
Resistive Random-Access Memory Design for Image Enhancement in Edge Devices 

C. Radhika1,2 , G. V. Ganesh1* , P. Ashok Babu2

1 Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 

522302, India  
2 Department of ECE, Institute of Aeronautical Engineering, Hyderabad 500043, India 

Corresponding Author Email: ganesh.gorla@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301201 ABSTRACT 

Received: 30 June 2025 

Revised: 5 October 2025 

Accepted: 20 November 2025 

Available online: 31 December 2025 

Resistive Random-Access Memory (RRAM) can be used to perform in-memory computing 

with low energy, high speed and small area, so it is an ideal device to implement real-time 

image enhancement on the edge device. Nevertheless, standard convolutional neural 

network (CNN) models based on RRAM need to be manually tuned to the alpha-parameter, 

which is a limiting factor in terms of scalability and reliability. This paper suggests an 

approach to automatically decide on the optimal α-value using part of the Particle Swarm 

Optimization (PSO) to enhance convergence, speed of the execution and fidelity to the 

enhancement. The architecture of RRAM is at the 65 nm technology node and the analysis 

is carried out and calculated with the pixels level of computation and image quality analysis 

by using SPICE simulation. It has been shown through experimental work that it can 

enhance accuracy by 94 per cent, reduce power consumption and hardware footprint by 

35% to 50% over current CNN-based designs. This shows that PSO-optimized RRAM 

accelerators are a more efficient and scalable image enhancement solution in edge AI 

systems. 
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1. INTRODUCTION

Resistive Random-Access Memory (RRAM) has become 

promising in line of substituting CMOS-based architecture 

because of its non-volatility, rapid switching, zero leakage 

power and its ability to perform in-memory computation. 

These attributes have RRAM especially appealing in real time 

image enhancement and other edge applications that require 

latency. Nevertheless, RRAM is the technology that is hard to 

practically implement in image processing pipelines despite its 

benefits. The first problem is the resistance state variability, 

which influences the correction of the programming and gives 

out unequal pixel transformations. Besides, thermal 

unsteadiness and durability deterioration diminish durability 

under uninterrupted write-and-read operations. The nonlinear 

quality of RRAM also makes it difficult to accurately map 

weights in CNN-based image refinement systems, and 

commonly necessary to use device-level parameters, including 

the alpha factor, by hand. Such manual dependency adds 

complexity to the design and reduces scalability, in particular, 

when multiple image profile targets or multi-stage 

enhancement tasks are targeted. Although the use of RRAM-

based accelerator in neural computation has been considered 

in previous literature, the majority of the research is silent on 

automated optimization of the parameters. Earlier 

architectures are based on fixed tuning or heuristic 

optimization, neither of which made efforts to account for 

device noise, non-linear switching, retention drift and array-

scale parasitic effects. Accordingly, the gap in the research is 

clear in coming up with an adaptive and scalable solution that 

is going to optimize the RRAM behavior in image 

enhancement systems.  To close this gap, the current paper 

proposes a PSO based optimization procedure to be 

incorporated into an RRAM computing array, where running 

this autonomous subsystem provides a chance to select the 

alpha-parameter and enhance pixel improvement, 

respectively. This model, which is proposed, minimizes the 

effects of noise in the devices, increases the consistency of 

converting to a particular converged state, and the stability of 

the converting state with temperature changes, contributing to 

the consistency of the output quality and the minimization of 

power dissipation [1]. 

Although designs are often performed manually or semi- 

automatically, these two modalities have been applied in many 

large-scale applications, like image processing approaches 

involving neural networks. Modern convolutional neural 

networks (CNNs) with deep learning have shown to be very 

effective in today's intelligent systems for a wide range of 

tasks, including image/speech recognition and classification. 

By using the memory array for the weighted sum computation, 

recent attempts to construct custom inference engines using 

the processing-in- memory design have reduced the frequent 

transmission of information across buffers containing 

calculation units. In traditional PIM systems, the 

convolutional layers for every 3D kernel are unrolled into the 

vertical row of a huge weight matrix, which is necessary 

because to the numerous iterations required to retrieve the 

input data. To generate stochastic bit-streams (SBS) that are 
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both stable and accurate for use in stochastic computing, a 

probabilistic switching model is created for RRAM SNG 

based on physical principles. The switching probability in 

different operational systems may be explained by considering 

the physical cause of intrinsic fluctuations. Probability shift 

(PS), a major source of error in SBS, may be evaluated by 

modeling the cumulative impact between continuous cycles. 

Modern AI systems rely heavily on state-of-the-art deep CNNs 

due to their exceptional performance in image/speech 

identification and classification. Many other approaches, such 

as systolic construction, near memory computing, and the 

processing-in-memory (PIM) approach with cutting-edge 

technologies like RRAM, have been recently used in attempts 

to develop novel inference engines. Characteristic 

representations of pictures are used in several computer vision 

applications, such as comprehension and multi-view 

enrollment [2], rather than raw pixel intensity. However, there 

is a lack of a unified examination of these many methods, and 

the benefits of novel ideas or developing technology are often 

based on qualitative forecasts. However, conventional 

pipelines for generating such representations need costly 

storage and computational resources to perform pixel-wise 

analog-to- digital conversions. NeuRRAM, the first 

multimodal edge AI chip using RRAM CIM, offers 

architectural versatility across diverse models, record energy 

efficiency surpassing prior art at multiple computational bit 

precisions, and inference accuracy comparable to 4-bit 

software implementations. It reports 99.0% accuracy on 

MNIST, 85.7% on CIFAR-10, 84.7% on Google speech 

command recognition, and a 70% reduction in reconstruction 

error for a Bayesian image recovery task [3]. 

The use of processing-in-memory (PIM) offers a viable 

remedy to the von Neumann barrier by taking use of huge 

parallelism in an energy-efficient manner. This emerging kind 

of memory has lately shown its ability to construct a PIM 

architecture because numerous stateful logic operations, such 

as IMP like NOR, may be performed in parallelism in an 

RRAM crossbar. The memory should be utilized largely for 

storage, although previous synthesis processes have focused 

on reducing latency via stateful logic operations. that is, the 

majority of the crossbar is dedicated to computation rather 

than storage. Because of how well it boosts picture quality, 

Randomized Spray Retinex is a powerful image improvement 

method. But its adoption was impeded in many application 

situations, for example in internet of things systems with low 

hardware resources, because of the processing complexity of 

the method and the necessary hardware resources along with 

memory accesses. Image augmentation is increasingly being 

used to boost the efficiency of new applications because to the 

proliferation of AI. A new crossbar array based on resistive 

memory (RRAM) shows promise as a method to speed up 

applications using neural networks. RRAM-based CNN 

accelerators provide strong support for both intra-layer and 

inter-layer parallelism. Each network layer may operate 

independently with a fraction of the input data thanks to inter-

layer parallelism, while intralayer parallelism produces 

multiple copies of kernel for each layer. But without data 

sharing across duplicate kernels, crossbar arrays sit idle during 

inference in the RRAM-based accelerators that have been 

presented thus far. By relying on one another's information, 

data dependencies are created, which slow down subsequent 

pipeline stages. The SET and RESET procedures in RRAM 

regulate the production and breakdown of conductive 

filament. According to the rules of thermodynamics, these 

procedures represent the minimum available free energy. 

Bends, fractures, and bubble-like patterns appear on an RRAM 

device when the operating voltage is too high. 

RRAM is a relatively new technology that has found 

widespread use in boosting the processing speed of deep 

neural networks. The limitations of RRAM's resistance level 

and interfaces make it difficult to do calculations with a high 

degree of accuracy RRAM-based CNN accelerators provide 

strong support for both intra-layer and inter-layer parallelism. 

Each network layer may operate independently with a fraction 

of the input data thanks to inter-layer parallelism, while intra-

layer parallelism produces multiple copies of kernel for each 

layer [4]. An important step in lowering AI's power 

consumption is the construction of devices that employ low 

precision neural networks using emerging memories like 

RRAM. Maximum efficiency of energy in such systems may 

be attained by tight integration of logic and memory [5]. One 

of the most important decision-making tools in the field of 

medical imaging is the computer-assisted diagnostic system. 

Structural MRI has lately emerged as a strong tool for 

diagnosing Alzheimer's disease (AD). Computer-aided 

diagnosis of AD is difficult because of issues with semantic 

feature ambiguity and significant inter-class visual 

similarities, as well as a lack of recognition memories in the 

mild cognitive impairment stages [6]. The crossbar network 

connectivity of RRAM [7] is made possible by the one diode-

one resistors (1D1R) storage design, which is effective in 

suppressing crosstalk interference. 

Our community can zero in on retrieving the structure-

related information because various weights are allocated to 

various streams of the map of features. Our network can learn 

the complicated feature transformation incrementally using 

recurrent learning and then realize the color modifications 

without an increase in the amount for network variables. 

Extensive studies using publicly available datasets prove that 

our strategy is better. In conclusion, the following are some of 

our main contributions:  

•To the most effective of our ability, we have pioneered the

use of invertible neural networks (INN) for improving 

underexposed images. Our symmetric design performs 

unidirectional feature learning simultaneously, outperforming 

previous methods for improving underexposing images.  

•To make color adjustments gradually without raising

network parameters, we present a recurring learning strategy 

of transform features that makes use of a recurring residual-

attention modules (RRAM). 

2. RELATED WORK

Dot-product operations may be carried out in a single cycle 

by using the reference [8] described all-digital, single-ended 

XNOR sensing, RRAM-based convolutional block. They 

show that the structure can handle a resistance window as 

small as 1.09, ensuring reliable activities even under a high 

RRAM deviation ( 𝜎/𝜇 =  25%  for a resistance window 

among both states around 50) by accounting for the structural 

and RRAM limitations at the 28-nm technology nodes. When 

paired with ISAAC, a state-of-the-art learning accelerator, 

their block can guarantee reliable operations while reducing 

energy use by a factor of 2.7. Based on the findings presented 

by Giacomin et al. [9], their research demonstrates that, in 

comparison to conventional in-sensor computing systems, this 

architecture has the potential to drastically cut the amount of 
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energy needed for data translation and transmission to off-chip 

processing without sacrificing precision. They used a 

processing-in-pixel accelerator (MRPIPA) based on a 

combination of multilayer RRAM (HfOx) to obtain a frame 

rate of 1000 at a speed of 1.89 TOp/s/W, with just a little hit 

to accuracy. The paper [10] presents integrated and 

computationally efficient inference accelerators for spiking 

neural networks. 

Resistance-variable random-access storage is a promising 

new kind of computer memory. It is frequently utilized in PIM, 

neural network computing, and other domains because to its 

ability to be used to construct the crossbar architecture, which 

simulates matrix computing. To model the LIF neuron, we 

created memristor-based weight storage matrices and 

associated circuit. They have suggested an SNN hardware 

inferences accelerator that combines 0.75K memristor with 

24K neurons, 192M synapses, and other components. To 

complete the inference job on the MNIST dataset, we trained 

a three-layer fully linked network and put it on the accelerator. 

The results demonstrate that at a frequency of 50MHz, the 

accelerator can produce 148.2 frames per sec with 96.4 percent 

accuracy. 

By dividing the kernels and sending the input information 

to various processing-elements (PEs) based on their locations, 

Peng et al. [11] suggested a novel weight mapping structure 

along with data flow that maximizes the repeated use of weight 

and input data for PIM architecture. As a case study, this 

investigation employs a 32 nm, 8-bit PIM design built on 

RRAM. The inline formula is generated using the proposed 

mapping approach and data flow. Compared to its predecessor, 

which relied on a conventional mapping method, ResNet-34 

demonstrates greater capability while consuming less energy. 

With just a 50% increase in area overhead, Throughput is 

increased by an astounding 132476 FPS, and energy efficiency 

is increased by 20.1 TOPS/W, thanks to our recommended 

optimal pipeline design. With the same hardware resource 

restriction (i.e., the same amount of accessible space on the 

device), Wang et al. [12] evaluated the frame rate with energy 

consumption of ATTEN_CNN-like CNN inferences 

accelerator on the CIFAR-10 dataset utilising CMOS and post-

CMOS technologies. We also investigate the impact of CMOS 

platform limitations on data transport, including off-chip 

storage DRAM accessibility and connectivity. According to 

the numbers we gathered, the peripheral (ADCs) is the main 

contributor to both power consumption and physical footprint 

in the digitised RRAM-based concurrent readout PIM design. 

Reduced DRAM access, fast throughput, and efficient parallel 

read out allow this architecture to achieve >2.5x higher energy 

efficiency (TOPS/W) than systolic array or near memory-

based computing at the same frame rate. Implementing a bit-

count decreased XNOR network with pipelining may provide 

further >10 gains. 

Bettayeb et al. [13] compared the energy efficiency as well 

as frame rate of an ATTEN_CNN-like CNN infer accelerators 

on the CIFAR-10 dataset across CMOS and post-CMOS 

technological platforms, under the restriction of having 

hardware resources that are roughly equivalent in terms of on-

chip size. They also look at the constraints of CMOS 

platforms—off-chip storage DRAM access and 

interconnect—to see how they affect data transfer. Our 

quantitative analysis of the digital RRAM-based simultaneous 

readout PIM design shows that the peripheral (ADCs) is the 

primary contributor to both power usage and physical 

footprint. Due to its efficient parallel read out, fast throughput, 

and less dependence on DRAM, this design may deliver >2.5x 

additional energy savings over systolic arrays at the identical 

frame rate. Implementing a bit-count decreased XNOR 

network with pipelining may provide further >10 gains. 

Histograms of Oriented Gradients, or HOG, are a popular 

feature extraction approach, Prabhu and Raghavan [14] 

presented HOGEye, a near-pixel version of HOG that is both 

fast and accurate. Critical but computationally costly activities 

like derivatives extraction (DE) and histogram generation 

(HG) are moved from the digital to the analogue domain by 

HOG Eye's unique neural approximation technique in an 

RRAM driven 3D stacked image sensor. HOGEye design can 

save a lot of power since the perceptual (sensor) and 

computational (DE and HG) processes are all housed in the 

same physical area. Energy efficiency is improved by more 

than 2.5 times associated to state-of-the-art designs; With a 

resolution of 256 × 256, the HOGEye sensors system 

consumes less than 48W@30fps (equal to 24.3pJ/pixel), while 

the analysis portion needs just 14.1pJ/pixel. According to 

reference [15] scientists, "area utilisation" is the amount of 

memory used in a crossbar.  

STAR is a new synthesis approach for stateful logic that 

aims to maximize area use while minimizing throughput loss. 

Two optimization methodologies for minimizing STAR's 

computational footprint are shown. First, we've decreased the 

space devoted to unnecessary inputs. Without having to 

hardcode them into the crossbar, they can keep track of the 

constants that apply across several rows (or columns) by 

encoding them as instantaneous values into the control's 

signals. One copy of the remaining inputs is kept in the 

crossbar. Second, we use unused cells to minimize the space 

devoted to intermediate variables. They also develop a 

scheduling method to identify the best order of operations with 

respect to the number of times each variable must be cleared. 

This approach may also be used to remove main inputs that are 

invalid. To further prove the efficacy of STAR, author give a 

case investigation regarding the picture convolution. Based on 

experimental results, STAR outperforms the state-of-the-art 

autonomous logic synthesis flow SIMPLER by 33.03% in 

terms of area utilization and 1.43x in terms of throughput. 

When compared to IMAGING, the most advanced 

autonomous logic-based image processing accelerator, their 

implementation of image convolution achieves 78.36% higher 

area utilization and 1.48x throughput. The semantic 

segmentation of poor-quality urban road sceneries is suggested 

by Peng et al. [4], and the RSR is mentioned as a possible pre-

processing filter. They evaluate the effectiveness of a pre-

trained deeper semantic segmentation networks on dark, noisy 

pictures and on RSR pre-processed images using the public 

ally accessible Cityscapes dataset. Their results show that RSR 

is useful for enhancing segmentation precision. They also 

suggest a unique efficient implementation of the RSR 

employing RRAM technologies to deal with the computation 

complexity and applicability to edge devices. 

The design supports analogue in-memory computing (IMC) 

at a high level of parallelism. Using RRAM-CMOS 

technology, the authors present in detail an efficient and low-

latency implementation of the RSR. SPICE simulations 

utilizing measured data from manufactured RRAM with 65 

nm CMOS techniques are used to validate the design. An 

essential first step toward a low-complexity, hardware friendly 

design and architecture for Retinex algorithms on edge devices 

is offered here. To encode the resistive variation of 65nm 

CMOS 1T1R OxRAM (TiN/HfO2/Hf/TiN) in the learnt 
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weight of an CNN (Convolutional Neural Network) in a digital 

regime, the authors of devised a Look-Up-Table based 

architecture. Here, the author does the opposite, modelling the 

two extremes CNN designs—the Fully Serial Networks as 

well as the Fully Paralleled Systems (FPS)—using the RRAM 

resistance encoding learnt weights. Trends in prediction 

variability are measured using RRAM resistive variations, 

CNN convolution matrices size (55, 33, 11, with 11 max 

pools), the overall number of layers in the CNN, with the input 

image pixel size. To improve parallel for pipeline enabled 

RRAM-based accelerator and address these issues, Ma et al. 

[5] proposed a novel architectural framework called Fine-

grained Parallel RRAM framework (FPRA). FPRA addresses 

the issue of data sharing by making use of kernel batches and 

information transfer aware memory. Data dependencies 

brought on by the input's common data might be reduced by 

batching by rearranging the sequence of the kernels. By 

equally buffering data from input to output for each tier, data 

sharing sensitive memory helps to reduce the quantity of data 

sent among levels. Using a cycle-accurate simulator, they 

tested FPRA on eight widely used convolutional neural 

network architectures for image recognition. They find that 

compared to the best RRAM based accelerators, FPRA 

provide an average latency speedup of 2.0 times and a 

throughput gain of 2.1 times. To execute computation in 

memory, Abedin et al. [6] suggested hybrid memory 

architecture based on a novel array of static random-access 

memory (SRAM) with RRAM cells. The SRAM array might 

serve two purposes depending on how it's set up. It may store 

information in memory mode as an SRAM array, meeting the 

needs of high-performance applications. It is also possible to 

set it up as sense amplifiers (SA-SRAM) to read the data from 

RRAMs and carry out the calculation locally. Independent 

gate FinFET (IG-FinFET) is used in the circuit design; this 

kind of FinFET has a channel that can be controlled by two 

separate gates, giving the designers more leeway. Based on our 

findings, the suggested SA-SRAM cells reduce write energy 

consumption by 50% and increase CWLM by 20% compared 

to standard 8T SRAM. Furthermore, our design's energy 

consumption in application areas like image processing is 

substantially lower than the popular comparative in-memory 

architecture solutions because to the mix of SRAM with 

RRAM cells in the suggested architecture. They also 

suggested a polymorphic circuit basic to solve security issues 

including reverse engineering and integrated circuit (IC) 

counterfeit. The suggested polymorphic circuit and hybrid 

memory architecture both need additional calculations to 

complete their respective difficult logic operations. 

In study [7], scientists created a statistical model to mimic 

the RRAM's switching process using ZnO. Using field driven 

ion migration and temperature effects, the model constructed 

a ZnO-based RRAM with a programmable SET as well as 

RESET resistance transition process. They discovered that a 

significant quantity of heat energy was generated by the carrier 

transport of the dielectric substance within the conducting 

filament. Heat transmission, electrostatic, as well as yield 

RRAM energy was all accounted for in the model thanks to 

the integrated COMSOL Multi Physics software. As the 

working power was ramped up, so was the amount of heat 

energy produced. Therefore, a high-power device's 

dependability can't be guaranteed. We acquired many carrier 

heat studies in 2D pictures and concluded that optimizing the 

materials and structures used to create RRAM devices that 

have low operating currents is critical. Research suggests that 

an RRAM crossbar may be used to speed up smaller bit-width 

convolutional neural networks (LB-CNN) [16]. They talk at 

length on the system's architecture, covering everything from 

the decision to use matrix splitting to increase scalability to the 

implementation's use of pipelined line buffers to speed up 

inference. They also suggest a way of dividing and quantizing 

during training to consider real-world hardware limitations. 

Compared to multibit model with device fluctuation, low bit-

width RESNET-50, which on RRAM proves to be 

significantly more stable in our studies. When applied to 

DENSENET, the pipeline technique speeds up picture 

processing by around a factor of 6.0. When compared to the 

multibit ATTEN_CNN structure, the suggested accelerator 

reduces energy consumption by 54.9% and space requirements 

by 48.3% for low-bit ATTEN_CNN for CIFAR-10. Bature et 

al. [17] examined ternary neural networks, whereby the 

synaptic weights may take on ternary values. To enable single-

sense recovery of the weight value, we suggest a two 

transistor, two-resistor storage design with a precharge 

detecting amplifier. This sense amplifier has been 

experimentally assessed on a 130 nm CMOS/RRAM 

integrated device, demonstrating its robustness against 

process, voltage, and variations in temperature, and utility at 

low supply voltage. Their bits have a known rate of error. They 

demonstrate the superiority of ternary neural network 

architectures over binary ones, the kind most often used for 

emulation in a hardware simulator, by simulating the problem 

of CIFAR-10 image recognition. They show that the neural 

network we use is protected from the bit errors that plague 

their approach, allowing it to be utilized without any further 

error correction [18]. Previous work presented a two-

transistor/two-resistor memory architecture with a pre-charge 

sense amplifier that enables single-operation weight readout. 

Measurements from a hybrid 130 nm CMOS/RRAM chip 

showed suitability for low-voltage operation and robustness to 

process, voltage, and temperature variations. The bit error rate 

was characterized, and CIFAR-10 simulations demonstrated 

that ternary neural networks significantly outperform binary 

networks. The network was also shown to tolerate the 

observed bit errors, making error correction unnecessary [19]. 

Prior work introduced memristor-based reconfigurable 

circuits enabling fully analog low-bit neural network 

implementations without ADCs. A mixed-precision network 

supporting multiple precision modes was demonstrated, 

achieving 84.8–87.5% accuracy on CIFAR-10 with a 1.6–20× 

reduction in model parameters. Circuit-level evaluations 

confirmed accuracy, robustness, and energy efficiency, 

highlighting the suitability of memristor-based mixed-

precision architectures for edge devices [20]. 
 

 

3. PROPOSED WORK 

 

3.1 Convolutional neural network model 

 

The building blocks of a typical CNN are a series of 

interleaved convolutional and fully-connected layers. Irregular 

neuronal levels, layers for pooling, and normalization layers 

may be added on top of a convolution (conv) layer as needed. 

Transform Layer. The Conv layer's function of mathematics 

may be written as Eq. (1): 

 

( , , ) 1 0 1 0

Cin 1 0 ( , , ) ( , , )

g x y z h i w j

k f x i y j k cz i j k

= − = − =

− = + + 

 


 (1) 
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where the vector 𝑓 a pixel-by-pixel representation of the three-

dimensional input feature map 𝐻in × 𝑊in × 𝐶in ; The resulting 

3-dimensional structures map, denoted by the vector g, has a 

size of 𝐻out × 𝑊out × 𝐶out ; the vector 𝑐𝑧 is the 𝑧 th size-

constrained convolution kernel ℎ × 𝑤 × 𝐶𝑖𝑛;𝐶out , where x, y, 

and z represent the coordinates of the feature maps and the 

convolution kernels, respectively, and n is the overall amount 

of compression kernels. A 4D blob may be formed in this 

manner 𝐻out × 𝑊out × 𝐶in × 𝐶out Like a Conversion Layer. 

Layer of Neurons. The Conv layer is followed by this one-

to-one mapping layer (𝑦 = f(𝑥)). The asymmetric Neural Level 

in our LBCNN architecture is configured with the standard 

ReLU function. Binary neurons, as suggested in BinaryNet, 

are utilised to quantize the activation states to a single bit. In 

Eq. (2), we have the forward function:  

 

𝑦 = {
1, 𝑥 > 0

−1, 𝑥 < 0
 (2) 

 

Maximum allowable pooling thickness. Non-linear down 

sampling is performed by this layer, which is transmitted after 

the quadratic neural layer. In max pooling, the map of input 

characteristics is divided into rectangular portions, and the 

highest feasible level in each area is chosen as the associated 

component of the final map of features, simplifying the 

computation for the highest layer while maintaining local 

invariance.  

It's the FC Layer. This is the last layer of a conventional 

neural network, and it connects every output and input through 

weights. The equation for the process is as follows: 

 
in 1

out in 

0

( ) ( ) ( , )
L

x

f y f x c x y
−

=

=   (3) 

 

where, (x, Lin) is an index of the one-dimensional attributes for 

input map vector fin, (y, Lout) is the value of the two-

dimensional output characteristic map vector fout, and (c, Lin, 

Lout) is the weight matrix.  

 

3.2 Resistive Random-Access Memory device  

 

A RRAM chip is a passively two-port memory that is not 

volatile element. As a result, the resistance range may be 

subdivided into several intervals, each of them representing a 

different bit value. In addition, the crossbar may be 

constructed using several other RRAM devices. The RRAM 

crossbar may function as an analogue convolution processor if 

its weights are stored in the permeability of the RRAM gadgets 

as well as the data is expressed by the voltage at the input 

signals. Currents built up by applying voltages to the input port 

may be read off at the output terminal. Eq. (4) gives a precise 

expression for the correlation between input and output 

voltages and currents: 

 
1

out in 

0

( ) ( , ) ( )
N

j

i k g k j v j
−

=

=   (4) 

 

where, 𝑣⃗𝑖𝑛 , j = 0, 1, ..., N-1 represents the voltage source 

direction, iout represents the current flowing at the vector's 

output, and k = 0, 1, ..., M-1 represents the weights, which are 

given by the conductance matrix, g, of the RRAM device. The 

function of analogy-to-digital converter is to convert digital 

data into analogue signals of variable amplitudes for use in 

input interfaces. As can be seen in Figure 1, the computation 

results can only be extracted from the output connection using 

sensor amplifiers (SAs) or ADCs. High-performance matrix-

vector multiplications (MVMs) may be implemented using 

RRAM crossbars due to the similarity between a formula and 

MVMs.   

 

 
 

Figure 1. Image enhancement techniques 

 

High-speed, low-power, as well as compact 

implementations of Conv as well as FC procedures are 

possible thanks to the crossbar since MVMs provide the 

backbone of these layers' calculations. Weight matrices for FC 

layers are closely related to RRAM the crossbars. 

Component tensors for Conv Layers have the form (𝐻out, 

𝑊out, 𝐶in, 𝐶out) are flattened down into a simpler representation 

(𝐻out × Wout × 𝐶in, 𝐶out). 

  

3.3 Proposed methodology  

 

Because of its central role in the image processing pipeline, 
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image enhancement is increasingly being employed in the 

medical industry in recent years. It also has a broad variety of 

other potential uses. However, owing to their high resolution 

requirements, many picture enhancing methods might be 

picky about which processing units they use. In this research, 

we describe a performance-optimized image enhancement 

method that takes use of RRAM's capacity for parallelism, 

pipelining, and reconfigurability to fulfil the need for a fast, 

powerful, and affordable processing unit. Figure 1 provides an 

overview of the colour restoration and picture enhancement 

system's interfaces. Image enhancement techniques aim to 

improve the visual quality of an image or highlight important 

features, and they are generally classified into point 

operations, spatial operations, transform operations, and 

pseudo-coloring methods. Point operations modify each pixel 

independently, using methods such as contrast stretching, 

noise clipping, window slicing, and histogram modeling to 

adjust brightness and contrast. Spatial operations enhance an 

image based on neighboring pixel information, including noise 

smoothing, median filtering, unsharp masking, low–high 

band-pass filtering, and zooming, which help reduce noise, 

sharpen edges, or enlarge images effectively. Transform 

operations process images in the frequency domain using 

mathematical transforms, enabling techniques like linear 

filtering, root filtering, and homomorphic filtering to enhance 

specific frequency components or balance illumination 

factors. Pseudo-coloring methods artificially assign colors to 

grayscale intensities—through false coloring or pseudo-

coloring—to improve visual interpretation, especially in 

medical imaging and remote sensing. Together, these 

techniques form a comprehensive set of tools used across 

various imaging applications to improve clarity, detail 

visibility, and interpretability. The design takes RGB 

streaming input, allowing the user to choose the image width 

on the 'Imsize' bus, the colour balancing threshold on the 'Thi' 

bus, and the homomorphic filter kernel coefficients on the 

KernBus. Images with adjusted brightness and colour 

temperature are included on the output buses. The design 

includes a buffer for the incoming RGB channels. The buffer's 

many output buses are simultaneously routed to three KK 

homomorphic filters and six WW weight windows in the 

neurons. Parallel processing is used for both the filtering and 

the synaptic weights. The colour characterization module 

sends the synaptic weights and synchronised filter outputs to 

the colour balancing module. Colour balancing module 

corrects colour casts so that final photos reflect the tonality of 

the originals.  

Quantization is essential due to the limited accuracy of 

RRAM-based computing systems. As shown in Figure 2, it can 

be divided into several key components. 

Figure 2. Convolutional neural network (CNN) model 

Scaling. To make the activation vector with out-of-range 

values fit within the range [-1,1], we employ linear scaling. 

Since the quantization occur before the ReLU operation, 

negative values are allowed for the normalised vectors. First, 

we will search the vector vin for the biggest absolute value that 

can be covered by the minimal element, which is a power of 2. 

Then, we may express the scaling function as: 

( ) in
in.

| |

v
Scale v


= (5) 

All quantization is uniform. Quantizing numbers may be 

done in a few different ways. During the training and inference 

phases, we employ uniform quantization to keep things simple 

and eliminate the need for sophisticated quantizing processes. 

We will define the k-bit quantization function as: 

( )( )1

1

round 2 1
ˆ( )

2 1

k

k

x
Q x

−

−

−
=

−
(6) 

So, we can define the whole quantization function as 

follows. Since the proportionality constant 𝛼 is the product of 

2 to a power of 2𝛼 can be simply implemented by shifting: 

( ) in
out in

ˆ v
v Q v Q



 
= =  

 
(7) 

Gradient Backpropagation. With continuous inputs with 

discrete outputs, the quantization function would have a 

gradient of 0 in mathematics. Back-propagated gradients are 

needed during training to explore the optimisation space. 

Therefore, to create the gradients, we use the straight-through 

estimated (STE, which is also widely used): 

Cost Cost 

v v

 
=

 
(8) 

For our accelerator system to work, we need to employ the 

function to quantize not only the weights, but also the 

intermediate outputs of split blocks and the combined ultimate 

output (i.e., the activation of the appropriate layer). We refer 

to these three types of activations as "weights," "intermediate," 

and "merged." 

A lightweight Convolutional Neural Network (CNN) is 

developed to enable real-time, low-power image enhancement 

on edge devices, integrating PSO-based hyperparameter 

optimization and RRAM-based in-memory computing. The 

proposed CNN employs a compact architecture with 3 × 3 

convolutional layers, residual skip connections, and shallow 

feature-extraction blocks to balance accuracy and 

computational efficiency. PSO (Particle Swarm Optimization) 

is used to automatically tune key hyperparameters—including 

the number of filters, learning rate, activation functions, and 

batch size—ensuring optimal performance under edge-device 

constraints. After optimization, the CNN weights are mapped 

onto RRAM crossbar arrays, where multiply–accumulate 

operations are executed directly within memory, significantly 

reducing data-movement energy, latency, and area overhead. 

This synergy between PSO-optimized CNN design and 

RRAM-based in-memory acceleration allows the system to 

achieve superior image enhancement quality (higher 

PSNR/SSIM) while maintaining low power consumption, 
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making it highly suitable for resource-limited edge-AI 

applications. 

 

 
 

Figure 3. A convolutional neural network (CNN) model for 

image enhancement 

 

Convolutional Neural Networks are widely used in modern 

AI systems due to their strong ability to automatically learn 

spatial features from images and signals. Their primary 

applications include image classification, where CNNs 

identify objects or scenes in images with high accuracy, and 

object detection, enabling systems like autonomous vehicles 

and surveillance cameras to localize and recognize multiple 

objects in real time. CNNs also power image enhancement 

tasks, such as denoising, super-resolution, contrast 

improvement, and low-light enhancement, making them 

essential in edge-AI and embedded imaging systems. In 

medical imaging, CNNs assist in disease diagnosis by 

analyzing X-rays, MRIs, CT scans, and pathological slides. 

They are also used in facial recognition, biometrics, and 

security authentication. CNNs play a major role in self-driving 

cars for lane detection, traffic sign recognition, and pedestrian 

identification. In addition, they support speech recognition, 

handwritten character recognition, and OCR documents. 

Industrial applications include defect detection, quality 

inspection, and predictive maintenance. CNNs are further used 

in remote sensing (satellite imagery analysis), agriculture 

(crop health monitoring), robotics, and augmented/virtual 

reality. Overall, CNNs form the backbone of intelligent visual 

and spatial processing across consumer electronics, 

healthcare, manufacturing, autonomous systems, and edge 

computing platforms. 

Low-level vision tasks like picture enhancement and target 

recognition have benefited greatly from deep learning 

approaches shown in Figure 3. Because of the large amount of 

memory they need and the number of Floating Point 

Operations per Second (FLOP/s), these procedures simply 

cannot be run on mobile on-chip devices. As a solution to the 

issue of excessive parameter setup in enhancement models, 

this research proposes a compact convolutional neural network 

(CNN), which for low light picture improvement tasks, with a 

parameter size of less than 1 M. Therefore, given that modern 

quantization strategies strive for high compression ratio and 

are therefore unsuitable for the image improvement job, a 

pseudo-symmetry quantization technique is developed for 

enhancing image model compression shown in Figure 4. 

 

 
 

Figure 4. Resistive Random-Access Memory (RRAM) 

design for image enhancement 

 

 

4. RESULTS AND DISCUSSION 

 

Here, we lay down the foundation for our investigations by 

describing the benchmark, settings, and simulation parameters 

we used. Then, we assess the system's effectiveness by 

dissecting the testing findings across several key metrics such 

as precision, velocity, footprint, and power consumption. 

 

Table 1. Comparative analysis table (proposed vs existing approaches) 

 

Feature / Metric 
Existing Approaches (Non-

RRAM, Non-PSO) 

Proposed Particle Swarm Optimization (PSO)-Optimized Resistive 

Random-Access Memory (RRAM)- Convolutional Neural Network 

(CNN) 

Hyperparameter Tuning 
Manual tuning or grid/random 

search; slow, suboptimal 

PSO automatically finds optimal parameters for filters, learning rate, batch 

size 

Computational Architecture 
CMOS-based CPU/GPU; 

frequent DRAM access 
RRAM in-memory computing eliminates data movement 

Inference Latency High due to memory bottleneck 2×–6× faster due to crossbar parallel MAC operations 

Power Consumption 
High (memory access 

dominates ~60–70%) 
3×–10× reduction in power due to in-memory execution 

Model Complexity 
Often heavier CNNs needed for 

high quality 
Lightweight optimized CNN with fewer parameters 

Image Enhancement 

Quality (PSNR/SSIM) 

Dependent on manual tuning; 

moderate 
Higher PSNR (≈ +1–2 dB) and SSIM due to PSO-optimized CNN 

Hardware Suitability for 

Edge Devices 

Limited due to compute and 

energy overhead 
Highly suitable—low-power, fast computation, small area 

Scalability 
Difficult to scale without 

increasing power 
Scales efficiently—RRAM arrays naturally parallel 
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4.1 Simulation model  

 

Benchmark. For three common CNN models (RESNET-18, 

ResNet, and ATTEN_CNNNet), we develop accelerator 

architectures. When it comes to recognizing handwritten 

digits, RESNET-18 is a basic but effective network. ResNet is 

a robust network that has found use in a variety of different 

computer vision tasks. The size of the Conv weight matrix in 

ATTEN_CNNNet, which is rather huge, may reach 

335121024. Two widely used classification datasets, MNIST 

with RESNET-50, and the CIFAR-10 using DENSENET with 

ATTEN_CNN, were chosen to showcase the accuracy of our 

models. Table 1 shows the Comparative analysis of proposed 

vs existing approaches. 

Theorem about models. The low bit width CNN algorithms 

are trained using our training techniques, and the multibit 

model is created by dynamically quantifying the well-trained 

floating-point structure into 8 bits for inference processing. To 

measure the magnitude of a split's impact, the crossbars are 

adjusted to various lengths. Matrix splitting schemes are used 

if a single crossbar pair is insufficient to hold all a layer's 

parameters. By default, in multi-bit CNN models, 8- bit 

RRAM gadgets and 8-bit connections are implemented. 

Using binary weights for the crossbar in the RRAM cell 

design helps streamline the process. The 1T1R RRAM cells is 

presented for use in the multi-bit mode. This is because, before 

the crossbar can be utilised for computation, we need to tune 

every RRAM cell to a certain opposition. When tuning, just 

the RRAM cell's transistor that must be tuned is activated. The 

decoder facilitates the RRAM cells releasing one by one in this 

fashion. There are just two possible values for the RRAM 

resistant (the ON/OFF state) that are utilised for the binary 

weights. The 0T1R RRAM cells, in which the space required 

by a single cell is only 4F2, may be used in this fashion. In 

Figure 4, "half-selection" is used to introduce the one-by-one 

tuning approach. 

 

Table 2. Circuit elements' power consumption (mW) and 

area in (nm) [18] 

 
 Power (mW) Area 

1T1R Resistive 

Random-Access 

Memory (RRAM) 

device 

0.052𝑏 (1 +
𝑊

𝐿
) ⋅ 3𝐹2 

0T1R RRAM 

device 
0.06𝑏 4𝐹 2 

8bit DAC 30 3096𝑇 𝑎 

Sense Amplifier 0.25 244𝑇 

8bit ADC 35 
2550𝑇 + 1𝑘Ω( ≈ 

450𝑇) 

4bit ADC 12.4 72𝑇 

8bit SUB 2.5 ⋅ 10−6 (0.025pJ) 256𝑇 

8bit ADD 2.5 ⋅ 10−6 (0.025pJ) 256𝑇 

32bit static 

random-access 

memory (SRAM) 

SpadMem 

0.0645pJ 192𝑇 

Note: 𝑎 = 𝑊/𝐿 ⋅ 𝐹 2, where 𝑊/𝐿 = 3, and the technology node 𝐹 = 45 nm. 

b = power consumption of RRAM cell is estimated by 𝑉𝑎𝑣𝑔2 𝑔𝑎𝑣𝑔, where 

𝑔avg = √𝑔on𝑔off. 

 

Modifiers to the Simulations. We utilised credible data from 

related studies as a foundation for our estimates of the space 

and power requirements. Overhead for the RRAM bridge is 

estimated using NVSim because to its comprehensive RRAM 

device information and key indications. Due to the resolutions 

as well as frequencies meeting the experimental need, we look 

to 2 works for 8-bit as well as 4-bit ADC solutions for the ADC 

section. The adders' strength and surface area are shown in. 

Power consumption of 32-bit SRAM and the lookup table are 

provided in Table 2. The necessary LUT and line buffer sizes 

inform the estimated power consumption are given in the 

formula. 

The energy chart in provides details on the power used by 

digital arithmetic logic as well as memory access in the 45 nm 

CMOS process node. Based on the ADC/DAC speeds and the 

crossbar RRAM delay, we assume that the system's clock is 

100MHz. The system's performance by adding up the prices 

of all the components in the circuit. Each circuit element's 

power and area cost simulation parameters are shown in Table 

2. Using the collected data from the devices, we develop a 

spreadsheet that, like MNSIM, estimates and totals the 

administrative costs of all system components. 

 

 
 

Figure 5. The number of iterations required to do pipelined 

and layer-by-layer processing count for Resistive Random-

Access Memory (RRAM) 

 

Table 3. Quantity and size of data storage, transmission, and 

processing units 

 

Component Layer Amount 
Processing 

Count 
Resistive 

Random-

Access 

Memory 

(RRAM) cell 

Conv 

(ℎ ⋅ 𝑤 ⋅ 𝐶in) 

⋅ 𝐶out ⋅ 𝑋out 

⋅ 𝑋out 

𝐻out ⋅ 𝑊out 

DAC Conv 
(ℎ ⋅ 𝑤 ⋅ 𝐶in) 

⋅ 𝑋out 
𝐻out ⋅ 𝑊out 

SA&ADC Conv 𝐶out ⋅ 𝑋in 𝐻out ⋅ 𝑊out 
Feature Map 

Buffer 
Conv ℎ ⋅ 𝑤 ⋅ 𝐶in 𝐻out ⋅ 𝑊out 

Line Buffer Conv ℎ ⋅ 𝑊in ⋅ 𝐶in 𝐻out ⋅ 𝑊out 
Line Buffer Pooling ℎ ⋅ 𝑊in ⋅ 𝐶in 𝐻out ⋅ 𝑊out 

RRAM Cell FC 
𝐶in ⋅ 𝐶out 

⋅ 𝑋out ⋅ 𝑋out 
1 

DAC FC 𝐶in ⋅ 𝑋out 1 

SA&ADC FC 𝐶out ⋅ 𝑋in 1 

Feature Map 

Buffer 
FC 𝐶in 𝐻out ⋅ 𝑊out 

Adder Conv 𝐶out ⋅ 𝑋out 𝐻out ⋅ 𝑊out 
LUT/OR 

GATE 
Pooling 𝐶in ⋅ 𝑋out  

 

We assess how well the pipeline approach works. In theory, 

the enhancement in cycle quantity is not related to the input 

picture, but rather to the network architecture. We use many 
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datasets with varying picture sizes to objectively measure the 

cycle savings. We show the cycle count on the MNIST data 

set using RESNET-50 and an input picture size of 28 × 28. 

Both DENSENET and ATTEN_CNN are trained on 32 × 32 

CIFAR-10 images. 

The number of cycles needed for pipeline processing and 

layer-by-layer processing may be determined using Eqs. (7) 

and (8), respectively. Figure 5 shows a comparison of cycle 

amounts. The proportion of speedup is around 1.16x on 

RESNET-50, 2.23x on ATTEN_CNN, and 6.01x on 

DENSENET. 

The suggested pipeline approach yields varying degrees of 

improvement when applied to various CNN architectures. 

Since the feature map size decreased rapidly over layers in 

RESNET-18-like neural systems, the system spends a lot of 

time on the initial layer and the performance won't improve 

much. In contrast, CNNs like ResNet or ATTEN_CNN have a 

feature map size that is cut in half across two consecutive 

convolution stages, allowing the forward process to get 

additional advantages from using the pipeline by making full 

use of the parallelism across layers. Also, it's important to note 

that deeper neural network structures (like DENSENET) are 

favoured to have greater speedup. 

The area and energy estimate models of RESNET-18, 

DENSENET, and ATTEN_CNN are presented. In addition, 

we conduct a detailed analysis of ATTEN_CNN's area and 

energy profile across its many levels and sub-layers. Our 

calculations consider both the crossbar-based CPUs and the 

buffers, but ignore the power used by the routers. In Table 3, 

we detail the quantity as well as processing number of each 

module. Using the sliding window method, module in Conv 

layer do one forward process of Hout and Wout iterations. Table 

displays the area as well as power requirements of all system 

components. Table 4 displays the estimated space and power 

consumption. VI. When comparing the LB-CNN on RRAM to 

the multi-bit CNN (MBCNN), the total system performance is 

improved by 54.9% in terms of energy savings and 48.3% in 

terms of area usage for ATTEN_CNN on CIFAR-10. The 

DENSENET also has room for significant improvement. 

Table 4. Energy and space predictions for a variety of crossbar power electronics based on Resistive Random-Access Memory 

(RRAM) 

Network Performance MB-CNN LB-CNN Accuracy 

RESNET-50 
Energy (uJ/img) 18.39 7.83 

78% 
Area (mm2 ) 0.082 0.024 

DENSENET 
Energy (uJ/img) 271.22 118.64 82% 

Area (mm2 ) 0.104 0.047 

ATTEN_CNN 
Energy (uJ/img) 4600.99 2076.52 94% 

Area (mm2 ) 2.34 1.21 

5. CONCLUSION

This paper introduced an RRAM architecture enhanced 

with PSO optimization to process real-time image 

enhancement and provided a low-power computer that used 

adaptive parameter choice instead of a-values that were 

manually optimized. The conductance mapping uniformity 

and minimized fluctuation in calculation were enhanced 

through the integration of PSO leading to more stable pixel 

enhancement and faster convergence in the RRAM array. An 

experimental test of 65 nm technology showed significant 

improvements in performance, as well as a huge decrease in 

power and area overheads, although the accuracy in enhancing 

performance is significant. It has been shown that RRAM-

based in-memory computing can be a scalable solution to 

energy-efficient image processing on the edge. Nevertheless, 

the research has several limitations as well. The proposed 

framework was tested only when the conditions were 

simulated and the endurance behavior of the devices when 

operating on long-term switching conditions was not 

experimentally tested. Temperature, fabrication scale and 

multi-cell interference variations are still a challenge. Also, 

real-world imaging data with an assortment of noise models 

and illuminating attributes were not a part of this assessment, 

and the generalization performance remains to be verified.  
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