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In general, recommendation systems assume that each transaction made by a user reflects a
single purchase intent (mono-intent). However, in reality, a transaction may contain several
underlying intentions, such as routine shopping, consumption for specific purposes, or
household needs, which cannot be effectively captured by a mono-intent model. Previous
studies have proposed multi-intent approaches such as topic modeling, transformer-based,
and clustering techniques. However, these methods assume that each intent has the same
weight, especially when products are consumed simultaneously and do not have explicit
labels that correlate between products, thereby reducing context understanding and
personalization capabilities. Based on this gap, we propose a framework for implicit multi-
intent detection in shopping transactions using the extensive knowledge of Large Language
Models (LLMs) through the In-Context Learning (ICL) prompting technique. As for the
preference assessment mechanism, we use the Position-Based Grouping (PBG) method to
estimate user preferences based on the order of items added to the cart. The results of our
experiments on the Instacart dataset show that our proposal is capable of producing a
significant performance improvement compared to existing sequential recommendation
systems, where our best model is able to increase Recall by up to 122% and MRR by up to
217%, indicating that it is more effective in capturing user preference trends for specific

intentions  in

the

purchase  sequence. This work is available at

https://huggingface.co/recommender-system/mindfull.

1. INTRODUCTION

E-commerce purchases reflect multiple needs in a single
transaction. For example, a user may purchase milk and eggs
for daily needs, stationery for work, and snacks for family
entertainment, all in one shopping cart. This demonstrates the
phenomenon of multi-intent transactions [1, 2].

Looking at current studies on recommendation systems,
most still operate based on the assumption that one transaction
corresponds to one intent (mono-intent) [3, 4]. This
assumption simplifies the complexity of user behavior,
resulting in recommendations that are irrelevant to user needs
[4, 5], as shown in Figure 1. Seeing this weakness, recent
research has begun to develop a multi-intent approach [6-9].

Several studies have proposed multi-intent models [9-11],
including those that identify product subgroups within a
transaction or apply topic models [10], transformers [11], and
clustering techniques to distinguish user intent [9]. However,
these methods still consider the weight of each user intent to
be equal, especially when products are consumed
simultaneously and do not have explicit labels [11].

The latest models in recommendation systems have adopted
transformer-based architectures [11] that have strong natural
language understanding capabilities. Although previous
studies have shown limitations, transformer-based methods
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with the emergence of Large Language Models (LLMs) are
beginning to offer new capabilities, including classification
through hint-based inference, which promises to overcome
multi-intent challenges, despite high computational demands.
Some of the inference techniques with LLMs include (1) Zero-
shot Learning [12], which allows the model to perform
classification without seeing specific examples from previous
tasks, but rather relies on general knowledge acquired during
pre-training. (2) Few-shot Learning [13] improves task-
specific understanding by including several examples in a
single command. (3) In-Context Learning (ICL) [14] presents
a series of examples in a single command without requiring
fine-tuning, allowing the model to make predictions on target
inputs directly.

Seeing the opportunity of LLM-based methods to address
multi-intent problems, we propose a new approach that utilizes
ICL-based inference prompting and introduces a mechanism
to assess the intensity of user preferences for each detected
intent. In general, the main contributions of our research are as
follows:

a. An ICL-based multi-intent detection method that
eliminates the need for explicit labels.

b. Implicit transaction data from purchase sequences as
indicators of user interest.

c. A Position-Based Grouping (PBG)-based preference
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scoring mechanism to identify dominant intentions. preferences (intention interpretation) within a single
d. Improved recommendation relevance that takes into transaction session.
account context diversity [15] and the strength of user
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Figure 1. Example of a multi-intent problem
Note: The top represents the case expected by conventional recommendation models, while the bottom depicts a real-world case where user needs are diverse.
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Figure 2. Architecture of the proposed framework
Note: The components highlighted in green represent our novel contributions.
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2. PROPOSED METHOD

To implement the proposed method, our approach is applied
within a user transaction session framework, where each
transaction T is represented as a sequence of products
[p1, D2, - -, Pn] ordered by the time each item p; was added to
the basket. This sequence is assumed to reflect the user's
implicit preference level toward each product. The overall
architecture of the proposed model is illustrated in Figure 2.

Table 1. List of notation

Notation Description
T List of products in a user transaction T =
[plr P2,--s pn]
Di The £th product in the transaction

Set of predicted intent groups G =

¢ Py L)oo, (Pus 1)
p. Subset of products belonging to the j-th
J intent group
l; Intent label for the product group P;
s(p1) Base score of product p; based on its

position in the basket
a Positional score decay coefficient (e.g., 0.1)
Bonus score for intent group G; based on

A& consecutive product pairs
Bonus coefficient for sequential product
14 pairs (e.g., 0.1)
5(Gy) Total score for intent group G;
£6) Favorability rate, or the user’s preference
J level for intent group G;
s Set of sequential product pairs in intent
group G;
b(x) Embeddir_lg function _for converting text
into semantic vectors
cos( p(a), d(b)) Cosine sm!;a;;)tgdté?xgen two text

The primary task is to detect groups of latent purchase
intents G underlying the transaction, represented as
(P, 1), (P, ly) where P, €T and [; is the intent label
assigned to the product subset P;. In addition to intent

detection, the system is designed to compute the user's
preference level f(G;) for each intent group G;, using a score-
based ranking mechanism derived from item ordering. A
summary of notations used is provided in Table 1.

2.1 In-Context Learning for multi-intent detection

The multi-intent detection component in this study
leverages ICL with a Large Language Model (LLM) to infer
latent intent structures within a transaction. In this approach,
the LLM is provided with a set of example pairs consisting of
products p; and their corresponding categories c¢; in the form
of a prompt which serve as contextual demonstrations for the
model. After receiving these examples, the model is instructed
to cluster the products P; in the target transaction into multiple
intent groups ;. The output is formally defined in Eq. (1).

G = (P,h), (P2 1p), -, (P, L) (1)

The proposed steps for utilizing ICL in multi-intent
detection are illustrated in Figure 3.

The ICL prompt is designed with two main components,
namely:

(a) Context Examples, these consist of & product—category
pairs (p;, ¢;) that guide the LLM in understanding semantic
and functional relationships between products. In our
implementation, we use 5-8 examples per prompt, selected
from diverse aisles to maximize category coverage. Examples
are sampled using a semantic similarity filter, ensuring that
products included in the prompt remain representative of user
shopping behaviors. Increasing the number of examples tends
to improve intent coherence but also increases inference
latency. Conversely, fewer examples may yield unstable or
inconsistent grouping.

(b) Target Transaction, this component contains the list of
products P; from the user’s transaction to be assigned into
intent groups [;. The model is explicitly instructed to generate
up to n intents (where n < 5) to maintain interpretability and
avoid excessive fragmentation. An illustration of the prompt
structure is shown in Algorithm 1.
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Figure 3. Flow design for multi-intent detection using In-Context Learning (ICL)
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Algorithm 1. Example of an ICL prompt used for multi-intent
detection

Products - Categories

- Banana - Fresh Fruits

- Whole Milk - Dairy

- Cheddar Cheese - Cheese

Transaction:
["Banana", "Whole Milk", "Cheddar Cheese", "Notebook"]

Task: Group the products in the transaction into up to 5 purchase
intents.
Return in the format: {products: [...], intent: "..."}

Since LLMs generate responses in free-text form, additional
post-processing steps are required to ensure structural
consistency and compatibility with subsequent modules.
These steps include:

a.  Extracting product groups and intent labels, each LLM-
generated cluster is identified and mapped to a
standardized format, ensuring uniform labeling across
transactions.

Preserving product order, the original order of items, as
added to the user's cart, is maintained. This is critical for
computing the preference score in the PBG module.
Reconstructing the output format, the cleaned and
structured results are reformatted according to Eq. (1),
ensuring consistent input for downstream components.

2.2 Preference scoring with Position-Based Grouping

Once the intent groups G have been identified, the next step
is to measure the degree of dominance of each intent within a
transaction, denoted as S(G;) and A G)). This process leverages
the order in which products are added to the basket as a signal
of implicit user preference.

PBG is the proposed approach to quantify user preference
for a given intent within a transaction, based on the relative
position of each product when it was added to the cart [16].
The method assumes that the earlier a product is added, the
more likely it reflects a dominant or favored intent.

The preference scoring process consists of the following
steps:

2.2.1 Base product score based on position

Each product in a transaction is assigned a base score s(p;),
calculated linearly based on its position (Eq. (2)).

s(p) = 10— a(i—1) @)

where, @ = 0.1 Products added earlier in the basket receive
higher scores, indicating stronger interest.

Example: If the basket sequence is (1) Banana, (2) Whole
Milk, (3) Cheddar Cheese, (4) Notebook, then the base scores
are s(p;) = [1.0,0.9,0.8,0.7].

2.2.2 Bonus for Consecutive Products within an Intent Group
If two or more products within the same intent group G;
appear consecutively in the transaction, a bonus score is added

(Eq. (3)).
B(G) = y-IS| 3)

where, S is the number of consecutive product pairs within G;,
andy = 0.1.
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Example: After applying intent prediction with ICL, the
resulting groups are, (1) Fresh Fruits — Banana, (2) Dairy
Products - Whole Milk + Cheddar Cheese, (3) Stationery -
Notebook.

The intent group Dairy Products qualifies for the bonus
since its products appear consecutively. Thus, the bonus is
reflected in the final scores as ,B(Gj) = [(1.0 + 0.0), (0.9 +
0.8 +0.1), (0.7 + 0.0)].

2.2.3 Total intent score
The total score for each intent group is computed by
summing the base scores of all products within the group and
adding the bonus score if applicable (Eq. (4)).
S(G;) = Zper;s () + B(G)) (4)
Example: After including the consecutive-item bonus, the
total intent score becomes S(G) = [1.0+1.8+0.7] = 3.5.

2.2.4 Normalization into favorability rate
To assess the dominance of one intent over others within the
same transaction, each total intent score is normalized (Eq.

®)).

NED)
(&) = s+es )
The value of f(G;) € [0,1] represents the user’s preference
level for intent G;. The sum of all f(G;) values in a transaction
equals 1.0.
Example: After obtaining the total intent scores,
normalization is applied to compute the favorability rates

f(G)):

f(Fresh) = = = 0.286
(Dairy) = =2 = 0.514
y 3.5
f(Stationery) = % = 0.200

By leveraging the Favorability Rate, the system can
generate a composition of recommendations derived from
diverse user intentions and rank the Top-K recommendations
based on the weight of the most dominant intent. This results
in increased contextual relevance, increased diversity in
recommendations, and improved interpretability.

2.3 Similarity-based recommendation

After obtaining the favorability rates, the next stage
involves generating recommendations. This begins with
transforming the item embeddings ¢(x) for each product in
the intent group. If an intent contains more than one product,
their embeddings are concatenated using max pooling to form
a single representation.

Next, the number of recommendation candidates allocated
to each intent is determined proportionally based on its
favorability score relative to the total Top-K size. For example,
in a Top-10 recommendation setting, if the Dairy Products
intent has a favorability score of 0.5, it will be allocated 5
recommendation slots.

To generate the final recommendations, we utilize a vector
database (ChromaDB (https://www.trychroma.com/)) in
combination with cosine similarity to retrieve candidate items



that semantically align with the detected intents. Cosine
similarity is employed for its effectiveness in measuring the
similarity between two objects cos ($p(a), db(b)) , the
effectiveness of measuring the similarity between two objects,
such as "Bread" and "Rice" which are the "staple food" group
will be separated by "Coffee" which is a "drink", by
considering the direction of the vector representation, not just
the magnitude [17].

3. EXPERIMENTS

In this study, a systematic preparation phase was conducted
prior to the experimental stage to ensure the validity and
reliability of the results. The preparatory steps covered several
key aspects as outlined below.

3.1 Objectives

The experiments conducted using our framework in this
study aim to achieve the following goals.
a. To evaluate how effectively LLMs can infer users’
favorability toward items based on their needs within a
transaction, and how this affects sequential
recommendation outcomes.
To understand the impact of LLMs and the ICL scheme
in detecting diverse user needs (multi-intent) within a
single transaction session.

3.2 Dataset

The dataset used in this study is the Instacart Online
Grocery Shopping Dataset 2017
(https://www.kaggle.com/competitions/basket-
analysis/overview), which contains historical online shopping
data from 206,209 users. In total, there are 3,421,083 shopping
transactions (orders), covering 49,688 unique products. Each
product is classified into one of 134 subcategories (aisles),
which are further grouped into 21 main categories
(departments) [18]. Every user has a chronological sequence
of transactions, including timestamps and inter-order intervals.
A summary of the dataset is presented in Table 2.

Table 2. Summary of the Instacart 2017 dataset

Component Count Description
Users 206,209 Each user has_a sequence of
transactions with timestamps.
Orders 3,421,083 Includes prior, train, and test
orders.
Products 49,688 Unique produclté:wth names and
. Product subcategories such as
Aisles
. 134 fresh vegetables, candy
(Subcategories)
chocolate, etc.
Main product categories such as
Departments :
21 produce, dairy eggs, beverages,

(Categories) eto.

To ensure the dataset's suitability for our experiments,
several pre-processing steps were applied:

a. Session construction for each user based on the
chronological order of transactions.

b. Filtering of users and products based on a minimum
number of interactions (e.g., > 5).

c. Tokenization of product names to enable sequential input
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representation for the LLM.

Dataset partitioning into training, validation, and test sets
using a chronological split method, where early data is
used for training and the most recent data is reserved for
next-product prediction evaluation.

3.3 Models used

This experiment compares the proposed framework
utilizing LLM with classical baseline models for the sequential
recommendation task. The evaluated models are grouped into
two categories as follows:

3.3.1 Large language model as model for extract multi-intent
from transaction

The primary models used for multi-intent detection in this
experiment consist of three recent LLMs:

a. LLaMA 3, a language model from Meta Al, designed
based on an auto-regressive transformer architecture.

b. Qwen 3, an Alibaba open-source LLM, optimized for
both efficiency and performance in natural language
understanding and generation tasks.

c. Gemma 3, a lightweight model from Google, designed

for high efficiency and easy deployment, particularly
suited for recommendation and sequential processing
tasks.

These models were selected due to their strong capabilities
in extracting information and understanding context for
predictions via ICL, as well as their open-source availability
and compatibility with our hardware requirements [19].

3.3.2 Baseline model for sequential recommendation
To ensure a fair and comprehensive evaluation, we also
implemented the following baseline models:

a. Popularity-Based: Recommends products based on
overall purchase frequency.

b. GRUA4Rec: A recurrent neural network (GRU-based)
model effective for session-based recommendation tasks.

€. SASRec: A self-attention-based model that explicitly
models item sequences.

d. BERT4Rec: A transformer-based model that leverages

bidirectional context for item sequence modeling.

These baseline models were chosen due to their robust
performance and popularity in the sequential recommendation
domain. However, a significant limitation of most of these
models is their reliance on item ID representations, i.e.,
numeric IDs, for recommendations without leveraging the rich
semantics of item attributes. To address this, we modify these
baseline models to allow the use of item attributes by
introducing a mapping mechanism from item IDs to their
corresponding attribute vectors [20].

3.4 Evaluation protocol and metrics

The experiments were conducted using a leave-one-out
evaluation approach, which involves the following steps:

a. For each user, the most recent purchase session is treated
as the ground truth.

b. All items not previously purchased by the user are
considered as negative candidates.

c. The model is tasked with predicting the next item(s)

based on the user’s preceding session history.
To assess prediction performance, two standard evaluation
metrics commonly used in recommender systems are
employed: Recall@K and MRR@K. The values of K tested in



this study are 5, 10, 15, and 20, in accordance with established
practices in session-based recommendation experiments.

3.5 Implementation detail

The experiments were implemented in Python using the
Hugging Face Transformers library for Large Language
Model (LLM) integration. Tokenization was performed on
either product IDs or product names within each purchase
session.

Several key hyperparameters were used consistently across
all models. The maximum user interaction history length was
set to max_len = 50. For semantic product representation, a
combined text-based encoder, all-MiniLM-L6-v2, was used as
the embedding_model. Item embeddings were aggregated
using max_pooling. The batch size during training was set to
128, while evaluation was performed with a batch size of 1.

The loss function used was BCEWithLogitsLoss(), suitable
for multi-label prediction scenarios. Model performance was
evaluated using two primary metrics: Recall@K and MRR@K,
with K values varied across [5, 10, 15, 20]. All models were
trained for 50 epochs, as specified by training_epochs = 50.
Parameter optimization was performed using the Adam

optimizer with a learning rate of 0.001, denoted as Adam (Ir
= 0.001). All experiments were executed on a 12 GB NVIDIA
GPU (RTX 4070 Super).

3.6 Experimental results

Overall performance. As presented in Table 3, the
proposed framework consistently outperforms the classical
baseline models in almost all evaluation metrics. Recall@K
measures how many relevant items are successfully retrieved
in the Top-K list of recommended items, where a higher score
indicates better coverage of user preferences. Meanwhile,
MRR@K evaluates the ranking position of the first relevant
item in the Top-K list; a higher score indicates that the relevant
item appears earlier in the recommendation list. The
improvements are quite significant, with the framework
achieving up to +122.56% improvement in Recall and
+217.30% improvement in MRR compared to the best
baseline model. This highlights the framework's ability to
capture diverse user needs (multi-intent) and semantic
representations more effectively than traditional sequence-
based models such as GRU4Rec or SASRec.

Table 3. Comparison of recommender system performance

Model Recall@5 Recall@10 Recall@15 Recall@20 MRR@5 MRR@10 MRR@15 MRR@20
Popularity 0.1358 0.1618 0.1693 0.1693 0.2150 0.2283 0.2298 0.2293
GRU4Rec 0.0554 0.0802 0.0938 0.1233 0.2295 0.2402 0.2432 0.2472

SASRec 0.0854 0.0890 0.1089 0.1203 0.2121 0.2733 0.2752 0.2761
BERT4Rec 0.0485 0.0723 0.0872 0.1046 0.1983 0.2127 0.2152 0.2193
Ours-gemma3s-4b 0.2585 0.2786 0.3103 0.3080 0.7282 0.7934 0.6931 0.6538
Ours-llama3-8b 0.2165 0.2415 0.2913 0.3768 0.4029 0.3652 0.4351 0.4680
Ours-qwen3-4b 0.1238 0.2071 0.2171 0.2704 0.2331 0.2818 0.2756 0.2769
Improvement (%) +90.35% +72.19% +83.28% +122.56%  +217.30%  +190.30%  +151.85%  +136.80%

Note: Bold values indicate the best overall performance, while underlined values denote the best among baseline models.

Table 4. Statistical significance (p-values) across metrics

Model Metric Popularity Bert4Rec GRU4Rec  SASRec
gemma3 MRR@5  0.0000*** 0.0000*** 0.0000*** 0.0004***
gemma3 Recall@5 0.0000*** 0.0000*** 0.0000*** 0.0000***
gemma3 MRR@10 0.0000*** 0.0000*** 0.0001***  0.0138*
gemma3 Recall@10 0.0000***  0.0000*** 0.0000*** 0.0006***
gemma3 MRR@15 0.0001*** 0.0000***  0.0010** 0.1098
gemma3 Recall@15 0.0000*** 0.0000*** 0.0001***  0.0133*
gemma3 MRR@20 0.0001*** 0.0000***  0.0024** 0.1858
gemma3 Recall@20 0.0001*** 0.0005***  0.1569 0.0874
llama3 MRR@5 0.0766 0.0093** 0.3322 0.408
llama3 Recall@5 0.0000*** 0.0000***  0.0017** 0.0626
llama3 MRR@10  0.0156* 0.0013** 0.062 0.9219
llama3 Recall@10 0.0000***  0.0007***  0.0152* 0.2002
llama3 MRR@15 0.071 0.0098** 0.3142 0.3774
llama3 Recall@15 0.0000***  0.0246* 0.1476 0.8336
llama3 MRR@20 0.1201 0.0299* 0.5761 0.2845
Illama3 Recall@20 0.0000*** 0.356 0.2455 0.3758
gwen3  MRR@5 0.0170* 0.1151 0.0020**  0.0000***
gwen3 Recall@5 0.0000***  0.0056** 0.0602 0.3749
gwen3 MRR@10 0.0009***  0.0144*  0.0001*** 0.0000***
gwen3 Recall@10 0.0000*** 0.3039 0.8345 0.4785
gwen3 MRR@15 0.0007***  0.0056**  0.0001*** 0.0000***
gwen3 Recall@15 0.0000*** 0.1867 0.0451*  0.0011**
gwen3 MRR@20 0.0005***  0.0029**  0.0000*** 0.0000***
gwen3 Recall@20 0.0000***  0.0405*  0.0003*** 0.0006***

Note: Values represent p-values. Asterisks denote the statistical significance level of the performance difference between the proposed and baseline models: *
indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Absence of asterisks indicates no statistical significance (p > 0.05).

These performance gains are statistically validated in Table
4. The significance tests confirm that the improvements are

robust and not due to random chance. Specifically, the Ours-
gemma3-4b variant demonstrates highly significant
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superiority (p < 0.001) against almost all baselines,
particularly in MRR@5 and MRR@10. This indicates that the
model is exceptionally reliable in ranking relevant items at the
very top of the list. While Ours-llama3-8b and Ours-qwen3-4b
show significant improvements against weaker baselines (e.g.,
Popularity, BERT4Rec), their statistical advantage narrows
against stronger baselines like SASRec at higher K values
(e.g., MRR@20), suggesting that while they improve recall,
their ranking precision is competitive but less dominant than
the Gemma variant.

Among the proposed variants, Ours-gemma3-4b stands out
as the premier model, achieving peak performance with a
Recall@5 of 0.2585 and MRR@10 of 0.7934. The dominant
statistical significance (p < 0.001) observed in Table 4
correlates with its precise execution of ICL. Gemma3-4b
effectively identifies and groups products from single
transactions into meaningful intent clusters, directly
translating to higher MRR scores.

Conversely, while Ours-llama3-8b and Ours-qwen3-4b
perform well, they exhibit instability in ICL-based multi-intent
detection. Despite having larger parameters (in Llama's case),
Table 4 shows less consistent significance levels.
Qualitatively, this is observed when transactions contain
products with weak explicit semantic alignment. For instance,
given items like whole milk, organic eggs, and butter cookies,
these models occasionally mapped them to broad categories
like dairy or miscellaneous instead of specific intended
taxonomies. This "label smoothing™ effect likely dilutes the
precision needed for higher MRR scores, explaining why their
statistical significance is less pronounced compared to the
Gemma variant.

Among the baseline models, the Popularity-based model
achieved the highest Recall scores. However, this approach
suffers from significant limitations. As illustrated in Figure 4,
the model is static and provides the same recommendation to
all users based solely on item popularity, ignoring user
preferences and context. Over time, this lack of variation and
personalization may lead to reduced user engagement due to
recommendation fatigue.

In contrast, SASRec and GRU4Rec outperform
BERT4Rec, consistent with their design focus on modeling
user interaction sequences (sequential recommendations).
SASRec leverages a self-attention mechanism, effectively
capturing both short-range and long-range dependencies.

GRUA4Rec, based on an RNN architecture, excels at learning
explicit user interaction sequences. In contrast, transformer-
based BERT4Rec suffers from a setback, as its masked
language modeling approach, similar to BERT, is less
effective in sequential recommendation settings due to the loss
of explicit sequences, especially in data-constrained scenarios.

Impact of session length: To assess the effect of the
number of items in a transaction on recommendation quality,
we refer to Figure 5, which shows that the majority of
transactions consist of between 2 and 15 products. This
distribution is used as a basis for analyzing how session length
influences the relevance of recommendations generated by
each model.

As illustrated in Figure 6, the proposed framework
consistently outperforms all baseline models across various
session lengths (2, 5, 8, 10, and 15 items), for both Recall@20
and MRR@20 metrics. This performance advantage
highlights the strength of LLMs and the ICL approach in
understanding user intent, even in very short sessions.

Specifically, variant llama3-8b excels in short sessions due
to its ability to generalize and capture purchase patterns from
minimal input. Meanwhile, gemma3-4b and qwen3-4b
demonstrate more stable performance in longer sessions,
indicating their adaptability to more complex contextual
information.

0.250
0.225
0.200

0.175
—e— Recall@K
0.150 MRR@K

0.125

Score

0.100
—____________.-o
0.075 .__,___.-—--"“
L

5 10 15 20
Top-K

0.050

Figure 4. Average results of the popularity-based approach
over 30 runs

1000 1

800 A

Number of Orders
3
=]

400

200

40

60 80 100

Number of Products in a Single Order

Figure 5. Distribution of transaction sizes (range 2-15)



Model

=@= Popularity =&= GRU4Rec =®= BERT4Rec MINDFUL-llama3:8b
ltemKNN =@®= SASRec =@= MINDFUL-gemma3:4b =@®= MINDFUL-qwen3:4b
0.5
0.20
0.4 ®
. /.____._-—-0 e ____--.-—.. __.___./
2 0.15 . o e
™ T -
® 1 %0.3 . ./ >=_—=_—Tl-:
o oéa [ad L2 L —
0.10 b4 L @] @
g < 0.2 ./
/=
0.05 0.1 ./.
[}
A/
0.0
5 10 15 5 10 15

Number of Items in Session

Number of Items in Session

Figure 6. Impact of session length on recommendation relevance across models. (Left): Recall@20, (Right): MRR@20

Among the baseline models, Popularity shows relatively
high Recall but low MRR, indicating that while popular
products are frequently chosen, they are not always ranked in
positions that reflect personal relevance. GRU4Rec and
SASRec, both sequential models, show steady and improved
performance as session length increases, reflecting their
strength in leveraging user interaction history.

Overall, while longer sessions provide additional context
that can benefit most models, the proposed framework remains
superior, even in short-session scenarios, demonstrating an
ability to generate  context-aware and  relevant
recommendations under limited information.

Ablation study: To evaluate whether each component of
the propose framework contributes significantly to the
performance of the recommender system, we conducted a
series of ablation studies. This experimental approach involves
modifying or removing specific parts of the model architecture
to observe their individual impact on performance. The
primary objective is to verify that each component integrated
into the proposed framework provides meaningful
contributions to the overall results. Table 5 summarizes the
results.

Table 5. Ablation study results on proposed framework

components
Model Recall@20 MRR@20
Intent Detection Removed
without intent detection 0.1380 0.1136
Favorability Rate Removed
Variant gemma3-4b (no 0.1732 0.2447
favorability)
Variant llama3-8b (no favorability) 0.1502 0.2219
Variant gwen3-4b (no favorability) 0.1902 0.3572
Mean Pooling Embedding
Variant gemma3-4b + mean pooling 0.1715 0.4940
Variant llama3-8b + mean pooling 0.1001 0.3476
Variant qwen3-4b + mean pooling 0.1056 0.2040

Note: Bold values indicate the best performance in each experimental block.

Removing the intent detection stage causes the most
substantial decline in performance, with Recall@20 and
MRR@20 dropping by more than 50% relative to the full
model. This degradation occurs not only because the intent
module is removed, but also because its absence alters the
semantic structure of the input representation. Without intent
grouping, all items in a transaction are merged into a single
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undifferentiated sequence, causing: (a) Loss of multi-intent
structure, items associated with different underlying user goals
are treated as belonging to the same intent. (b) Weaker
embedding quality, the aggregated representation becomes
noisier, as unrelated item signals collapse into a single vector.
(c) Reduced alignment with LLM reasoning, since the
downstream encoder expects structured intent groups,
removing them breaks the intended information flow. Thus,
the observed performance drop is a combined effect of
removing intent detection and the resulting disruption in input
organization.

Removing the preference scoring module results in a 40—
50% decrease in accuracy. This decrease stems from the loss
of relative preference signals arising from the order in which
items are added to the shopping cart. Without this module, the
framework can be falling about (a) All items are treated
uniformly, (b) The influence of dominant intentions is not
emphasized, and (c) the model cannot infer which sub-
intentions are most likely to drive transactions. Therefore, the
performance decrease is directly due to the removal of the
scoring mechanism, which plays a crucial role in weighting
intentions based on user behavior.

Replacing max pooling with mean pooling also leads to a
notable drop in Recall (up to 50%). This occurs because mean
pooling dilutes dominant behavioral signals by averaging
them with irrelevant or low-importance items. Max pooling, in
contrast, preserves the strongest activation dimensions that
often correspond to high-salience items within an intent
cluster.

Interestingly, the decline in MRR is smaller, suggesting that
while fewer relevant items are retrieved overall, the model is
still able to rank the most representative items reasonably well.
This indicates that mean pooling primarily affects breadth of
retrieval, whereas ranking fidelity remains partially intact.

4. CONCLUSIONS

This study introduces a novel recommendation system
framework based on LLMs to address the challenges of multi-
intent behavior within user transaction sessions. By integrating
Deep Learning in Context (ICL) for intent mapping, a
preference estimation mechanism through liking assessment,
and an optimized embedding aggregation strategy, the
proposed architecture effectively captures semantic and
functional relationships between items. Experimental



evaluations show that the framework consistently outperforms
baseline models across various session length configurations
and remains robust even in short-session scenarios. Further
ablation studies verify that each component, particularly the
intent detection, liking ratings, and max-pooling strategies,
contributes significantly to performance.

Despite these promising results, several limitations require
further investigation. First, the baseline models used in
previous studies (e.g., SASRec and GRU4Rec) are primarily
ID-based rather than text-based, requiring modifications to
their ~embedding layers to accommodate textual
representations. This modification may contribute to the
performance degradation observed in some baseline models.
Second, Transformer-based methods and LLM inference
require substantial computational resources, including high
memory capacity and careful management of disk-based
processing to avoid memory exhaustion issues.

Furthermore, our current framework has only been
evaluated on the Instacart dataset. Therefore, assessing its
generalizability across multiple sequential recommendation
datasets remains an important direction for future research.
Another opportunity for improvement lies in exploring the
diversity of recommendations to ensure that users not only
receive suggestions that align with their preferences but also
benefit from unintentional exposure to new items.
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