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Resistive Random-Access Memory (RRAM) can be used to perform in-memory computing
with low energy, high speed and small area, so it is an ideal device to implement real-time
image enhancement on the edge device. Nevertheless, standard convolutional neural
network (CNN) models based on RRAM need to be manually tuned to the alpha-parameter,
which is a limiting factor in terms of scalability and reliability. This paper suggests an
approach to automatically decide on the optimal a-value using part of the Particle Swarm
Optimization (PSO) to enhance convergence, speed of the execution and fidelity to the
enhancement. The architecture of RRAM is at the 65 nm technology node and the analysis
is carried out and calculated with the pixels level of computation and image quality analysis
by using SPICE simulation. It has been shown through experimental work that it can
enhance accuracy by 94 per cent, reduce power consumption and hardware footprint by
35% to 50% over current CNN-based designs. This shows that PSO-optimized RRAM
accelerators are a more efficient and scalable image enhancement solution in edge Al

1. INTRODUCTION

Resistive Random-Access Memory (RRAM) has become
promising in line of substituting CMOS-based architecture
because of its non-volatility, rapid switching, zero leakage
power and its ability to perform in-memory computation.
These attributes have RRAM especially appealing in real time
image enhancement and other edge applications that require
latency. Nevertheless, RRAM is the technology that is hard to
practically implement in image processing pipelines despite its
benefits. The first problem is the resistance state variability,
which influences the correction of the programming and gives
out unequal pixel transformations. Besides, thermal
unsteadiness and durability deterioration diminish durability
under uninterrupted write-and-read operations. The nonlinear
quality of RRAM also makes it difficult to accurately map
weights in CNN-based image refinement systems, and
commonly necessary to use device-level parameters, including
the alpha factor, by hand. Such manual dependency adds
complexity to the design and reduces scalability, in particular,
when multiple image profile targets or multi-stage
enhancement tasks are targeted. Although the use of RRAM-
based accelerator in neural computation has been considered
in previous literature, the majority of the research is silent on
automated optimization of the parameters. Earlier
architectures are based on fixed tuning or heuristic
optimization, neither of which made efforts to account for
device noise, non-linear switching, retention drift and array-
scale parasitic effects. Accordingly, the gap in the research is
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clear in coming up with an adaptive and scalable solution that
is going to optimize the RRAM behavior in image
enhancement systems. To close this gap, the current paper
proposes a PSO based optimization procedure to be
incorporated into an RRAM computing array, where running
this autonomous subsystem provides a chance to select the
alpha-parameter and enhance pixel improvement,
respectively. This model, which is proposed, minimizes the
effects of noise in the devices, increases the consistency of
converting to a particular converged state, and the stability of
the converting state with temperature changes, contributing to
the consistency of the output quality and the minimization of
power dissipation [1].

Although designs are often performed manually or semi-
automatically, these two modalities have been applied in many
large-scale applications, like image processing approaches
involving neural networks. Modern convolutional neural
networks (CNNs) with deep learning have shown to be very
effective in today's intelligent systems for a wide range of
tasks, including image/speech recognition and classification.
By using the memory array for the weighted sum computation,
recent attempts to construct custom inference engines using
the processing-in- memory design have reduced the frequent
transmission of information across buffers containing
calculation units. In traditional PIM systems, the
convolutional layers for every 3D kernel are unrolled into the
vertical row of a huge weight matrix, which is necessary
because to the numerous iterations required to retrieve the
input data. To generate stochastic bit-streams (SBS) that are
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both stable and accurate for use in stochastic computing, a
probabilistic switching model is created for RRAM SNG
based on physical principles. The switching probability in
different operational systems may be explained by considering
the physical cause of intrinsic fluctuations. Probability shift
(PS), a major source of error in SBS, may be evaluated by
modeling the cumulative impact between continuous cycles.
Modern Al systems rely heavily on state-of-the-art deep CNN's
due to their exceptional performance in image/speech
identification and classification. Many other approaches, such
as systolic construction, near memory computing, and the
processing-in-memory (PIM) approach with cutting-edge
technologies like RRAM, have been recently used in attempts
to develop novel inference engines. Characteristic
representations of pictures are used in several computer vision
applications, such as comprehension and multi-view
enrollment [2], rather than raw pixel intensity. However, there
is a lack of a unified examination of these many methods, and
the benefits of novel ideas or developing technology are often
based on qualitative forecasts. However, conventional
pipelines for generating such representations need costly
storage and computational resources to perform pixel-wise
analog-to- digital conversions. NeuRRAM, the first
multimodal edge AI chip using RRAM CIM, offers
architectural versatility across diverse models, record energy
efficiency surpassing prior art at multiple computational bit
precisions, and inference accuracy comparable to 4-bit
software implementations. It reports 99.0% accuracy on
MNIST, 85.7% on CIFAR-10, 84.7% on Google speech
command recognition, and a 70% reduction in reconstruction
error for a Bayesian image recovery task [3].

The use of processing-in-memory (PIM) offers a viable
remedy to the von Neumann barrier by taking use of huge
parallelism in an energy-efficient manner. This emerging kind
of memory has lately shown its ability to construct a PIM
architecture because numerous stateful logic operations, such
as IMP like NOR, may be performed in parallelism in an
RRAM crossbar. The memory should be utilized largely for
storage, although previous synthesis processes have focused
on reducing latency via stateful logic operations. that is, the
majority of the crossbar is dedicated to computation rather
than storage. Because of how well it boosts picture quality,
Randomized Spray Retinex is a powerful image improvement
method. But its adoption was impeded in many application
situations, for example in internet of things systems with low
hardware resources, because of the processing complexity of
the method and the necessary hardware resources along with
memory accesses. Image augmentation is increasingly being
used to boost the efficiency of new applications because to the
proliferation of Al. A new crossbar array based on resistive
memory (RRAM) shows promise as a method to speed up
applications using neural networks. RRAM-based CNN
accelerators provide strong support for both intra-layer and
inter-layer parallelism. Each network layer may operate
independently with a fraction of the input data thanks to inter-
layer parallelism, while intralayer parallelism produces
multiple copies of kernel for each layer. But without data
sharing across duplicate kernels, crossbar arrays sit idle during
inference in the RRAM-based accelerators that have been
presented thus far. By relying on one another's information,
data dependencies are created, which slow down subsequent
pipeline stages. The SET and RESET procedures in RRAM
regulate the production and breakdown of conductive
filament. According to the rules of thermodynamics, these
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procedures represent the minimum available free energy.
Bends, fractures, and bubble-like patterns appear on an RRAM
device when the operating voltage is too high.

RRAM is a relatively new technology that has found
widespread use in boosting the processing speed of deep
neural networks. The limitations of RRAM's resistance level
and interfaces make it difficult to do calculations with a high
degree of accuracy RRAM-based CNN accelerators provide
strong support for both intra-layer and inter-layer parallelism.
Each network layer may operate independently with a fraction
of the input data thanks to inter-layer parallelism, while intra-
layer parallelism produces multiple copies of kernel for each
layer [4]. An important step in lowering Al's power
consumption is the construction of devices that employ low
precision neural networks using emerging memories like
RRAM. Maximum efficiency of energy in such systems may
be attained by tight integration of logic and memory [5]. One
of the most important decision-making tools in the field of
medical imaging is the computer-assisted diagnostic system.
Structural MRI has lately emerged as a strong tool for
diagnosing Alzheimer's disease (AD). Computer-aided
diagnosis of AD is difficult because of issues with semantic
feature ambiguity and significant inter-class visual
similarities, as well as a lack of recognition memories in the
mild cognitive impairment stages [6]. The crossbar network
connectivity of RRAM [7] is made possible by the one diode-
one resistors (ID1R) storage design, which is effective in
suppressing crosstalk interference.

Our community can zero in on retrieving the structure-
related information because various weights are allocated to
various streams of the map of features. Our network can learn
the complicated feature transformation incrementally using
recurrent learning and then realize the color modifications
without an increase in the amount for network variables.
Extensive studies using publicly available datasets prove that
our strategy is better. In conclusion, the following are some of
our main contributions:

*To the most effective of our ability, we have pioneered the
use of invertible neural networks (INN) for improving
underexposed images. Our symmetric design performs
unidirectional feature learning simultaneously, outperforming
previous methods for improving underexposing images.

*To make color adjustments gradually without raising
network parameters, we present a recurring learning strategy
of transform features that makes use of a recurring residual-
attention modules (RRAM).

2. RELATED WORK

Dot-product operations may be carried out in a single cycle
by using the reference [8] described all-digital, single-ended
XNOR sensing, RRAM-based convolutional block. They
show that the structure can handle a resistance window as
small as 1.09, ensuring reliable activities even under a high
RRAM deviation (o/u = 25% for a resistance window
among both states around 50) by accounting for the structural
and RRAM limitations at the 28-nm technology nodes. When
paired with ISAAC, a state-of-the-art learning accelerator,
their block can guarantee reliable operations while reducing
energy use by a factor of 2.7. Based on the findings presented
by Giacomin et al. [9], their research demonstrates that, in
comparison to conventional in-sensor computing systems, this
architecture has the potential to drastically cut the amount of



energy needed for data translation and transmission to off-chip
processing without sacrificing precision. They used a
processing-in-pixel accelerator (MRPIPA) based on a
combination of multilayer RRAM (HfOx) to obtain a frame
rate of 1000 at a speed of 1.89 TOp/s/W, with just a little hit
to accuracy. The paper [10] presents integrated and
computationally efficient inference accelerators for spiking
neural networks.

Resistance-variable random-access storage is a promising
new kind of computer memory. It is frequently utilized in PIM,
neural network computing, and other domains because to its
ability to be used to construct the crossbar architecture, which
simulates matrix computing. To model the LIF neuron, we
created memristor-based weight storage matrices and
associated circuit. They have suggested an SNN hardware
inferences accelerator that combines 0.75K memristor with
24K neurons, 192M synapses, and other components. To
complete the inference job on the MNIST dataset, we trained
a three-layer fully linked network and put it on the accelerator.
The results demonstrate that at a frequency of SOMHz, the
accelerator can produce 148.2 frames per sec with 96.4 percent
accuracy.

By dividing the kernels and sending the input information
to various processing-elements (PEs) based on their locations,
Peng et al. [11] suggested a novel weight mapping structure
along with data flow that maximizes the repeated use of weight
and input data for PIM architecture. As a case study, this
investigation employs a 32 nm, 8-bit PIM design built on
RRAM. The inline formula is generated using the proposed
mapping approach and data flow. Compared to its predecessor,
which relied on a conventional mapping method, ResNet-34
demonstrates greater capability while consuming less energy.
With just a 50% increase in area overhead, Throughput is
increased by an astounding 132476 FPS, and energy efficiency
is increased by 20.1 TOPS/W, thanks to our recommended
optimal pipeline design. With the same hardware resource
restriction (i.e., the same amount of accessible space on the
device), Wang et al. [12] evaluated the frame rate with energy
consumption of ATTEN _CNN-like CNN inferences
accelerator on the CIFAR-10 dataset utilising CMOS and post-
CMOS technologies. We also investigate the impact of CMOS
platform limitations on data transport, including off-chip
storage DRAM accessibility and connectivity. According to
the numbers we gathered, the peripheral (ADCs) is the main
contributor to both power consumption and physical footprint
in the digitised RRAM-based concurrent readout PIM design.
Reduced DRAM access, fast throughput, and efficient parallel
read out allow this architecture to achieve >2.5x higher energy
efficiency (TOPS/W) than systolic array or near memory-
based computing at the same frame rate. Implementing a bit-
count decreased XNOR network with pipelining may provide
further >10 gains.

Bettayeb et al. [13] compared the energy efficiency as well
as frame rate of an ATTEN CNN-like CNN infer accelerators
on the CIFAR-10 dataset across CMOS and post-CMOS
technological platforms, under the restriction of having
hardware resources that are roughly equivalent in terms of on-
chip size. They also look at the constraints of CMOS
platforms—off-chip  storage = DRAM  access and
interconnect—to see how they affect data transfer. Our
quantitative analysis of the digital RRAM-based simultaneous
readout PIM design shows that the peripheral (ADCs) is the
primary contributor to both power usage and physical
footprint. Due to its efficient parallel read out, fast throughput,
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and less dependence on DRAM, this design may deliver >2.5x
additional energy savings over systolic arrays at the identical
frame rate. Implementing a bit-count decreased XNOR
network with pipelining may provide further >10 gains.
Histograms of Oriented Gradients, or HOG, are a popular
feature extraction approach, Prabhu and Raghavan [14]
presented HOGEye, a near-pixel version of HOG that is both
fast and accurate. Critical but computationally costly activities
like derivatives extraction (DE) and histogram generation
(HG) are moved from the digital to the analogue domain by
HOG Eye's unique neural approximation technique in an
RRAM driven 3D stacked image sensor. HOGEye design can
save a lot of power since the perceptual (sensor) and
computational (DE and HG) processes are all housed in the
same physical area. Energy efficiency is improved by more
than 2.5 times associated to state-of-the-art designs; With a
resolution of 256 > 256, the HOGEye sensors system
consumes less than 48W@301ps (equal to 24.3pJ/pixel), while
the analysis portion needs just 14.1pJ/pixel. According to
reference [15] scientists, "area utilisation" is the amount of
memory used in a crossbar.

STAR is a new synthesis approach for stateful logic that
aims to maximize area use while minimizing throughput loss.
Two optimization methodologies for minimizing STAR's
computational footprint are shown. First, we've decreased the
space devoted to unnecessary inputs. Without having to
hardcode them into the crossbar, they can keep track of the
constants that apply across several rows (or columns) by
encoding them as instantaneous values into the control's
signals. One copy of the remaining inputs is kept in the
crossbar. Second, we use unused cells to minimize the space
devoted to intermediate variables. They also develop a
scheduling method to identify the best order of operations with
respect to the number of times each variable must be cleared.
This approach may also be used to remove main inputs that are
invalid. To further prove the efficacy of STAR, author give a
case investigation regarding the picture convolution. Based on
experimental results, STAR outperforms the state-of-the-art
autonomous logic synthesis flow SIMPLER by 33.03% in
terms of area utilization and 1.43x in terms of throughput.
When compared to IMAGING, the most advanced
autonomous logic-based image processing accelerator, their
implementation of image convolution achieves 78.36% higher
area utilization and 1.48x throughput. The semantic
segmentation of poor-quality urban road sceneries is suggested
by Peng et al. [4], and the RSR is mentioned as a possible pre-
processing filter. They evaluate the effectiveness of a pre-
trained deeper semantic segmentation networks on dark, noisy
pictures and on RSR pre-processed images using the public
ally accessible Cityscapes dataset. Their results show that RSR
is useful for enhancing segmentation precision. They also
suggest a unique efficient implementation of the RSR
employing RRAM technologies to deal with the computation
complexity and applicability to edge devices.

The design supports analogue in-memory computing (IMC)
at a high level of parallelism. Using RRAM-CMOS
technology, the authors present in detail an efficient and low-
latency implementation of the RSR. SPICE simulations
utilizing measured data from manufactured RRAM with 65
nm CMOS techniques are used to validate the design. An
essential first step toward a low-complexity, hardware friendly
design and architecture for Retinex algorithms on edge devices
is offered here. To encode the resistive variation of 65nm
CMOS IT1R OxRAM (TiN/HfO2/Hf/TiN) in the learnt



weight of an CNN (Convolutional Neural Network) in a digital
regime, the authors of devised a Look-Up-Table based
architecture. Here, the author does the opposite, modelling the
two extremes CNN designs—the Fully Serial Networks as
well as the Fully Paralleled Systems (FPS)—using the RRAM
resistance encoding learnt weights. Trends in prediction
variability are measured using RRAM resistive variations,
CNN convolution matrices size (55, 33, 11, with 11 max
pools), the overall number of layers in the CNN, with the input
image pixel size. To improve parallel for pipeline enabled
RRAM-based accelerator and address these issues, Ma et al.
[5] proposed a novel architectural framework called Fine-
grained Parallel RRAM framework (FPRA). FPRA addresses
the issue of data sharing by making use of kernel batches and
information transfer aware memory. Data dependencies
brought on by the input's common data might be reduced by
batching by rearranging the sequence of the kernels. By
equally buffering data from input to output for each tier, data
sharing sensitive memory helps to reduce the quantity of data
sent among levels. Using a cycle-accurate simulator, they
tested FPRA on eight widely used convolutional neural
network architectures for image recognition. They find that
compared to the best RRAM based accelerators, FPRA
provide an average latency speedup of 2.0 times and a
throughput gain of 2.1 times. To execute computation in
memory, Abedin et al. [6] suggested hybrid memory
architecture based on a novel array of static random-access
memory (SRAM) with RRAM cells. The SRAM array might
serve two purposes depending on how it's set up. It may store
information in memory mode as an SRAM array, meeting the
needs of high-performance applications. It is also possible to
set it up as sense amplifiers (SA-SRAM) to read the data from
RRAMs and carry out the calculation locally. Independent
gate FInFET (IG-FinFET) is used in the circuit design; this
kind of FinFET has a channel that can be controlled by two
separate gates, giving the designers more leeway. Based on our
findings, the suggested SA-SRAM cells reduce write energy
consumption by 50% and increase CWLM by 20% compared
to standard 8T SRAM. Furthermore, our design's energy
consumption in application areas like image processing is
substantially lower than the popular comparative in-memory
architecture solutions because to the mix of SRAM with
RRAM cells in the suggested architecture. They also
suggested a polymorphic circuit basic to solve security issues
including reverse engineering and integrated circuit (IC)
counterfeit. The suggested polymorphic circuit and hybrid
memory architecture both need additional calculations to
complete their respective difficult logic operations.

In study [7], scientists created a statistical model to mimic
the RRAM's switching process using ZnO. Using field driven
ion migration and temperature effects, the model constructed
a ZnO-based RRAM with a programmable SET as well as
RESET resistance transition process. They discovered that a
significant quantity of heat energy was generated by the carrier
transport of the dielectric substance within the conducting
filament. Heat transmission, electrostatic, as well as yield
RRAM energy was all accounted for in the model thanks to
the integrated COMSOL Multi Physics software. As the
working power was ramped up, so was the amount of heat
energy produced. Therefore, a high-power device's
dependability can't be guaranteed. We acquired many carrier
heat studies in 2D pictures and concluded that optimizing the
materials and structures used to create RRAM devices that
have low operating currents is critical. Research suggests that
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an RRAM crossbar may be used to speed up smaller bit-width
convolutional neural networks (LB-CNN) [16]. They talk at
length on the system's architecture, covering everything from
the decision to use matrix splitting to increase scalability to the
implementation's use of pipelined line buffers to speed up
inference. They also suggest a way of dividing and quantizing
during training to consider real-world hardware limitations.
Compared to multibit model with device fluctuation, low bit-
width RESNET-50, which on RRAM proves to be
significantly more stable in our studies. When applied to
DENSENET, the pipeline technique speeds up picture
processing by around a factor of 6.0. When compared to the
multibit ATTEN_CNN structure, the suggested accelerator
reduces energy consumption by 54.9% and space requirements
by 48.3% for low-bit ATTEN_CNN for CIFAR-10. Bature et
al. [17] examined ternary neural networks, whereby the
synaptic weights may take on ternary values. To enable single-
sense recovery of the weight value, we suggest a two
transistor, two-resistor storage design with a precharge
detecting amplifier. This sense amplifier has been
experimentally assessed on a 130 nm CMOS/RRAM
integrated device, demonstrating its robustness against
process, voltage, and variations in temperature, and utility at
low supply voltage. Their bits have a known rate of error. They
demonstrate the superiority of ternary neural network
architectures over binary ones, the kind most often used for
emulation in a hardware simulator, by simulating the problem
of CIFAR-10 image recognition. They show that the neural
network we use is protected from the bit errors that plague
their approach, allowing it to be utilized without any further
error correction [18]. Previous work presented a two-
transistor/two-resistor memory architecture with a pre-charge
sense amplifier that enables single-operation weight readout.
Measurements from a hybrid 130 nm CMOS/RRAM chip
showed suitability for low-voltage operation and robustness to
process, voltage, and temperature variations. The bit error rate
was characterized, and CIFAR-10 simulations demonstrated
that ternary neural networks significantly outperform binary
networks. The network was also shown to tolerate the
observed bit errors, making error correction unnecessary [19].
Prior work introduced memristor-based reconfigurable
circuits enabling fully analog low-bit neural network
implementations without ADCs. A mixed-precision network
supporting multiple precision modes was demonstrated,
achieving 84.8-87.5% accuracy on CIFAR-10 with a 1.6-20x
reduction in model parameters. Circuit-level evaluations
confirmed accuracy, robustness, and energy -efficiency,
highlighting the suitability of memristor-based mixed-
precision architectures for edge devices [20].

3. PROPOSED WORK
3.1 Convolutional neural network model

The building blocks of a typical CNN are a series of
interleaved convolutional and fully-connected layers. Irregular
neuronal levels, layers for pooling, and normalization layers
may be added on top of a convolution (conv) layer as needed.

Transform Layer. The Conv layer's function of mathematics
may be written as Eq. (1):

g(x,y,2)=> h-1i=0> w-1j=0

3 Cin—1k =0 (x-+i,y+ j,k)-cZ(i, j,k) o



where the vector f a pixel-by-pixel representation of the three-
dimensional input feature map Hin x Win X Cin ; The resulting
3-dimensional structures map, denoted by the vector g, has a
size of Hout x Wout x Cout ; the vector ¢Z is the z th size-
constrained convolution kernel 2 X w x Cin;Cout , where X, y,
and z represent the coordinates of the feature maps and the
convolution kernels, respectively, and n is the overall amount
of compression kernels. A 4D blob may be formed in this
manner Hout X Wout x Cin X Cout Like a Conversion Layer.

Layer of Neurons. The Conv layer is followed by this one-
to-one mapping layer (y = f(x)). The asymmetric Neural Level
in our LBCNN architecture is configured with the standard
ReLU function. Binary neurons, as suggested in BinaryNet,
are utilised to quantize the activation states to a single bit. In
Eq. (2), we have the forward function:

{—1 i ,xx><00

2

Maximum allowable pooling thickness. Non-linear down
sampling is performed by this layer, which is transmitted after
the quadratic neural layer. In max pooling, the map of input
characteristics is divided into rectangular portions, and the
highest feasible level in each area is chosen as the associated
component of the final map of features, simplifying the
computation for the highest layer while maintaining local
invariance.

It's the FC Layer. This is the last layer of a conventional
neural network, and it connects every output and input through
weights. The equation for the process is as follows:

Lp 1
fout (y) = Z fin (X) ‘C(X, y) (3)

where, (X, Liy) is an index of the one-dimensional attributes for

input map vector fis, (y, Low) is the value of the two-
dimensional output characteristic map vector fou, and (c, Lin,
Lou) is the weight matrix.

3.2 Resistive Random-Access Memory device

A RRAM chip is a passively two-port memory that is not
volatile element. As a result, the resistance range may be
subdivided into several intervals, each of them representing a
different bit value. In addition, the crossbar may be
constructed using several other RRAM devices. The RRAM
crossbar may function as an analogue convolution processor if
its weights are stored in the permeability of the RRAM gadgets
as well as the data is expressed by the voltage at the input
signals. Currents built up by applying voltages to the input port
may be read off at the output terminal. Eq. (4) gives a precise
expression for the correlation between input and output
voltages and currents:

e (0= 06, 1) v, () @

where, ¥;,,, j = 0, 1, ..., N-1 represents the voltage source
direction, i, represents the current flowing at the vector's
output, and k=0, 1, ..., M-1 represents the weights, which are
given by the conductance matrix, g, of the RRAM device. The
function of analogy-to-digital converter is to convert digital
data into analogue signals of variable amplitudes for use in
input interfaces. As can be seen in Figure 1, the computation
results can only be extracted from the output connection using
sensor amplifiers (SAs) or ADCs. High-performance matrix-
vector multiplications (MVMs) may be implemented using
RRAM crossbars due to the similarity between a formula and
MVMs.

Figure 1. Image enhancement techniques

High-speed, low-power, as well as compact
implementations of Conv as well as FC procedures are
possible thanks to the crossbar since MVMs provide the
backbone of these layers' calculations. Weight matrices for FC
layers are closely related to RRAM the crossbars.

Component tensors for Conv Layers have the form (Hous,
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W out, Cin, Cour) are flattened down into a simpler representation
(H out X VVout X Cin, Cout)-

3.3 Proposed methodology

Because of its central role in the image processing pipeline,



image enhancement is increasingly being employed in the
medical industry in recent years. It also has a broad variety of
other potential uses. However, owing to their high resolution
requirements, many picture enhancing methods might be
picky about which processing units they use. In this research,
we describe a performance-optimized image enhancement
method that takes use of RRAM's capacity for parallelism,
pipelining, and reconfigurability to fulfil the need for a fast,
powerful, and affordable processing unit. Figure 1 provides an
overview of the colour restoration and picture enhancement
system's interfaces. Image enhancement techniques aim to
improve the visual quality of an image or highlight important
features, and they are generally classified into point
operations, spatial operations, transform operations, and
pseudo-coloring methods. Point operations modify each pixel
independently, using methods such as contrast stretching,
noise clipping, window slicing, and histogram modeling to
adjust brightness and contrast. Spatial operations enhance an
image based on neighboring pixel information, including noise
smoothing, median filtering, unsharp masking, low-high
band-pass filtering, and zooming, which help reduce noise,
sharpen edges, or enlarge images effectively. Transform
operations process images in the frequency domain using
mathematical transforms, enabling techniques like linear
filtering, root filtering, and homomorphic filtering to enhance
specific frequency components or balance illumination
factors. Pseudo-coloring methods artificially assign colors to
grayscale intensities—through false coloring or pseudo-
coloring—to improve visual interpretation, especially in
medical imaging and remote sensing. Together, these
techniques form a comprehensive set of tools used across
various imaging applications to improve clarity, detail
visibility, and interpretability. The design takes RGB
streaming input, allowing the user to choose the image width
on the 'Tmsize' bus, the colour balancing threshold on the "Thi'
bus, and the homomorphic filter kernel coefficients on the
KernBus. Images with adjusted brightness and colour
temperature are included on the output buses. The design
includes a buffer for the incoming RGB channels. The buffer's
many output buses are simultaneously routed to three KK
homomorphic filters and six WW weight windows in the
neurons. Parallel processing is used for both the filtering and
the synaptic weights. The colour characterization module
sends the synaptic weights and synchronised filter outputs to
the colour balancing module. Colour balancing module
corrects colour casts so that final photos reflect the tonality of
the originals.

Quantization is essential due to the limited accuracy of
RRAM-based computing systems. As shown in Figure 2, it can
be divided into several key components.

1*1Filter

.

Convolution

1 Concatenation

2

Output

1 Input

Figure 2. Convolutional neural network (CNN) model
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Scaling. To make the activation vector with out-of-range
values fit within the range [-1,1], we employ linear scaling.
Since the quantization occur before the ReLU operation,
negative values are allowed for the normalised vectors. First,
we will search the vector vi, for the biggest absolute value that
can be covered by the minimal element, which is a power of 2.
Then, we may express the scaling function as:

V.

n

a|

Scale.(v,, ) = (5)

All quantization is uniform. Quantizing numbers may be
done in a few different ways. During the training and inference
phases, we employ uniform quantization to keep things simple
and eliminate the need for sophisticated quantizing processes.
We will define the k-bit quantization function as:

round ((2“’l —1) x)
27

Q) = ©)

So, we can define the whole quantization function as
follows. Since the proportionality constant « is the product of
2 to a power of 2a can be simply implemented by shifting:

Vout = Q(Vin ) = aQA (%j (7)

Gradient Backpropagation. With continuous inputs with
discrete outputs, the quantization function would have a
gradient of 0 in mathematics. Back-propagated gradients are
needed during training to explore the optimisation space.
Therefore, to create the gradients, we use the straight-through
estimated (STE, which is also widely used):

oCost  oCost
ov o

®)

For our accelerator system to work, we need to employ the
function to quantize not only the weights, but also the
intermediate outputs of split blocks and the combined ultimate
output (i.e., the activation of the appropriate layer). We refer
to these three types of activations as "weights," "intermediate,"
and "merged."

A lightweight Convolutional Neural Network (CNN) is
developed to enable real-time, low-power image enhancement
on edge devices, integrating PSO-based hyperparameter
optimization and RRAM-based in-memory computing. The
proposed CNN employs a compact architecture with 3 x 3
convolutional layers, residual skip connections, and shallow
feature-extraction blocks to balance accuracy and
computational efficiency. PSO (Particle Swarm Optimization)
is used to automatically tune key hyperparameters—including
the number of filters, learning rate, activation functions, and
batch size—ensuring optimal performance under edge-device
constraints. After optimization, the CNN weights are mapped
onto RRAM crossbar arrays, where multiply—accumulate
operations are executed directly within memory, significantly
reducing data-movement energy, latency, and area overhead.
This synergy between PSO-optimized CNN design and
RRAM-based in-memory acceleration allows the system to
achieve superior image enhancement quality (higher
PSNR/SSIM) while maintaining low power consumption,



making it highly suitable for resource-limited edge-Al

applications.
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Figure 3. A convolutional neural network (CNN) model for
image enhancement

Convolutional Neural Networks are widely used in modern
Al systems due to their strong ability to automatically learn
spatial features from images and signals. Their primary
applications include image -classification, where CNNs
identify objects or scenes in images with high accuracy, and
object detection, enabling systems like autonomous vehicles
and surveillance cameras to localize and recognize multiple
objects in real time. CNNs also power image enhancement
tasks, such as denoising, super-resolution, contrast
improvement, and low-light enhancement, making them
essential in edge-Al and embedded imaging systems. In
medical imaging, CNNs assist in disease diagnosis by
analyzing X-rays, MRIs, CT scans, and pathological slides.
They are also used in facial recognition, biometrics, and
security authentication. CNNs play a major role in self-driving
cars for lane detection, traffic sign recognition, and pedestrian
identification. In addition, they support speech recognition,
handwritten character recognition, and OCR documents.
Industrial applications include defect detection, quality
inspection, and predictive maintenance. CNNs are further used
in remote sensing (satellite imagery analysis), agriculture
(crop health monitoring), robotics, and augmented/virtual
reality. Overall, CNNs form the backbone of intelligent visual

and spatial processing across consumer electronics,
healthcare, manufacturing, autonomous systems, and edge
computing platforms.

Low-level vision tasks like picture enhancement and target
recognition have benefited greatly from deep learning
approaches shown in Figure 3. Because of the large amount of
memory they need and the number of Floating Point
Operations per Second (FLOP/s), these procedures simply
cannot be run on mobile on-chip devices. As a solution to the
issue of excessive parameter setup in enhancement models,
this research proposes a compact convolutional neural network
(CNN), which for low light picture improvement tasks, with a
parameter size of less than 1 M. Therefore, given that modern
quantization strategies strive for high compression ratio and
are therefore unsuitable for the image improvement job, a
pseudo-symmetry quantization technique is developed for
enhancing image model compression shown in Figure 4.
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Figure 4. Resistive Random-Access Memory (RRAM)
design for image enhancement

4. RESULTS AND DISCUSSION

Here, we lay down the foundation for our investigations by
describing the benchmark, settings, and simulation parameters
we used. Then, we assess the system's effectiveness by
dissecting the testing findings across several key metrics such
as precision, velocity, footprint, and power consumption.

Table 1. Comparative analysis table (proposed vs existing approaches)

Existing Approaches (Non-

Feature / Metric RRAM, Non-PSO)

Proposed Particle Swarm Optimization (PSO)-Optimized Resistive
Random-Access Memory (RRAM)- Convolutional Neural Network

(CNN)

Manual tuning or grid/random
search; slow, suboptimal
CMOS-based CPU/GPU;

Hyperparameter Tuning

PSO automatically finds optimal parameters for filters, learning rate, batch

size

Computational Architecture
Inference Latency

Power Consumption

Model Complexity

Image Enhancement
Quality (PSNR/SSIM)
Hardware Suitability for
Edge Devices

Scalability

frequent DRAM access
High due to memory bottleneck
High (memory access
dominates ~60—70%)
Often heavier CNNs needed for
high quality
Dependent on manual tuning;
moderate
Limited due to compute and
energy overhead
Difficult to scale without
increasing power

RRAM in-memory computing eliminates data movement
2x—6x faster due to crossbar parallel MAC operations

3x—10x reduction in power due to in-memory execution
Lightweight optimized CNN with fewer parameters
Higher PSNR (= +1-2 dB) and SSIM due to PSO-optimized CNN
Highly suitable—low-power, fast computation, small area

Scales efficiently—RRAM arrays naturally parallel
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4.1 Simulation model

Benchmark. For three common CNN models (RESNET-18,
ResNet, and ATTEN CNNNet), we develop accelerator
architectures. When it comes to recognizing handwritten
digits, RESNET-18 is a basic but effective network. ResNet is
a robust network that has found use in a variety of different
computer vision tasks. The size of the Conv weight matrix in
ATTEN CNNNet, which is rather huge, may reach
335121024. Two widely used classification datasets, MNIST
with RESNET-50, and the CIFAR-10 using DENSENET with
ATTEN_CNN, were chosen to showcase the accuracy of our
models. Table 1 shows the Comparative analysis of proposed
vs existing approaches.

Theorem about models. The low bit width CNN algorithms
are trained using our training techniques, and the multibit
model is created by dynamically quantifying the well-trained
floating-point structure into 8 bits for inference processing. To
measure the magnitude of a split's impact, the crossbars are
adjusted to various lengths. Matrix splitting schemes are used
if a single crossbar pair is insufficient to hold all a layer's
parameters. By default, in multi-bit CNN models, 8- bit
RRAM gadgets and 8-bit connections are implemented.

Using binary weights for the crossbar in the RRAM cell
design helps streamline the process. The 1T1IR RRAM cells is
presented for use in the multi-bit mode. This is because, before
the crossbar can be utilised for computation, we need to tune
every RRAM cell to a certain opposition. When tuning, just
the RRAM cell's transistor that must be tuned is activated. The
decoder facilitates the RRAM cells releasing one by one in this
fashion. There are just two possible values for the RRAM
resistant (the ON/OFF state) that are utilised for the binary
weights. The 0TIR RRAM cells, in which the space required
by a single cell is only 4F2, may be used in this fashion. In
Figure 4, "half-selection" is used to introduce the one-by-one
tuning approach.

Table 2. Circuit elements' power consumption (mW) and
area in (nm) [18]

Power (mW) Area
1T1R Resistive
Random-Access w
b — . 2
Memory (RRAM) 0.052 (1 + L> 3F
device
OTléQ RRAM 0.06b AF2
evice
8bit DAC 30 3096T «
Sense Amplifier 0.25 244T
. 2550T + 1kQ( =
8bit ADC 35 4507)
4bit ADC 124 72T
8bit SUB 2.5-107%(0.025pJ) 256T
8bit ADD 2.5-107%(0.025pJ) 256T
32bit static
random-access
memory (SRAM) 0.0645pJ 192T
SpadMem

Note: a = W/L - F 2, where W/L = 3, and the technology node F = 45 nm.
b = power consumption of RRAM cell is estimated by Vavg2 gavg, where

gavg = vV GonYoft-

Modifiers to the Simulations. We utilised credible data from
related studies as a foundation for our estimates of the space
and power requirements. Overhead for the RRAM bridge is
estimated using NVSim because to its comprehensive RRAM

device information and key indications. Due to the resolutions
as well as frequencies meeting the experimental need, we look
to 2 works for 8-bit as well as 4-bit ADC solutions for the ADC
section. The adders' strength and surface area are shown in.
Power consumption of 32-bit SRAM and the lookup table are
provided in Table 2. The necessary LUT and line buffer sizes
inform the estimated power consumption are given in the
formula.

The energy chart in provides details on the power used by
digital arithmetic logic as well as memory access in the 45 nm
CMOS process node. Based on the ADC/DAC speeds and the
crossbar RRAM delay, we assume that the system's clock is
100MHz. The system's performance by adding up the prices
of all the components in the circuit. Each circuit element's
power and area cost simulation parameters are shown in Table
2. Using the collected data from the devices, we develop a
spreadsheet that, like MNSIM, estimates and totals the
administrative costs of all system components.

Processing cycle

ATTEN_CNN

DENSENET

RESNET-18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

® Layer by Layer ™ Pipelined

Figure 5. The number of iterations required to do pipelined
and layer-by-layer processing count for Resistive Random-
Access Memory (RRAM)

Table 3. Quantity and size of data storage, transmission, and
processing units

Processing
Component Layer Amount Count
Resistive
Random- (h-w- Cin)
Access Conv - Cout - Xout Hout - Wout
Memory - Xout
(RRAM) cell
DAC Conv (h-w- Cin) Hout - Wout
° Xout
SA&ADC Conv Cout - Xin Hout - Wout
Feature Map Conv h-w- Cn Hout - Wout
Buffer
Line Buffer Conv h - Win - Cin Hout - Wout
Line Buffer Pooling h - Win + Cin Hout - Wout
Cin - Cout
RRAM Cell FC . Xout - Xout 1
DAC FC Cin - Xout 1
SA&ADC FC Cout - Xin 1
Feature Map : .
Buffer FC Cll‘l Hout - Wout
Adder Conv Cout - Xout Hout - Wout
LUT/OR . .
GATE Pooling Cin - Xout

We assess how well the pipeline approach works. In theory,
the enhancement in cycle quantity is not related to the input
picture, but rather to the network architecture. We use many



datasets with varying picture sizes to objectively measure the
cycle savings. We show the cycle count on the MNIST data
set using RESNET-50 and an input picture size of 28 x28.
Both DENSENET and ATTEN_ CNN are trained on 32 %32
CIFAR-10 images.

The number of cycles needed for pipeline processing and
layer-by-layer processing may be determined using Egs. (7)
and (8), respectively. Figure 5 shows a comparison of cycle
amounts. The proportion of speedup is around 1.16x on
RESNET-50, 2.23x on ATTEN CNN, and 6.01x on
DENSENET.

The suggested pipeline approach yields varying degrees of
improvement when applied to various CNN architectures.
Since the feature map size decreased rapidly over layers in
RESNET-18-like neural systems, the system spends a lot of
time on the initial layer and the performance won't improve
much. In contrast, CNNs like ResNet or ATTEN CNN have a
feature map size that is cut in half across two consecutive
convolution stages, allowing the forward process to get
additional advantages from using the pipeline by making full

use of the parallelism across layers. Also, it's important to note
that deeper neural network structures (like DENSENET) are
favoured to have greater speedup.

The area and energy estimate models of RESNET-18,
DENSENET, and ATTEN CNN are presented. In addition,
we conduct a detailed analysis of ATTEN CNN's area and
energy profile across its many levels and sub-layers. Our
calculations consider both the crossbar-based CPUs and the
buffers, but ignore the power used by the routers. In Table 3,
we detail the quantity as well as processing number of each
module. Using the sliding window method, module in Conv
layer do one forward process of Hou and Wy iterations. Table
displays the area as well as power requirements of all system
components. Table 4 displays the estimated space and power
consumption. VI. When comparing the LB-CNN on RRAM to
the multi-bit CNN (MBCNN), the total system performance is
improved by 54.9% in terms of energy savings and 48.3% in
terms of area usage for ATTEN CNN on CIFAR-10. The
DENSENET also has room for significant improvement.

Table 4. Energy and space predictions for a variety of crossbar power electronics based on Resistive Random-Access Memory

(RRAM)
Network Performance MB-CNN LB-CNN Accuracy
s
e o Erers Wi o e
5. CONCLUSION 896299. https://doi.org/10.3389/fsens.2022.896299

This paper introduced an RRAM architecture enhanced
with PSO optimization to process real-time image
enhancement and provided a low-power computer that used
adaptive parameter choice instead of a-values that were
manually optimized. The conductance mapping uniformity
and minimized fluctuation in calculation were enhanced
through the integration of PSO leading to more stable pixel
enhancement and faster convergence in the RRAM array. An
experimental test of 65 nm technology showed significant
improvements in performance, as well as a huge decrease in
power and area overheads, although the accuracy in enhancing
performance is significant. It has been shown that RRAM-
based in-memory computing can be a scalable solution to
energy-efficient image processing on the edge. Nevertheless,
the research has several limitations as well. The proposed
framework was tested only when the conditions were
simulated and the endurance behavior of the devices when
operating on long-term switching conditions was not
experimentally tested. Temperature, fabrication scale and
multi-cell interference variations are still a challenge. Also,
real-world imaging data with an assortment of noise models
and illuminating attributes were not a part of this assessment,
and the generalization performance remains to be verified.
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