Z I El' A International Information and

Engineering Technology Association

International Journal of Safety and Security Engineering

Vol. 15, No. 11, November, 2025, pp. 2285-2295

Journal homepage: http://iieta.org/journals/ijsse

MedRec-Secure: A Framework for Confidentiality Preservation in Medical Patient Records ]

Tigo S Yoga!
Suadi!

, Ntivuguruzwa Jean De La Croix>**2, Tohari Ahmad'"”, Royyana Muslim Ijtihadie'

Check for
updates

, Wahyu

! Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
2 Department of Business Information Technology, College of Business and Economics, University of Rwanda, Kigali 4285,

Rwanda

3 Department of Technology Innovation, SecureAl Laboratories, Kigali 6100, Rwanda
4Faculty of Computing and Information Science, University of Lay Adventist of Kigali (UNILAK), Kigali 6392, Rwanda

Corresponding Author Email: tohari@its.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.151109

ABSTRACT

Received: 23 October 2025

Revised: 24 November 2025
Accepted: 27 November 2025
Available online: 30 November 2025

Keywords:
Medical Patient Records, cyber security, data
hiding, information hiding, information

security, national security, ICT infrastructure

The digitization of healthcare has revolutionized patient data management through
Medical Patient Records (MPRs), but has simultaneously introduced critical security
vulnerabilities, as traditional cryptographic methods explicitly reveal the presence of
sensitive information. This study introduces MedRec-Secure, a comprehensive data
hiding scheme designed to enhance MPR confidentiality through a novel Dynamic
Subtractor Selection Steganographic Framework (DSSSF) that conceals sensitive medical
information within medical images while preserving diagnostic quality. The proposed
framework operates on grayscale medical images divided into 4-pixel blocks, employing
statistical analysis to select optimal reference pixels dynamically. A multi-zone
embedding strategy categorizes pixels into three intensity zones, with tailored embedding
rules for each zone. Experimental evaluation demonstrated superior performance, with a
Peak Signal-to-Noise Ratio (PSNR) achieving a maximum of 75.43 dB across varying
MPR payload sizes (1 kb to 100 kb). The Structural Similarity Index Measure (SSIM)
achieved outstanding maximum values of 1.000, maintaining near-perfect similarity
despite slight decreases with larger payloads. MedRec-Secure outperforms existing
methods by 3.2 dB in PSNR performance, preserving diagnostic image integrity while
enabling secure MPR transmission across healthcare networks.

1. INTRODUCTION

The digital revolution in healthcare has fundamentally

Traditional security methodologies, primarily relying on
cryptographic techniques such as symmetric and asymmetric
encryption algorithms, while providing essential data

transformed patient data management paradigms, with
Electronic Health Records (EHRs) or Medical Patient Records
(MPRs) emerging of modern medical information systems [1,
2]. This transformation has facilitated unprecedented
improvements in healthcare delivery efficiency, clinical
decision-making, and patient care coordination across diverse
healthcare networks [3]. However, the exponential growth of
digital health data, coupled with increasingly sophisticated
cyber threats, has simultaneously introduced critical security
vulnerabilities that threaten the confidentiality and integrity of
sensitive medical records [4].

Healthcare environments face security challenges that
extend beyond traditional data protection concerns. The
interconnected nature of modern healthcare systems, where
MPRs must traverse multiple networks and be accessible to
various stakeholders, creates numerous potential attacks [5].
Data breaches in healthcare result in substantial financial
losses and also compromise patient trust. This can potentially
endanger patient safety when medical information is
manipulated by unauthorized entities.
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confidentiality, possess inherent limitations in the context of
covert healthcare communications. Encrypted data explicitly
advertises the presence of sensitive information, potentially
attracting unwanted scrutiny from adversaries and increasing
the likelihood of targeted decryption attempts [6]. Encryption
methods do not address the growing need for secure
communication channels that maintain operational covertness
in potentially compromised network environments [7].
Steganography emerges as a complementary security
paradigm that addresses these limitations by concealing
confidential data rather than merely obscuring their content
[8]. This technique provides security through obscurity by
embedding sensitive information within carrier media, thereby
enabling covert data transmission without raising suspicion
[9]. In healthcare contexts, where medical images such as
radiographs, computed tomography (CT) scans, and magnetic
resonance imaging (MRI) data are routinely transmitted and
stored, steganographic techniques offer unique opportunities
for secure MPR distribution [10]. As depicted in Figure 1, the
embedding process to put MPR into medical images
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encompasses two fundamental stages: the embedding stage,
where confidential medical information is concealed using
Medical Data Embedding (MDE) algorithms, and the

extraction stage, where the hidden MPR is reconstructed from
the stego image.
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Figure 1. System architecture for steganographic Medical Patient Records (MPRs) data communication

The application of steganography to medical data protection
presents distinctive challenges that differentiate it from
conventional steganographic applications [11]. Medical
images serve as carriers of hidden data for diagnostic tools
afterwards. Consequently, any modification must maintain the
integrity and visual quality of medical images while providing
sufficient embedding capacity [12]. Small distortion in
medical imagery can compromise diagnostic accuracy and
potentially impact patient care outcomes.

Existing steganographic approaches for healthcare
applications predominantly employ static embedding
strategies that lack adaptability to varying image

characteristics and data payload requirements [13]. These
methods often suffer from limited embedding capacity,
rendering them unsuitable for medical applications. Moreover,
current techniques may fail to provide adequate resistance
against modern steganalysis methods, limiting their practical
applicability.

To address these critical limitations, this research introduces
MedRec-Secure, a comprehensive data hiding scheme
specifically designed to enhance MPR confidentiality. The
MedRec-Secure operates on the principle of intelligent
reference pixel selection within image blocks, where statistical
analysis determines the most suitable subtractor pixels for
embedding operations. This dynamic approach, combined
with a sophisticated multi-zone embedding strategy that
categorizes pixels based on intensity ranges, enables the
system to maximize data hiding capacity while minimizing
visual artifacts and preserving diagnostic image quality. The
primary contributions of this research can be described as
follows:

1. Development of an adaptive reference pixel selection
algorithm that analyzes local statistical properties,
including mean values and standard deviations, to
identify optimal subtractor pixels within image blocks.
This mechanism enhances embedding adaptability and
reduces predictable patterns.

Introduction of an intelligent embedding approach that
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categorizes pixel intensities into three distinct zones
(Zone 1: 0-85, Zone 2: 86-171, Zone 3: 172-254) with
tailored embedding rules and conditions for each zone.
This optimizes embedding capacity while minimizing
visual distortion through zone-specific modification
formulas.

Development of embedding algorithms optimized
explicitly for medical imaging applications.

The next parts of this paper are organized as follows:
Section 2 presents the literature review covering advances in
healthcare data security and existing steganographic
techniques for medical applications. Section 3 details the
implementation flow of the proposed MedRec-Secure. The
results of the experiments are explicitly reported in Section 4,
and Section 5 concludes this study.

3.

2. RELATED WORKS

Steganography in medical contexts presents unique
challenges and opportunities compared to conventional digital
steganography  applications  [14].  Spatial  domain
steganographic methods represent the most widely researched
category of medical steganography techniques due to their
computational efficiency and relative simplicity of
implementation [15, 16]. The foundational Least Significant
Bit (LSB) substitution method, while offering high embedding
capacity, is vulnerable to statistical attacks and can introduce
detectable patterns in medical images [17]. A previous study
developed one of the early medical steganography
applications, embedding electroencephalogram (EEG) and
prescription data within medical images using enhanced LSB
techniques with pixel similarity metrics [18]. Their approach
achieved embedding capacities of up to 0.25 bits per pixel
while maintaining acceptable visual quality. However,
subsequent analysis demonstrated that the method was
susceptible to histogram-based steganalysis techniques
commonly used in forensic analysis [19].



Pixel Value Differencing (PVD) techniques have shown
promise in medical image steganography due to their adaptive
nature and improved resistance to statistical attacks. Huang et
al. [20] proposed a modified PVD approach designed
explicitly for radiographic images, utilizing region
classification to vary embedding strategies based on clinical
importance. Their method achieved superior imperceptibility
in critical diagnostic regions while maximizing embedding
capacity in non-critical areas. The approach demonstrated
embedding capacities ranging from 0.18 to 0.31 bits per pixel,
depending on image content, with PSNR values consistently
above 45 dB for radiographic images.

The Difference Expansion (DE) technique has been adapted
for medical applications, with a particular focus on the
reversibility requirements essential for clinical environments.
Wang and Fun developed a reversible DE steganography
method for images, which was able to restore the original
image after information extraction [21]. This approach is
particularly valuable in medical contexts where the integrity
of images must be maintained. Their method achieved
embedding capacities of up to 0.22 bits per pixel while
maintaining reversibility and PSNR values above 48 dB.

Transform domain steganographic approaches operate on
frequency representations of medical images, offering
potential advantages in terms of robustness and
imperceptibility. Discrete Cosine Transform (DCT) based
steganography has been investigated for medical applications,
with particular focus on JPEG-compressed medical images
commonly used in Picture Archiving and Communication
Systems (PACS). Mohammed et al. proposed a DCT-based
steganographic framework for embedding patient metadata
within JPEG-compressed radiographic images [22]. Their
approach utilized quantization table modification to embed
information while maintaining JPEG compatibility. The
method demonstrated good resistance to compression attacks
but suffered from a limited embedding capacity (0.08-0.15 bits
per pixel) and potential degradation in diagnostic quality in
high-frequency image regions.

Discrete Wavelet Transform (DWT) techniques have shown
promise for medical steganography due to their multi-
resolution analysis capabilities. Soundrapandiyan et al. [23]
developed a DWT-based embedding system that analyzes
wavelet coefficients to identify optimal embedding locations.
Their approach achieved improved imperceptibility compared
to spatial domain methods with PSNR values above 52 dB, but
required higher computational resources for embedding and
extraction operations. The method demonstrated embedding
capacities of 0.19-0.28 bits per pixel, depending on the
selected wavelet basis and decomposition levels.

Adaptive and intelligent steganographic systems represent
the latest advancement in medical steganography research,
incorporating machine learning and optimization techniques.
Chen et al. proposed a deep learning-based steganographic
system for medical images that utilizes convolutional neural
networks to identify optimal embedding regions [24]. Their
approach depicted superior performance in terms of
imperceptibility and embedding capacity compared to
traditional methods, achieving PSNR values above 54 dB and
embedding capacities up to 0.35 bits per pixel. However, the
system required extensive training datasets and significant
computational resources, which limited its practical
deployment in resource-constrained healthcare environments.

Despite significant advances in medical steganography
research, several critical limitations persist in existing
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approaches that limit their practical applicability in healthcare
environments, including LSB-based approaches such as those
in studies [25, 26]. A comprehensive analysis of the current
literature, as reported in Table 1, reveals systematic gaps that
require innovative solutions to enable the widespread adoption
of steganographic techniques in medical contexts.

Table 1. Related works in medical data security and

steganography
Aspect References  Year Findings
Healthcare data
. security requires
Medical .Data Peng ct al. 2024  advanced encryption
Security [27] .
and steganographic
protection methods.
Medical image
integrity is crucial for
Medical Image Yan et al. 2025 accurate diagnosis and
Integrity [28] preventing
unauthorized
alterations.
Medical
Medical stegal}ography faces
Hua et al. cropping attacks and
Steganography 2023 .
N [29] transmission
Limitation . .
distortion
vulnerabilities.
Medical data
preprocessing requires
Medical Data  Chahid et robust privacy
Preprocessing al. [30] 2023 protection
’ mechanisms for
sensitive patient
information.
Employing dynamic steganographic
Proposed approaches with adaptive embedding
Method in strategies to protect sensitive medical

MedRec-Secure  information while maintaining image fidelity

for effective clinical decision making.

3. PROPOSED METOD

The MedRec-Secure framework is designed for
imperceptible embedding of MPR data into grayscale medical
images. Unlike existing steganographic approaches that
employ static embedding strategies, the proposed framework
introduces a Dynamic Subtractor Selection Steganographic
Framework (DSSSF) that adapts to local image characteristics
while maintaining optimal trade-offs between embedding
capacity, imperceptibility, and security.

The MedRec-Secure framework operates on the principle of
intelligent pixel block processing, where medical images are
divided into fixed-size blocks and statistical analysis
determines the most suitable reference pixels (subtractors) for
embedding operations, which does not adaptively work on the
clinical importance (e.g., [20]) or extends the pixel difference
within a block (e.g., [21]). This dynamic approach, combined
with a multi-zone embedding strategy that categorizes pixels
based on intensity ranges, enables the system to maximize data
hiding capacity while minimizing visual artifacts and
preserving diagnostic image quality essential for medical
applications.

MedRec-Secure consists of three main phases: dynamic
subtractor selection within pixel blocks, zone-based
embedding with adaptive conditions, and secure key



generation for reliable extraction. The framework processes 8-
bit grayscale medical images by converting them into 1D pixel
arrays and organizing these arrays into blocks of 4 pixels each.
For each block, statistical analysis, including calculations of
mean and standard deviation, identifies the optimal subtractor
pixel. The remaining pixels undergo zone-based evaluation for
embedding eligibility, based on their intensity values and the
difference relationships with the selected subtractor.

3.1 Embedding process

The embedding process, as illustrated in Figure 2,
constitutes the core functionality of the MedRec-Secure
framework, transforming cover medical images into stego
images that contain hidden MPR data through a systematic
sequence of operations. The process takes as input the cover
medical image and secret MPR bits, producing a stego image
and secret keys required for extraction.

1. Convert and Divide Cover Image into Processing
Blocks: Start by converting the cover image from its
original 2D matrix format to a 1D pixel array for
efficient processing. Divide the pixel array into non-
overlapping blocks of four pixels each.

cover image
(pixel value (p))
secret data (s)

flatten, group into 4

Y
calculate group find closest pixel:
s »{ Ip- 4l +0.05|p -0
v (subtractor, p(s))

{p < 258 no

T
yes

store p(s) index

p'(i) = P()*d*’s(') p'(i) = D(l)*d+5(l)

2. Determine Optimal Subtractor Pixel through Statistical
Analysis: Calculate the mean (1) and standard deviation
(o) for each pixel block, where u represents the average
intensity and ¢ indicates the intensity variation of pixels
p(i) within the block. Apply a weighted selection
criterion to identify the most suitable subtractor pixel
through the selection score function (S) defined in Eq.
(1), where the subtractor weight parameter (w) is
empirically set to 0.05 for optimal performance.

Se®) = Ip(D) —ul+wlp@®) — ol (1)

Identify the pixel with the minimum selection score as the
designated subtractor using Eq. (2) and Eq. (3). It is to
establish the reference point for subsequent embedding
operations.

Siax = argmin(S(p())) 2

Sval = blOCk[Sidx] (3)

@ Embedding

Calculate pixel
difference except
toS subtractor:

d(i) = p(i) - p(s)

no

p'(i)= D(l) +d +s(i)

if s(i) = 1: key = 101 if s(i) = 1: key = 011 if s(i) = 1: key = 001
else: key = 110 else: key = 100 else: key =010
Y
stego image +
key table + S

i .
h h
h h
h h
h H
. .
h h
H h
h h
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Figure 2. The embedding process

3. Classify Pixels into Multi-Zone Categories and Embed
Secret Data: Perform zone classification for each non-
subtractor pixel based on intensity values and calculated
difference ( d ), establishing specific embedding
conditions for three distinct regions using Eq. (4). The
difference parameter ( d ) represents the deviation
between pixel value and subtractor value. Apply zone-
specific embedding rules where Zone A represents the
dark region (0 < p(i) < 85), Zone B covers the mid-
tone region (86 < p(i) < 171), and Zone C
encompasses the bright region (172< p(i) <255). The
secret data is embedded using the relation in Eq. (5),
where p'(i) denotes the resulting stego pixel and b (i)
represents the secret bit embedded. The corresponding
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secret keys are generated using the relations in Egs. (6)-

(3).
Aif0<p@)<850<d@i) <5
Zone ={B,if 86 <p(i) <171,-2<d(i) <2 4
C,if 172 < p(i) < 255,d(i) =2
p'() = p@) +d(@) + b() (5)
For Zone A:

{key =001,b(i) =1 6
key =010,b(i) =0 ©)



For Zone B:

{key =011,b() =1 7
key = 100,b(i) =0 )
For Zone C:
{key =101,b() =1 s
key =110,b(i) =0 )
4. Construct Final Steganographic Image: Build the final

steganographic image by replacing original pixel values
with the modified values obtained from the embedding

.................................................

process. Reshape the processed 1D pixel array back to
the original 2D image dimensions. It aims to ensure the
stego image maintains the same structural properties as
the cover image while successfully concealing the secret
data within the specified embedding constraints.

3.2 Extraction process

Figure 3, contextualizing the extraction process, performs
the inverse operations of embedding, systematically
recovering both the original medical image and the hidden
MPR data using the secret keys and subtractor indices obtained
from the embedding stage. These are as follows.

stego image +
key table + §

flatten, group into 4

Y
get subtractor index
Y from §
if key = 101: s(i) = 1
else: s(i) =0
Y

calculate pixel difference
except subtractor:

cover image &
secret data

Figure 3. The extraction process

Load Steganographic Image and Initialize Block
Structure: Load the steganographic image, along with
the subtractor indices array and secret keys array,
required for the extraction process. Convert the stego
image from a 2D matrix format into a 1D pixel array,
then divide it into separate blocks containing four pixels
each. This block structure must match the one used
during the data embedding process to ensure accurate
data recovery.

Identify Subtractor Pixels and Analyze Secret Keys:
Extract the subtractor pixel for each block using the
stored subtractor indices (I[j]) from the embedding
phase using Eq. (9). Based on the key, the location of
the secret data is recognized. Analyze each pixel's
corresponding secret key to determine the presence and
characteristics of embedded data for subsequent
extraction operations.

Extract Embedded Bits and Recover Original Pixel
Values: Perform bit extraction when the secret key
indicates the presence of embedded data (k # '000"). To
recover the cover image, Eq. (10) helps get the cover
image that the embedding process has not modified. We
apply Eq. (11) for the pixels with the secret data.

Syar = block[I[j]] )
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d(i)=p'(i)—p'(s)
Extraction
p() =p'(D) (10)
d(i
p® = p'® ~b® ~ |32 ()

4. Reconstruct Original Image and Concatenate Secret
Data: Validate and constrain all recovered pixel values
to the valid intensity range [0, 255] to prevent invalid
pixel values. Construct the original image by
assembling the recovered pixel values generated from
the extraction stage. Reshape the processed 1D pixel
array back to the original 2D image dimensions,
ensuring the recovered image maintains the same
structural properties as the original cover image while
successfully extracting the concealed secret data from
the steganographic image.

3.3 Practical Implementation using MedRec-Secure

From this perspective, the relevance of the proposed
dynamic subtractor selection approach is shown through
practical implementation using a single pixel block, provided
in Algorithm 1. The selection process employs statistical
analysis to identify the optimal reference pixel that minimizes
the weighted combination of mean deviation and standard
deviation distance.



Algorithm 1. Dynamic Subtractor Selection Process
Notation:
* P =pixel group — Group of pixels in 1 block
e u — Mean value of pixel group
* g — Standard deviation of pixel group
* w — Subtractor weight parameter (0.05)
* d_u(i) — Mean deviation distance for pixel i
* d_o(i) — Standard deviation distance for pixel i
* §(i) — Selection score for pixel i
» sub — Selected subtractor pixel value

Input: Group of pixels in 1 block
Output: Subtractor pixel value

1) Start

2) Calculate u = MEAN(P)

3) Calculate 0 =STD DEV(P)

4) Initialize min_score = oo

5) for each pixel in P do

6)  Calculate d_u(i) =|P(i) — u|
7)  Calculate d_o(i) =|P(i) — o|
8)  Calculate S(i) =d_u(i) +w x d_o(i)
9) if S(i) <min_score then

10) min_score = S(i)

11) sub=P(i)

12) Return sub

13) End

The algorithm begins with a pixel block containing values
[75, 78,73, 80]. First, the average (mean) value of the block is
calculated, resulting in:

u=176.5
Next, the standard deviation is computed as:
o =289

For each pixel in the block, the algorithm evaluates a
weighted selection score. Pixel 0, with value 75, has a mean
distance of 1.5 and a standard deviation distance of 72.11,
producing a selection score of:

Scoreq = 1.5 + 0.05 x 72.11 = 5.11

Pixel 1 with value 78 shows a mean distance of 1.5 and a
standard deviation distance of 75.11, resulting in a score of:

Score; = 1.5 + 0.05 X 75.11 = 5.26
Pixel 2 with value 73 exhibits a larger mean distance of 3.5
and standard deviation distance of 70.11, generating a higher
score of:
Score, = 3.5 + 0.05 x 70.11 = 7.01
Similarly, pixel 3 with value 80 has a mean distance of 3.5
and a standard deviation distance of 77.11, producing the
highest score of:

Score; = 3.5 + 0.05 x 77.11 = 7.36

The algorithm identifies the pixel with the minimum score
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as the optimal subtractor. In this case, pixel 0 with value 75
achieves the lowest score of 5.11, making it the selected
subtractor for the block. This selection demonstrates the
effectiveness of the weighted criterion in balancing statistical
measures to determine the most representative pixel within the
processing block.

4. RESULTS AND DISCUSSIONS
4.1 Experimental environment

The MedRec-Secure framework was implemented and
evaluated on system equipped with an Intel Core 19 processor
operating at 3.2 GHz and 32 GB of RAM. The development
environment utilized MATLAB R2023b for algorithmic
implementation and Python 3.9 with the OpenCV library for
image processing operations. Visual Studio Code served as the
primary integrated development environment, chosen for its
robust debugging capabilities and efficient code management
features, which are essential for developing steganographic
algorithms.

The experimental evaluation employed two comprehensive
datasets to ensure thorough validation of the DSSSF. The
primary dataset consisted of medical images obtained from the
DICOM Library, similar to the study by Elhadad et al. [12],
comprising high-resolution grayscale medical images with
dimensions of 512 X 512 pixels. These images included
various medical imaging modalities such as X-rays, CT scans,
and MRI images, as illustrated in Figure 4. It has diverse
textural characteristics essential for comprehensive
steganographic evaluation. The secondary validation dataset
incorporated images from the CT Medical Images database
(https://www kaggle.com/datasets/kmader/siim-medical-
images), offering additional medical image samples with
varying complexity levels and anatomical structures. To
maintain consistency in image labeling, all images are
uniformly labeled from Cover 1 to Cover 10, as presented in
Table 2.

The MPRs' data utilized for embedding experiments was
structured according to international healthcare standards,
incorporating patient demographics, medical history,
diagnostic information, treatment records, and clinical
observations. The MPR dataset comprised six interconnected
entities following relational database principles: Patient
records containing personal identifiers, demographic
information, and contact details; Medical History
encompassing previous diagnoses, surgical procedures, and
chronic conditions; Current Diagnosis including present
medical conditions, severity assessments, and diagnostic
confidence levels; Treatment Plans detailing prescribed
medications, therapeutic interventions, and follow-up
schedules; Laboratory Results containing test outcomes,
reference ranges, and clinical interpretations; and Clinical
Notes documenting physician observations, patient
complaints, and treatment responses.

The synthetic MPR dataset was generated using medical
data simulation tools based on realistic clinical scenarios. The
dataset encompasses 500 patient records with varying
complexity levels, ranging from basic demographic
information to comprehensive medical histories with multiple
diagnostic episodes. Individual MPR sizes varied from 1 kb
for basic records to 100 kb for complex multi-speciality cases.



Cover 1

Cover 2

Cover 3

Cover 4 Cover 5

Figure 4. Sample cover images dataset taken from DICOM Library
Note: available at https://www.dicomlibrary.com/.

Table 2. Datasets filename

Image Name File Name

Cover 1 ID 0001 AGE 0069 CONTRAST 1 CT
Cover 2 ID 0002 AGE 0074 CONTRAST 1 CT
Cover 3 ID 0003 AGE 0075 CONTRAST 1 CT
Cover 4 ID 0004 AGE 0056 CONTRAST 1 CT
Cover 5 ID_0005_AGE 0005 CONTRAST 1 CT
Cover 6 ID_0006_AGE 0010 CONTRAST 1 CT
Cover 7 Hand

Cover 8 Leg

Cover 9 Chest

Cover 10 Head

4.2 Experimental results

The PSNR evaluation results, as illustrated in Figure 5,
shown the framework's superior ability to preserve image
quality across varying MPR payload sizes and different
medical image datasets. For MPR data ranging from 1 kb to
100 kb, the MedRec framework achieved remarkable PSNR
values with significant variations depending on image
characteristics and payload complexity.

The experimental results reveal that smaller payload sizes
consistently achieve higher PSNR values across all tested
images. At a 1 kb payload, all images achieved the maximum
PSNR of 75.43 dB, demonstrating relatively acceptable
imperceptibility for minimal data embedding. As payload
sizes increase, the framework maintains performance, with

Image 3 showing the highest average PSNR of 59.70 dB,
followed closely by Image 5 with 59.57 dB and Image 4 with
59.36 dB. These results indicate that the dynamic subtractor
selection mechanism effectively adapts to different structures
and imaging characteristics.

Notably, Image 6 presents unique challenges with an
average PSNR of 53.48 dB, showing more significant
degradation at higher payload sizes (49.51 dB at 100 kb). This
variation suggests that specific medical image characteristics,
such as uniform intensity regions or specific structures, may
require specialized embedding strategies within the DSSSF
framework. Despite this variation, all images maintained
PSNR scores higher than the predefined threshold for medical
imaging applications.

The comparative analysis with state-of-the-art methods, as
presented in Figure 6, demonstrates the superior performance
of the proposed MedRec-Secure framework across different
regions. When compared against the methods proposed by
Hameed et al. [25], and Hussain and Khodher [26], the
MedRec-Secure framework shows advantages in chest and
hand medical images. For chest images, the proposed method
achieved 69.292 dB compared to 65.295 dB [25] and 67.280
dB [26] representing improvements of 6.1% and 3.0%
respectively. Similarly, for hand images, the framework
achieved 69.997 dB, compared to 67.995 dB [25] and 67.700
dB [26], demonstrating consistent superiority.

75 @—=e & = = Secret Data Size
-@- 1kb
10kb
J 20kb
70 30kb
E. 40kb
50kb
A 60k
-4 =@~ 70kb
Z 60 == 80kb
v —= 90Kb
o =8~ 100kb
55
50

Imalge 1 Imaée 2 Imaée 3 Imaée 4 Imalge 5 Imaée 6 Imaée 7 Imaée 8 Ima&_;e 9 Imagle 10

Cover Images

Figure 5. Peak Signal-to-Noise Ratio (PSNR) values from experiment across various datasets and secret data sizes
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PSNR (dB)

70.590  70.480

69.997

67.995

Hameed [25]
B Hussain and Khodher [26]
mm MedRec-Secure

Chest Foot Halnd
Image Type

Figure 6. Peak Signal-to-Noise Ratio (PSNR) evaluation of the proposed approach against benchmark techniques

However, the framework shows slightly lower performance
for foot images (70.480 dB) compared to [26] (70.590 dB),
although it still outperforms [25] (68.180 dB). This difference
of 0.16% suggests that certain structures with specific intensity
patterns may benefit from alternative embedding strategies,
indicating areas for future optimization within the DSSSF
framework. Comprehensive statistical analysis confirmed the
reliability and consistency of the MedRec-Secure framework
across multiple evaluation sessions. Repeated experiments on
identical image-payload combinations yielded coefficients of
variation of 2.1% or less for PSNR measurements and 1.8% or
less for Structural Similarity Index Measure (SSIM)
evaluations. This statistical consistency validates the
framework's  suitability = for  operational  healthcare
environments.

The Mean Squared Error (MSE) evaluation results, detailed
in Table 3, provide quantitative validation of the framework's
minimal distortion characteristics. The MSE values have
inverse correlation with PSNR results, confirming the
reliability of the imperceptibility measurements. Image 3

achieved the lowest average MSE of 0.114, corresponding to
its highest PSNR performance, while Image 6 showed the
highest average MSE of 0.495, consistent with its more
challenging embedding characteristics.

The MSE progression across payload sizes reveals
predictable patterns, with values ranging from 0.002 at 1 kb
(across most images) to maximum values of 0.728 at 100 kb
for the most challenging image (Image 6). The majority of
images maintained MSE values below 0.3 even at maximum
payload capacity, indicating excellent preservation of image
quality suitable for medical diagnostic purposes.

The SSIM evaluation results, presented in Table 4, confirm
the framework's exceptional structural preservation
capabilities. SSIM values are consistently above 0.9883 across
all tested scenarios, with average values ranging from 0.9940
to 0.9982 across different images. Image 7 indicated the
highest structural preservation, with an average SSIM of
0.9982, while Images 1-5 showed consistent performance,
ranging from 0.9940 to 0.9941.

Table 3. Obtained Mean Squared Error (MSE) values

Cover Image 1kb 10kb 20kb 30kb 40kb 50kb

60kb 70kb 80kb 90kb 100 kb Average MSE

Image 1 0.002 0.019 0.038 0.057 0.101 0.136 0.176 0.201 0.222 0.248  0.272 0.134
Image 2 0.002 0.019 0.038 0.062 0.165 0208 0.245 0271 0.291 0.342  0.409 0.187
Image 3 0.002 0.019 0.038 0.058 0.095 0.123 0.145 0.165 0.183 0.205 0.224 0.114
Image 4 0.002 0.019 0.038 0.057 0.095 0.129 0.163 0.190 0.214 0.256  0.278 0.131
Image 5 0.002 0.019 0.038 0.057 0.077 0.097 0.131 0.167 0.247 0.278  0.297 0.128
Image 6 0.002 0.136  0.263 0353 0.464 0589 0.730 0.729 0.725 0.729  0.728 0.495
Image 7 0.005 0.053 0.083 0.116 0.159 0.199 0242 0.293 0.337 0.387 0.435 0.210
Image 8 0.005 0.052 0.104 0.164 0.221 0275 0329 0.383 0.438 0.498 0.552 0.275
Image 9 0.006 0.037 0.065 0.102 0.141 0.175 0.211 0.248 0.278 0.303  0.324 0.172
Image 10 0.003  0.040 0.072 0.105 0.135 0.166 0.197 0.224 0.252 0.286  0.314 0.163

Table 4. Obtained Structural Similarity Index Measure (SSIM) values

Cover Image 1kb 10kb 20kb 30kb 40kb 50kb

60kb 70kb 80kb 90kb 100kb  Average SSIM

Image 1 1.000 0.9989 0.9975 0.9963 0.9950 0.9940
Image 2 1.000 0.9989 0.9975 0.9963 0.9952 0.9941
Image 3 1.0000 0.9989 0.9975 0.9963 0.9952 0.9942
Image 4 1.0000 0.9989 0.9975 0.9963 0.9950 0.9940
Image 5 1.0000 0.9989 0.9975 0.9963 0.9949 0.9936
Image 6 1.0000 0.9987 0.9973 0.9962 0.9949 0.9934
Image 7 1.0000 0.9996 0.9993 0.9990 0.9986 0.9982
Image 8 1.0000 0.9995 0.9990 0.9984 0.9978 0.9972
Image 9 1.0000 0.9989 0.9977 0.9966 0.9954 0.9943
Image 10 1.0000  0.9990 0.9979 0.9970 0.9960 0.9948

0.9927 0.9916 0.9906 0.9894 0.9885 0.9940
0.9928 0.9918 0.9907 0.9895 0.9886 0.9941
0.9930 0.9919 0.9908 0.9894 0.9883 0.9941
0.9928 0.9918 0.9907 0.9897 0.9887 0.9941
0.9924 0.9916 0.9910 0.9896 0.9884 0.9940
0.9921 0.9921 0.9922 0.9921 0.9921 0.9947
0.9979 0.9974 0.9970 0.9966 0.9962 0.9982
0.9966 0.9961 0.9955 0.9948 0.9942 0.9972
0.9932  0.9921 0.9911 0.9900 0.9890 0.9944
0.9935 0.9923 0.9912 0.9897 0.9884 0.9945
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Figure 7. Cover and stego histogram comparison

The SSIM results indicate that the Dynamic Subtractor
Selection mechanism effectively preserves critical structural
information essential for medical diagnosis. Even at maximum
payload capacity (100 kb), SSIM values are above 0.9883,
which embedded MPR may not affect the diagnostic utility of
medical images. This structural preservation is particularly
crucial for medical applications where information details
must be maintained.

The comprehensive histogram analysis comparing cover
and stego images, as illustrated in Figure 7, specifically
demonstrates Image 6 with a 100 kb payload embedding
scenario. Despite being the most challenging case in terms of
PSNR and MSE metrics, the histogram comparison reveals
minimal distributional changes between the original and
steganographic images. The pixel intensity distributions
exhibit a similarity across all intensity ranges, with negligible
variations in the frequency distribution patterns, despite the
substantial data embedding capacity. This preservation of
histogram characteristics ensures that the embedded MPR data
is imperceptible to both visual and statistical analysis.

In its implementation to a real environment, the proposed
method may be combined with cryptography. The payload is
firstly encrypted using existing algorithms to increase its
security, anticipating attackers obtain the hidden message. In
this case, the security level improves, along with its
complexity. However, the complexity expects to increase.
Therefore, it needs to consider what the purpose and
environment of the system, whether the processing time,
payload reconstruction, robustness or other factors should be
focused on. Overall, the complexity of the algorithm is
essential to further analysis. It is also wort noting that, as
spatial domain-based data hiding, this method is not robust
again stego image manipulation, which can destroy the
information in it.

The experimental findings indicate that the MedRec-Secure
framework, with its DSSSF, signifies considerable
enhancement in medical data steganography, providing trade-
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offs between embedding capacity and imperceptibility, which
are essential for practical healthcare applications.
Furthermore, it is still possible to increase the data security by
integrating the federated learning framework [31] or
blockchain mechanism [32] into the system.

5. CONCLUSIONS

This study proposes a data hiding framework, MedRec-
Secure, which aims to hide MPRs within medical images by
still considering imperceptibility and payload capacity.
Implementing the DSSSF with a multi-zone embedding
strategy, the framework generates protection for medical data
while maintaining image quality. MedRec-Secure represents
an advancement by addressing critical limitations in previous
methods, particularly in adaptive embedding, imperceptibility,
and payload capacity. The experimental results demonstrate its
superior performance, achieving PSNR values ranging from
49.51 dB to 75.43 dB and SSIM values above 0.9883. The
framework also exhibits notable improvements over state-of-
the-art methods in chest and hand image scenarios,
underscoring its adaptability across various anatomical
structures and medical image types.

Future work will focus on expanding the DSSSF framework
to support color medical images and three-dimensional
datasets, which are increasingly prevalent in modern
healthcare. Enhancements will also explore the integration of
machine learning techniques for more intelligent subtractor
selection and real-time optimization.
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