of the
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basic data information sent and leads to a defect, deformation,
or cutting in the service. Now, by applying the operation of the
proposed deep learning LSTM algorithm, to detect and reject
the effect of the DoS cyber-attack floods. The flow diagram of
the proposed DL LSTM layer’s structure is outlined in Figure
15.

By referring to the above figure, the results of the program’s
implementation of the proposed form can be observed, and
able to determine that the wireless network has been subjected
to a cyber-attack (Figure 15(a)). Also, "the same Figure 15(a)
shows the details of the contents of the DL algorithm layers,
which are 1) " Sequence Input Sequence input with 500



dimensions, 2) " LSTM with 200 hidden units, 3) 'Fully
Connected 50 Fully Connected Layer, 4) " Dropout 50%
Dropout, 5) " Fully Connected 500 Fully Connected Layer,
and 6) " Regression Output Mean-Squared-Error. Also, Figure
15(b) displays the same proposed DL algorithm structure in
graph view.

Next, the training progress diagram of the DL algorithm
operation is displayed as the corrupted mixed flows of network
data enter it and perform the training process for its internal
layers, as shown in Figure 16.

As shown in Figure 16, we observe the results of the
progress of intelligent algorithm training processes that show
the levels of error box drop and loss level of original data
extraction, and strongly discarded and disposed of harmful
flows as the training steps progress. Where this decrease in the
level of quadratic error and losses explains the extent of
improvement and ability of the DL algorithm to extract the
original data and renounce harmful flows and get rid of them
efficiently, and the fewer losses and the error box, the better
the results of the training. Moreover, the results of the
predicted samples at the output of the trained deep learning
(LSTM) algorithm have been shown in Figure 17.

By observing Figure 17, we can see the expected sample

results at the output of the trained DL algorithm (LSTM),
which were highly consistent with the original data samples of
the information sent through the WSN. This indicates the
success of the process in detecting malicious attack flows as
well as the efficiency and effectiveness of the proposed
algorithm in eliminating malware and extracting real data.

Also, based on the obtained results, we could employ a
comparison between the predicted results and the original data
sent to calculate the error rate and the efficiency of the
prediction. Figure 18 displays the efficiency results and the
error rate for the prediction indicators of the proposed DL
LSTM algorithm.

When looking at Figure 18, it can be observed that the
training efficiency of the proposed DL algorithm in blocking
the attack packets and extracting the original data samples was
tested in the same quantity of data packets for the group N =
1000. A high training efficiency was recorded, reaching
99.96% with a very low error rate of 0.04%, as shown in the
figure, that indicating the proposed model's ability to eliminate
harmful DoS attack floods with successful rejection. Also, the
performance measures obtained using the proposed model in
detecting and blocking DDoS attacks for WSNs might be
shown in Table 9.

Table 9. The performance measures obtained using the proposed model in detecting and blocking distributed denial of service
(DDoS) attacks for wireless sensor networks (WSNs)

Measure Value (%)
Training Accuracy (LSTM Model) 99.95
Prediction Efficiency 99.96
Error Rate 0.04
Number of WSN Nodes 50

Table 10. A comparative analysis might be achieved with recent deep learning-based wireless sensor networks (WSN) intrusion
detection system articles

Study (Year, Authors) Method / Technology Dataset Accuracy (%) Key Limitation
Our Proposed Model LSTM DL (MATLAB Cloud) UNSW-NBI15 99.95 Evaluated on a single dataset
Gueriani et al. [25] Hybrid CNN-LSTM DL CICloT2023 High (> 99) Real-time complexity
Gowdhaman and Dhanapal [27] ResNet-Inception + SVM NSL-KDD 99.46 Limited dataset generalizability

Moreover, a comparative analysis might be achieved with
recent DL-based WSN IDS articles as presented in Table 10.

The study's comparative summary shows that our suggested
model, which achieves a very high training accuracy of
99.95% and prediction efficiency of 99.96%, reveals a highly
successful LSTM-based DL strategy for detecting DoS
assaults in WSNs. These outcomes are better than or on par
with more recent, sophisticated techniques like the ResNet-
Inception SVM hybrid model by Gowdhaman and Dhanapal
[27], which accomplished 99.46% accuracy but had a limited
evaluation scope, and the Hybrid CNN-LSTM by Gueriani et
al. [25], which likewise reports high accuracy on benchmark
ToT datasets but faces real-world deployment challenges. The
attached study's great attack rejection efficiency and reliable
performance in MATLAB-based WSN simulations are its
main advantages. The LSTM approach in the attached paper
stands out for its usefulness, low mistake rates, and flexibility
in unique wireless network situations, even if all of the studies
highlight the promise of deep learning for IDS.

7. CONCLUSIONS

DL-based network models are crucial for security tasks like
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malware detection, intrusion detection, anomaly recognition,
and node scanning. DL offers helpful solutions for neural
network models in safeguarding data from breaches and
attacks in WSNs. The efficacy of security improves, and the
overall risks of cyber-attacks are avoided while distinguishing
threats and reducing manual scanning. In order to identify data
security and stop DDoS intrusions, a DL technique (LSTM)
was suggested for the cloud sensor network in this study.
These assaults disrupt services and have an impact on the
integrity and quality of data while it is being transmitted. The
DL model's effectiveness in thwarting various attacks in the
cloud sensor network 1is determined by the network
architecture as well as the computations for its layers and
parameters. With a training and detection accuracy of 99.95%
and an error rate of 0.04, the simulation validates the capacity
to identify and stop denial-of-service attacks and to train the
DL model using the standard NSW2019 dataset. The quality
and effectiveness of the simulation results in fulfilling network
security requirements were demonstrated by comparing them
with the findings of recent research of a similar nature. The
number of layers, computing complexity, the kind and amount
of the dataset, and the type of malicious attacks all influence
the suggested method and are seen as significant potential
obstacles and limitations for additional study.
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NOMENCLATURE

MATLAB Matrix Laboratory (proprietary software
name)

MLP Multilayer Perceptron

MSE Mean Squared Error
Network  Security =~ Laboratory  —

NSL-KDD Knowledge Discovery in Databases
(benchmark dataset)

PSO Particle Swarm Optimization

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RSA Rivest—Shamir—Adleman (cryptosystem)

RBS Reference Broadcast Synchronization (in
time synchronization for WSNs)

SGD Stochastic Gradient Descent

SPINS Secure Protocols for Sensor Networks

SVM Support Vector Machine

TCP/IP Transmission Control Protocol/Internet
Protocol

TESLA Timed 'Efﬁcient Stream Loss-tolerant
Authentication

. Tiny Security (lightweight link-layer

TinySec security protocol for WSNs)
Towards Next-generation IoT (dataset

TON-IoT from UNSW Canberra)

UNSW- University of New South Wales -

NBI15 Network-Based 2015 (dataset name)

WSN(s) Wireless Sensor Network(s)





