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The digitization of healthcare has revolutionized patient data management through 

Medical Patient Records (MPRs), but has simultaneously introduced critical security 

vulnerabilities, as traditional cryptographic methods explicitly reveal the presence of 

sensitive information. This study introduces MedRec-Secure, a comprehensive data 

hiding scheme designed to enhance MPR confidentiality through a novel Dynamic 

Subtractor Selection Steganographic Framework (DSSSF) that conceals sensitive medical 

information within medical images while preserving diagnostic quality. The proposed 

framework operates on grayscale medical images divided into 4-pixel blocks, employing 

statistical analysis to select optimal reference pixels dynamically. A multi-zone 

embedding strategy categorizes pixels into three intensity zones, with tailored embedding 

rules for each zone. Experimental evaluation demonstrated superior performance, with a 

Peak Signal-to-Noise Ratio (PSNR) achieving a maximum of 75.43 dB across varying 

MPR payload sizes (1 kb to 100 kb). The Structural Similarity Index Measure (SSIM) 

achieved outstanding maximum values of 1.000, maintaining near-perfect similarity 

despite slight decreases with larger payloads. MedRec-Secure outperforms existing 

methods by 3.2 dB in PSNR performance, preserving diagnostic image integrity while 

enabling secure MPR transmission across healthcare networks. 
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1. INTRODUCTION

The digital revolution in healthcare has fundamentally 

transformed patient data management paradigms, with 

Electronic Health Records (EHRs) or Medical Patient Records 

(MPRs) emerging of modern medical information systems [1, 

2]. This transformation has facilitated unprecedented 

improvements in healthcare delivery efficiency, clinical 

decision-making, and patient care coordination across diverse 

healthcare networks [3]. However, the exponential growth of 

digital health data, coupled with increasingly sophisticated 

cyber threats, has simultaneously introduced critical security 

vulnerabilities that threaten the confidentiality and integrity of 

sensitive medical records [4].  

Healthcare environments face security challenges that 

extend beyond traditional data protection concerns. The 

interconnected nature of modern healthcare systems, where 

MPRs must traverse multiple networks and be accessible to 

various stakeholders, creates numerous potential attacks [5]. 

Data breaches in healthcare result in substantial financial 

losses and also compromise patient trust. This can potentially 

endanger patient safety when medical information is 

manipulated by unauthorized entities. 

Traditional security methodologies, primarily relying on 

cryptographic techniques such as symmetric and asymmetric 

encryption algorithms, while providing essential data 

confidentiality, possess inherent limitations in the context of 

covert healthcare communications. Encrypted data explicitly 

advertises the presence of sensitive information, potentially 

attracting unwanted scrutiny from adversaries and increasing 

the likelihood of targeted decryption attempts [6]. Encryption 

methods do not address the growing need for secure 

communication channels that maintain operational covertness 

in potentially compromised network environments [7]. 

Steganography emerges as a complementary security 

paradigm that addresses these limitations by concealing 

confidential data rather than merely obscuring their content 

[8]. This technique provides security through obscurity by 

embedding sensitive information within carrier media, thereby 

enabling covert data transmission without raising suspicion 

[9]. In healthcare contexts, where medical images such as 

radiographs, computed tomography (CT) scans, and magnetic 

resonance imaging (MRI) data are routinely transmitted and 

stored, steganographic techniques offer unique opportunities 

for secure MPR distribution [10]. As depicted in Figure 1, the 

embedding process to put MPR into medical images 
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encompasses two fundamental stages: the embedding stage, 

where confidential medical information is concealed using 

Medical Data Embedding (MDE) algorithms, and the 

extraction stage, where the hidden MPR is reconstructed from 

the stego image. 

Figure 1. System architecture for steganographic Medical Patient Records (MPRs) data communication 

The application of steganography to medical data protection 

presents distinctive challenges that differentiate it from 

conventional steganographic applications [11]. Medical 

images serve as carriers of hidden data for diagnostic tools 

afterwards. Consequently, any modification must maintain the 

integrity and visual quality of medical images while providing 

sufficient embedding capacity [12]. Small distortion in 

medical imagery can compromise diagnostic accuracy and 

potentially impact patient care outcomes. 

Existing steganographic approaches for healthcare 

applications predominantly employ static embedding 

strategies that lack adaptability to varying image 

characteristics and data payload requirements [13]. These 

methods often suffer from limited embedding capacity, 

rendering them unsuitable for medical applications. Moreover, 

current techniques may fail to provide adequate resistance 

against modern steganalysis methods, limiting their practical 

applicability. 

To address these critical limitations, this research introduces 

MedRec-Secure, a comprehensive data hiding scheme 

specifically designed to enhance MPR confidentiality. The 

MedRec-Secure operates on the principle of intelligent 

reference pixel selection within image blocks, where statistical 

analysis determines the most suitable subtractor pixels for 

embedding operations. This dynamic approach, combined 

with a sophisticated multi-zone embedding strategy that 

categorizes pixels based on intensity ranges, enables the 

system to maximize data hiding capacity while minimizing 

visual artifacts and preserving diagnostic image quality. The 

primary contributions of this research can be described as 

follows: 

1. Development of an adaptive reference pixel selection

algorithm that analyzes local statistical properties,

including mean values and standard deviations, to

identify optimal subtractor pixels within image blocks.

This mechanism enhances embedding adaptability and

reduces predictable patterns.

2. Introduction of an intelligent embedding approach that

categorizes pixel intensities into three distinct zones 

(Zone 1: 0-85, Zone 2: 86-171, Zone 3: 172-254) with 

tailored embedding rules and conditions for each zone. 

This optimizes embedding capacity while minimizing 

visual distortion through zone-specific modification 

formulas. 

3. Development of embedding algorithms optimized

explicitly for medical imaging applications.

The next parts of this paper are organized as follows: 

Section 2 presents the literature review covering advances in 

healthcare data security and existing steganographic 

techniques for medical applications. Section 3 details the 

implementation flow of the proposed MedRec-Secure. The 

results of the experiments are explicitly reported in Section 4, 

and Section 5 concludes this study. 

2. RELATED WORKS

Steganography in medical contexts presents unique 

challenges and opportunities compared to conventional digital 

steganography applications [14]. Spatial domain 

steganographic methods represent the most widely researched 

category of medical steganography techniques due to their 

computational efficiency and relative simplicity of 

implementation [15, 16]. The foundational Least Significant 

Bit (LSB) substitution method, while offering high embedding 

capacity, is vulnerable to statistical attacks and can introduce 

detectable patterns in medical images [17]. A previous study 

developed one of the early medical steganography 

applications, embedding electroencephalogram (EEG) and 

prescription data within medical images using enhanced LSB 

techniques with pixel similarity metrics [18]. Their approach 

achieved embedding capacities of up to 0.25 bits per pixel 

while maintaining acceptable visual quality. However, 

subsequent analysis demonstrated that the method was 

susceptible to histogram-based steganalysis techniques 

commonly used in forensic analysis [19]. 
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Pixel Value Differencing (PVD) techniques have shown 

promise in medical image steganography due to their adaptive 

nature and improved resistance to statistical attacks. Huang et 

al. [20] proposed a modified PVD approach designed 

explicitly for radiographic images, utilizing region 

classification to vary embedding strategies based on clinical 

importance. Their method achieved superior imperceptibility 

in critical diagnostic regions while maximizing embedding 

capacity in non-critical areas. The approach demonstrated 

embedding capacities ranging from 0.18 to 0.31 bits per pixel, 

depending on image content, with PSNR values consistently 

above 45 dB for radiographic images. 

The Difference Expansion (DE) technique has been adapted 

for medical applications, with a particular focus on the 

reversibility requirements essential for clinical environments. 

Wang and Fun developed a reversible DE steganography 

method for images, which was able to restore the original 

image after information extraction [21]. This approach is 

particularly valuable in medical contexts where the integrity 

of images must be maintained. Their method achieved 

embedding capacities of up to 0.22 bits per pixel while 

maintaining reversibility and PSNR values above 48 dB. 

Transform domain steganographic approaches operate on 

frequency representations of medical images, offering 

potential advantages in terms of robustness and 

imperceptibility. Discrete Cosine Transform (DCT) based 

steganography has been investigated for medical applications, 

with particular focus on JPEG-compressed medical images 

commonly used in Picture Archiving and Communication 

Systems (PACS). Mohammed et al. proposed a DCT-based 

steganographic framework for embedding patient metadata 

within JPEG-compressed radiographic images [22]. Their 

approach utilized quantization table modification to embed 

information while maintaining JPEG compatibility. The 

method demonstrated good resistance to compression attacks 

but suffered from a limited embedding capacity (0.08-0.15 bits 

per pixel) and potential degradation in diagnostic quality in 

high-frequency image regions. 

Discrete Wavelet Transform (DWT) techniques have shown 

promise for medical steganography due to their multi-

resolution analysis capabilities. Soundrapandiyan et al. [23] 

developed a DWT-based embedding system that analyzes 

wavelet coefficients to identify optimal embedding locations. 

Their approach achieved improved imperceptibility compared 

to spatial domain methods with PSNR values above 52 dB, but 

required higher computational resources for embedding and 

extraction operations. The method demonstrated embedding 

capacities of 0.19-0.28 bits per pixel, depending on the 

selected wavelet basis and decomposition levels. 

Adaptive and intelligent steganographic systems represent 

the latest advancement in medical steganography research, 

incorporating machine learning and optimization techniques. 

Chen et al. proposed a deep learning-based steganographic 

system for medical images that utilizes convolutional neural 

networks to identify optimal embedding regions [24]. Their 

approach depicted superior performance in terms of 

imperceptibility and embedding capacity compared to 

traditional methods, achieving PSNR values above 54 dB and 

embedding capacities up to 0.35 bits per pixel. However, the 

system required extensive training datasets and significant 

computational resources, which limited its practical 

deployment in resource-constrained healthcare environments. 

Despite significant advances in medical steganography 

research, several critical limitations persist in existing 

approaches that limit their practical applicability in healthcare 

environments, including LSB-based approaches such as those 

in studies [25, 26]. A comprehensive analysis of the current 

literature, as reported in Table 1, reveals systematic gaps that 

require innovative solutions to enable the widespread adoption 

of steganographic techniques in medical contexts. 

Table 1. Related works in medical data security and 

steganography 

Aspect References Year Findings 

Medical Data 

Security 

Peng et al. 

[27] 
2024 

Healthcare data 

security requires 

advanced encryption 

and steganographic 

protection methods. 

Medical Image 

Integrity 

Yan et al. 

[28] 
2025 

Medical image 

integrity is crucial for 

accurate diagnosis and 

preventing 

unauthorized 

alterations. 

Medical 

Steganography 

Limitation 

Hua et al. 

[29] 
2023 

Medical 

steganography faces 

cropping attacks and 

transmission 

distortion 

vulnerabilities. 

Medical Data 

Preprocessing 

Chahid et 

al. [30] 
2023 

Medical data 

preprocessing requires 

robust privacy 

protection 

mechanisms for 

sensitive patient 

information. 

Proposed 

Method in 

MedRec-Secure 

Employing dynamic steganographic 

approaches with adaptive embedding 

strategies to protect sensitive medical 

information while maintaining image fidelity 

for effective clinical decision making. 

3. PROPOSED METOD

The MedRec-Secure framework is designed for 

imperceptible embedding of MPR data into grayscale medical 

images. Unlike existing steganographic approaches that 

employ static embedding strategies, the proposed framework 

introduces a Dynamic Subtractor Selection Steganographic 

Framework (DSSSF) that adapts to local image characteristics 

while maintaining optimal trade-offs between embedding 

capacity, imperceptibility, and security. 

The MedRec-Secure framework operates on the principle of 

intelligent pixel block processing, where medical images are 

divided into fixed-size blocks and statistical analysis 

determines the most suitable reference pixels (subtractors) for 

embedding operations, which does not adaptively work on the 

clinical importance (e.g., [20]) or extends the pixel difference 

within a block (e.g., [21]). This dynamic approach, combined 

with a multi-zone embedding strategy that categorizes pixels 

based on intensity ranges, enables the system to maximize data 

hiding capacity while minimizing visual artifacts and 

preserving diagnostic image quality essential for medical 

applications. 

MedRec-Secure consists of three main phases: dynamic 

subtractor selection within pixel blocks, zone-based 

embedding with adaptive conditions, and secure key 
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generation for reliable extraction. The framework processes 8-

bit grayscale medical images by converting them into 1D pixel 

arrays and organizing these arrays into blocks of 4 pixels each. 

For each block, statistical analysis, including calculations of 

mean and standard deviation, identifies the optimal subtractor 

pixel. The remaining pixels undergo zone-based evaluation for 

embedding eligibility, based on their intensity values and the 

difference relationships with the selected subtractor. 

3.1 Embedding process 

The embedding process, as illustrated in Figure 2, 

constitutes the core functionality of the MedRec-Secure 

framework, transforming cover medical images into stego 

images that contain hidden MPR data through a systematic 

sequence of operations. The process takes as input the cover 

medical image and secret MPR bits, producing a stego image 

and secret keys required for extraction. 

1. Convert and Divide Cover Image into Processing

Blocks: Start by converting the cover image from its

original 2D matrix format to a 1D pixel array for

efficient processing. Divide the pixel array into non-

overlapping blocks of four pixels each.

2. Determine Optimal Subtractor Pixel through Statistical

Analysis: Calculate the mean (𝜇) and standard deviation

(𝜎) for each pixel block, where μ represents the average

intensity and 𝜎 indicates the intensity variation of pixels

𝑝(𝑖)  within the block. Apply a weighted selection

criterion to identify the most suitable subtractor pixel

through the selection score function (𝑆) defined in Eq.

(1), where the subtractor weight parameter ( 𝑤 ) is

empirically set to 0.05 for optimal performance.

𝑆(𝑝(𝑖)) = |𝑝(𝑖) − 𝜇| + 𝑤|𝑝(𝑖) − 𝜎| (1) 

Identify the pixel with the minimum selection score as the 

designated subtractor using Eq. (2) and Eq. (3). It is to 

establish the reference point for subsequent embedding 

operations. 

𝑆𝑖𝑑𝑥 =  𝑎𝑟𝑔𝑚𝑖𝑛(𝑆(𝑝(𝑖))) (2) 

𝑆𝑣𝑎𝑙 =  𝑏𝑙𝑜𝑐𝑘[𝑆𝑖𝑑𝑥] (3) 

Figure 2. The embedding process 

3. Classify Pixels into Multi-Zone Categories and Embed

Secret Data: Perform zone classification for each non-

subtractor pixel based on intensity values and calculated

difference ( 𝑑 ), establishing specific embedding

conditions for three distinct regions using Eq. (4). The

difference parameter ( 𝑑 ) represents the deviation

between pixel value and subtractor value. Apply zone-

specific embedding rules where Zone A represents the

dark region (0 ≤  𝑝(𝑖)  ≤ 85), Zone B covers the mid-

tone region (86 ≤  𝑝(𝑖)  ≤ 171), and Zone C

encompasses the bright region (172≤  𝑝(𝑖)  ≤255). The

secret data is embedded using the relation in Eq. (5),

where 𝑝′(𝑖) denotes the resulting stego pixel and 𝑏(𝑖)
represents the secret bit embedded. The corresponding

secret keys are generated using the relations in Eqs. (6)-

(8). 

𝑍𝑜𝑛𝑒 = {

𝐴, 𝑖𝑓 0 ≤ 𝑝(𝑖) ≤ 85, 0 ≤ 𝑑(𝑖) ≤ 5

𝐵, 𝑖𝑓 86 ≤ 𝑝(𝑖) ≤ 171, −2 ≤ 𝑑(𝑖) ≤ 2

𝐶, 𝑖𝑓 172 ≤ 𝑝(𝑖) ≤ 255, 𝑑(𝑖) = 2

 (4) 

𝑝′(𝑖) = 𝑝(𝑖) + 𝑑(𝑖) +  𝑏(𝑖) (5) 

For Zone A: 

{
𝑘𝑒𝑦 = 001, 𝑏(𝑖) = 1

𝑘𝑒𝑦 = 010, 𝑏(𝑖) = 0
(6) 
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For Zone B: 

{
𝑘𝑒𝑦 = 011, 𝑏(𝑖) = 1

𝑘𝑒𝑦 = 100, 𝑏(𝑖) = 0
(7) 

For Zone C: 

{
𝑘𝑒𝑦 = 101, 𝑏(𝑖) = 1

𝑘𝑒𝑦 = 110, 𝑏(𝑖) = 0
(8) 

4. Construct Final Steganographic Image: Build the final

steganographic image by replacing original pixel values

with the modified values obtained from the embedding

process. Reshape the processed 1D pixel array back to 

the original 2D image dimensions. It aims to ensure the 

stego image maintains the same structural properties as 

the cover image while successfully concealing the secret 

data within the specified embedding constraints. 

3.2 Extraction process 

Figure 3, contextualizing the extraction process, performs 

the inverse operations of embedding, systematically 

recovering both the original medical image and the hidden 

MPR data using the secret keys and subtractor indices obtained 

from the embedding stage. These are as follows. 

Figure 3. The extraction process 

1. Load Steganographic Image and Initialize Block

Structure: Load the steganographic image, along with

the subtractor indices array and secret keys array,

required for the extraction process. Convert the stego

image from a 2D matrix format into a 1D pixel array,

then divide it into separate blocks containing four pixels

each. This block structure must match the one used

during the data embedding process to ensure accurate

data recovery.

2. Identify Subtractor Pixels and Analyze Secret Keys:

Extract the subtractor pixel for each block using the

stored subtractor indices ( 𝐼[𝑗] ) from the embedding

phase using Eq. (9). Based on the key, the location of

the secret data is recognized. Analyze each pixel's

corresponding secret key to determine the presence and

characteristics of embedded data for subsequent

extraction operations.

3. Extract Embedded Bits and Recover Original Pixel

Values: Perform bit extraction when the secret key

indicates the presence of embedded data (𝑘 ≠ '000'). To

recover the cover image, Eq. (10) helps get the cover

image that the embedding process has not modified. We

apply Eq. (11) for the pixels with the secret data.

𝑆𝑣𝑎𝑙 =  𝑏𝑙𝑜𝑐𝑘[𝐼[𝑗]] (9) 

𝑝(𝑖) = 𝑝′(𝑖) (10) 

𝑝(𝑖) = 𝑝′(𝑖) − 𝑏(𝑖) − ⌊
𝑑(𝑖)

2
⌋ (11) 

4. Reconstruct Original Image and Concatenate Secret

Data: Validate and constrain all recovered pixel values

to the valid intensity range [0, 255] to prevent invalid

pixel values. Construct the original image by

assembling the recovered pixel values generated from

the extraction stage. Reshape the processed 1D pixel

array back to the original 2D image dimensions,

ensuring the recovered image maintains the same

structural properties as the original cover image while

successfully extracting the concealed secret data from

the steganographic image.

3.3 Practical Implementation using MedRec-Secure 

From this perspective, the relevance of the proposed 

dynamic subtractor selection approach is shown through 

practical implementation using a single pixel block, provided 

in Algorithm 1. The selection process employs statistical 

analysis to identify the optimal reference pixel that minimizes 

the weighted combination of mean deviation and standard 

deviation distance. 
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Algorithm 1. Dynamic Subtractor Selection Process 

Notation: 

• 𝑃 = pixel_group → Group of pixels in 1 block

• 𝜇 → Mean value of pixel group

• 𝜎 → Standard deviation of pixel group

• 𝑤 → Subtractor weight parameter (0.05)

• 𝑑_𝜇(𝑖) → Mean deviation distance for pixel i

• 𝑑_𝜎(𝑖) → Standard deviation distance for pixel i

• 𝑆(𝑖) → Selection score for pixel i

• 𝑠𝑢𝑏 → Selected subtractor pixel value

Input: Group of pixels in 1 block 

    Output: Subtractor pixel value 

1) Start

2) Calculate 𝜇 = MEAN(𝑃)

3) Calculate 𝜎 = STD_DEV(𝑃)

4) Initialize min_score = ∞
5) for each pixel in 𝑃 do

6) Calculate 𝑑_𝜇(𝑖) = |𝑃(𝑖)  −  𝜇|

7) Calculate 𝑑_𝜎(𝑖) = |𝑃(𝑖)  −  𝜎|

8) Calculate 𝑆(𝑖) = 𝑑_𝜇(𝑖) + 𝑤 × 𝑑_𝜎(𝑖)
9) if 𝑆(𝑖) < min_score then

10) min_score = 𝑆(𝑖)
11) sub = 𝑃(𝑖)
12) Return sub

13) End

The algorithm begins with a pixel block containing values 

[75, 78, 73, 80]. First, the average (mean) value of the block is 

calculated, resulting in: 

𝜇 = 76.5 

Next, the standard deviation is computed as: 

𝜎 = 2.89 

For each pixel in the block, the algorithm evaluates a 

weighted selection score. Pixel 0, with value 75, has a mean 

distance of 1.5 and a standard deviation distance of 72.11, 

producing a selection score of: 

𝑆𝑐𝑜𝑟𝑒₀ =  1.5 +  0.05 ×  72.11 =  5.11 

Pixel 1 with value 78 shows a mean distance of 1.5 and a 

standard deviation distance of 75.11, resulting in a score of: 

𝑆𝑐𝑜𝑟𝑒₁ =  1.5 +  0.05 ×  75.11 =  5.26 

Pixel 2 with value 73 exhibits a larger mean distance of 3.5 

and standard deviation distance of 70.11, generating a higher 

score of: 

𝑆𝑐𝑜𝑟𝑒₂ =  3.5 +  0.05 ×  70.11 =  7.01 

Similarly, pixel 3 with value 80 has a mean distance of 3.5 

and a standard deviation distance of 77.11, producing the 

highest score of: 

𝑆𝑐𝑜𝑟𝑒₃ =  3.5 +  0.05 ×  77.11 =  7.36 

The algorithm identifies the pixel with the minimum score 

as the optimal subtractor. In this case, pixel 0 with value 75 

achieves the lowest score of 5.11, making it the selected 

subtractor for the block. This selection demonstrates the 

effectiveness of the weighted criterion in balancing statistical 

measures to determine the most representative pixel within the 

processing block. 

4. RESULTS AND DISCUSSIONS

4.1 Experimental environment 

The MedRec-Secure framework was implemented and 

evaluated on system equipped with an Intel Core i9 processor 

operating at 3.2 GHz and 32 GB of RAM. The development 

environment utilized MATLAB R2023b for algorithmic 

implementation and Python 3.9 with the OpenCV library for 

image processing operations. Visual Studio Code served as the 

primary integrated development environment, chosen for its 

robust debugging capabilities and efficient code management 

features, which are essential for developing steganographic 

algorithms. 

The experimental evaluation employed two comprehensive 

datasets to ensure thorough validation of the DSSSF. The 

primary dataset consisted of medical images obtained from the 

DICOM Library, similar to the study by Elhadad et al. [12], 

comprising high-resolution grayscale medical images with 

dimensions of 512 × 512 pixels. These images included 

various medical imaging modalities such as X-rays, CT scans, 

and MRI images, as illustrated in Figure 4. It has diverse 

textural characteristics essential for comprehensive 

steganographic evaluation. The secondary validation dataset 

incorporated images from the CT Medical Images database 

(https://www.kaggle.com/datasets/kmader/siim-medical-

images), offering additional medical image samples with 

varying complexity levels and anatomical structures. To 

maintain consistency in image labeling, all images are 

uniformly labeled from Cover 1 to Cover 10, as presented in 

Table 2. 

The MPRs' data utilized for embedding experiments was 

structured according to international healthcare standards, 

incorporating patient demographics, medical history, 

diagnostic information, treatment records, and clinical 

observations. The MPR dataset comprised six interconnected 

entities following relational database principles: Patient 

records containing personal identifiers, demographic 

information, and contact details; Medical History 

encompassing previous diagnoses, surgical procedures, and 

chronic conditions; Current Diagnosis including present 

medical conditions, severity assessments, and diagnostic 

confidence levels; Treatment Plans detailing prescribed 

medications, therapeutic interventions, and follow-up 

schedules; Laboratory Results containing test outcomes, 

reference ranges, and clinical interpretations; and Clinical 

Notes documenting physician observations, patient 

complaints, and treatment responses. 

The synthetic MPR dataset was generated using medical 

data simulation tools based on realistic clinical scenarios. The 

dataset encompasses 500 patient records with varying 

complexity levels, ranging from basic demographic 

information to comprehensive medical histories with multiple 

diagnostic episodes. Individual MPR sizes varied from 1 kb 

for basic records to 100 kb for complex multi-speciality cases. 
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Figure 4. Sample cover images dataset taken from DICOM Library 
Note: available at https://www.dicomlibrary.com/. 

Table 2. Datasets filename 

Image Name File Name 

Cover 1 ID_0001_AGE_0069_CONTRAST_1_CT 

Cover 2 ID_0002_AGE_0074_CONTRAST_1_CT 

Cover 3 ID_0003_AGE_0075_CONTRAST_1_CT 

Cover 4 ID_0004_AGE_0056_CONTRAST_1_CT 

Cover 5 ID_0005_AGE_0005_CONTRAST_1_CT 

Cover 6 ID_0006_AGE_0010_CONTRAST_1_CT 

Cover 7 Hand 

Cover 8 Leg 

Cover 9 Chest 

Cover 10 Head 

4.2 Experimental results 

The PSNR evaluation results, as illustrated in Figure 5, 

shown the framework's superior ability to preserve image 

quality across varying MPR payload sizes and different 

medical image datasets. For MPR data ranging from 1 kb to 

100 kb, the MedRec framework achieved remarkable PSNR 

values with significant variations depending on image 

characteristics and payload complexity. 

The experimental results reveal that smaller payload sizes 

consistently achieve higher PSNR values across all tested 

images. At a 1 kb payload, all images achieved the maximum 

PSNR of 75.43 dB, demonstrating relatively acceptable 

imperceptibility for minimal data embedding. As payload 

sizes increase, the framework maintains performance, with 

Image 3 showing the highest average PSNR of 59.70 dB, 

followed closely by Image 5 with 59.57 dB and Image 4 with 

59.36 dB. These results indicate that the dynamic subtractor 

selection mechanism effectively adapts to different structures 

and imaging characteristics. 

Notably, Image 6 presents unique challenges with an 

average PSNR of 53.48 dB, showing more significant 

degradation at higher payload sizes (49.51 dB at 100 kb). This 

variation suggests that specific medical image characteristics, 

such as uniform intensity regions or specific structures, may 

require specialized embedding strategies within the DSSSF 

framework. Despite this variation, all images maintained 

PSNR scores higher than the predefined threshold for medical 

imaging applications. 

The comparative analysis with state-of-the-art methods, as 

presented in Figure 6, demonstrates the superior performance 

of the proposed MedRec-Secure framework across different 

regions. When compared against the methods proposed by 

Hameed et al. [25], and Hussain and Khodher [26], the 

MedRec-Secure framework shows advantages in chest and 

hand medical images. For chest images, the proposed method 

achieved 69.292 dB compared to 65.295 dB [25] and 67.280 

dB [26] representing improvements of 6.1% and 3.0% 

respectively. Similarly, for hand images, the framework 

achieved 69.997 dB, compared to 67.995 dB [25] and 67.700 

dB [26], demonstrating consistent superiority. 

Figure 5. Peak Signal-to-Noise Ratio (PSNR) values from experiment across various datasets and secret data sizes 
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Figure 6. Peak Signal-to-Noise Ratio (PSNR) evaluation of the proposed approach against benchmark techniques 

However, the framework shows slightly lower performance 

for foot images (70.480 dB) compared to [26] (70.590 dB), 

although it still outperforms [25] (68.180 dB). This difference 

of 0.16% suggests that certain structures with specific intensity 

patterns may benefit from alternative embedding strategies, 

indicating areas for future optimization within the DSSSF 

framework. Comprehensive statistical analysis confirmed the 

reliability and consistency of the MedRec-Secure framework 

across multiple evaluation sessions. Repeated experiments on 

identical image-payload combinations yielded coefficients of 

variation of 2.1% or less for PSNR measurements and 1.8% or 

less for Structural Similarity Index Measure (SSIM) 

evaluations. This statistical consistency validates the 

framework's suitability for operational healthcare 

environments. 

The Mean Squared Error (MSE) evaluation results, detailed 

in Table 3, provide quantitative validation of the framework's 

minimal distortion characteristics. The MSE values have 

inverse correlation with PSNR results, confirming the 

reliability of the imperceptibility measurements. Image 3 

achieved the lowest average MSE of 0.114, corresponding to 

its highest PSNR performance, while Image 6 showed the 

highest average MSE of 0.495, consistent with its more 

challenging embedding characteristics. 

The MSE progression across payload sizes reveals 

predictable patterns, with values ranging from 0.002 at 1 kb 

(across most images) to maximum values of 0.728 at 100 kb 

for the most challenging image (Image 6). The majority of 

images maintained MSE values below 0.3 even at maximum 

payload capacity, indicating excellent preservation of image 

quality suitable for medical diagnostic purposes. 

The SSIM evaluation results, presented in Table 4, confirm 

the framework's exceptional structural preservation 

capabilities. SSIM values are consistently above 0.9883 across 

all tested scenarios, with average values ranging from 0.9940 

to 0.9982 across different images. Image 7 indicated the 

highest structural preservation, with an average SSIM of 

0.9982, while Images 1-5 showed consistent performance, 

ranging from 0.9940 to 0.9941. 

Table 3. Obtained Mean Squared Error (MSE) values 

Cover Image 1 kb 10 kb 20 kb 30 kb 40 kb 50 kb 60 kb 70 kb 80 kb 90 kb 100 kb Average MSE 

Image 1 0.002 0.019 0.038 0.057 0.101 0.136 0.176 0.201 0.222 0.248 0.272 0.134 

Image 2 0.002 0.019 0.038 0.062 0.165 0.208 0.245 0.271 0.291 0.342 0.409 0.187 

Image 3 0.002 0.019 0.038 0.058 0.095 0.123 0.145 0.165 0.183 0.205 0.224 0.114 

Image 4 0.002 0.019 0.038 0.057 0.095 0.129 0.163 0.190 0.214 0.256 0.278 0.131 

Image 5 0.002 0.019 0.038 0.057 0.077 0.097 0.131 0.167 0.247 0.278 0.297 0.128 

Image 6 0.002 0.136 0.263 0.353 0.464 0.589 0.730 0.729 0.725 0.729 0.728 0.495 

Image 7 0.005 0.053 0.083 0.116 0.159 0.199 0.242 0.293 0.337 0.387 0.435 0.210 

Image 8 0.005 0.052 0.104 0.164 0.221 0.275 0.329 0.383 0.438 0.498 0.552 0.275 

Image 9 0.006 0.037 0.065 0.102 0.141 0.175 0.211 0.248 0.278 0.303 0.324 0.172 

Image 10 0.003 0.040 0.072 0.105 0.135 0.166 0.197 0.224 0.252 0.286 0.314 0.163 

Table 4. Obtained Structural Similarity Index Measure (SSIM) values 

Cover Image 1 kb 10 kb 20 kb 30 kb 40 kb 50 kb 60 kb 70 kb 80 kb 90 kb 100 kb Average SSIM 

Image 1 1.000 0.9989 0.9975 0.9963 0.9950 0.9940 0.9927 0.9916 0.9906 0.9894 0.9885 0.9940 

Image 2 1.000 0.9989 0.9975 0.9963 0.9952 0.9941 0.9928 0.9918 0.9907 0.9895 0.9886 0.9941 

Image 3 1.0000 0.9989 0.9975 0.9963 0.9952 0.9942 0.9930 0.9919 0.9908 0.9894 0.9883 0.9941 

Image 4 1.0000 0.9989 0.9975 0.9963 0.9950 0.9940 0.9928 0.9918 0.9907 0.9897 0.9887 0.9941 

Image 5 1.0000 0.9989 0.9975 0.9963 0.9949 0.9936 0.9924 0.9916 0.9910 0.9896 0.9884 0.9940 

Image 6 1.0000 0.9987 0.9973 0.9962 0.9949 0.9934 0.9921 0.9921 0.9922 0.9921 0.9921 0.9947 

Image 7 1.0000 0.9996 0.9993 0.9990 0.9986 0.9982 0.9979 0.9974 0.9970 0.9966 0.9962 0.9982 

Image 8 1.0000 0.9995 0.9990 0.9984 0.9978 0.9972 0.9966 0.9961 0.9955 0.9948 0.9942 0.9972 

Image 9 1.0000 0.9989 0.9977 0.9966 0.9954 0.9943 0.9932 0.9921 0.9911 0.9900 0.9890 0.9944 

Image 10 1.0000 0.9990 0.9979 0.9970 0.9960 0.9948 0.9935 0.9923 0.9912 0.9897 0.9884 0.9945 

2292



Figure 7. Cover and stego histogram comparison 

The SSIM results indicate that the Dynamic Subtractor 

Selection mechanism effectively preserves critical structural 

information essential for medical diagnosis. Even at maximum 

payload capacity (100 kb), SSIM values are above 0.9883, 

which embedded MPR may not affect the diagnostic utility of 

medical images. This structural preservation is particularly 

crucial for medical applications where information details 

must be maintained. 

The comprehensive histogram analysis comparing cover 

and stego images, as illustrated in Figure 7, specifically 

demonstrates Image 6 with a 100 kb payload embedding 

scenario. Despite being the most challenging case in terms of 

PSNR and MSE metrics, the histogram comparison reveals 

minimal distributional changes between the original and 

steganographic images. The pixel intensity distributions 

exhibit a similarity across all intensity ranges, with negligible 

variations in the frequency distribution patterns, despite the 

substantial data embedding capacity. This preservation of 

histogram characteristics ensures that the embedded MPR data 

is imperceptible to both visual and statistical analysis.  

In its implementation to a real environment, the proposed 

method may be combined with cryptography. The payload is 

firstly encrypted using existing algorithms to increase its 

security, anticipating attackers obtain the hidden message. In 

this case, the security level improves, along with its 

complexity. However, the complexity expects to increase. 

Therefore, it needs to consider what the purpose and 

environment of the system, whether the processing time, 

payload reconstruction, robustness or other factors should be 

focused on. Overall, the complexity of the algorithm is 

essential to further analysis. It is also wort noting that, as 

spatial domain-based data hiding, this method is not robust 

again stego image manipulation, which can destroy the 

information in it.  

The experimental findings indicate that the MedRec-Secure 

framework, with its DSSSF, signifies considerable 

enhancement in medical data steganography, providing trade-

offs between embedding capacity and imperceptibility, which 

are essential for practical healthcare applications. 

Furthermore, it is still possible to increase the data security by 

integrating the federated learning framework [31] or 

blockchain mechanism [32] into the system. 

5. CONCLUSIONS

This study proposes a data hiding framework, MedRec-

Secure, which aims to hide MPRs within medical images by 

still considering imperceptibility and payload capacity. 

Implementing the DSSSF with a multi-zone embedding 

strategy, the framework generates protection for medical data 

while maintaining image quality. MedRec-Secure represents 

an advancement by addressing critical limitations in previous 

methods, particularly in adaptive embedding, imperceptibility, 

and payload capacity. The experimental results demonstrate its 

superior performance, achieving PSNR values ranging from 

49.51 dB to 75.43 dB and SSIM values above 0.9883. The 

framework also exhibits notable improvements over state-of-

the-art methods in chest and hand image scenarios, 

underscoring its adaptability across various anatomical 

structures and medical image types. 

Future work will focus on expanding the DSSSF framework 

to support color medical images and three-dimensional 

datasets, which are increasingly prevalent in modern 

healthcare. Enhancements will also explore the integration of 

machine learning techniques for more intelligent subtractor 

selection and real-time optimization.  
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