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Tuberculosis (TB) continues to pose a significant challenge to global public health, 

especially in countries with limited healthcare infrastructure. Early identification is key to 

mitigation; however, the interpretation of microscopic images poses a significant obstacle. 

This research proposes the use of Deep Learning Models, specifically GoogleNet, for the 

identification of TB bacteria from microscopic images. The study uses a dataset comprising 

1,266 microscopic images to identify TB bacteria. This dataset is then divided into two 

parts, with 80% of the data used for training (1,012 images) and 20% for testing (254 

images). Before being fed into the model, the images are processed using median filter 

techniques to enhance quality and consistency. This study proposes the use of Deep 

Learning models, particularly GoogleNet, as a method for detecting TB bacteria in 

microscopic images. Four optimization algorithms, RMSprop, SGD, Adam, and SGDM, 

are evaluated and compared to identify the most effective configuration for optimal 

performance. The experimental findings indicate that the Adam optimizer yields the best 

results for TB classification. By applying transfer learning techniques, the GoogleNet model 

is trained and evaluated using standard metrics. The evaluation results demonstrate high 

accuracy and efficiency in training time. The model achieved excellent accuracy, precision, 

recall, and F1-Score, each at 98.52%. 
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1. INTRODUCTION

There is still a long way to go in the fight against 

tuberculosis (TB), but it is especially crucial in countries with 

low per capita income and poor healthcare infrastructure, 

where people often have trouble getting medical care [1]. 

Mycobacterium tuberculosis is the germs that cause this 

disease. If it is not adequately recognized and treated, it can 

have major effects on the person's health, as well as on social 

and economic elements of their life [2]. After trying a lot of 

different ways to find and cure the condition, one of the biggest 

problems in the future will be getting an accurate diagnosis [1]. 

Microbiological bacterial identification on a blood sample 

[3] is one way to tell if someone has tuberculosis in isolation.

The TBC microscopy sample identification approach is quick

and cheap. Nevertheless, variability in subjective assessment

and heterogeneity in microscopic image quality may adversely

affect the accuracy and consistency of the diagnosis [4]. In

recent years, new hopes have emerged to overcome this

constraint and enhance the efficiency of the initial TBC

identification process, especially with the evolution of

building-specific technology, particularly Convolutional

Neural Networks (CNNs) [5]. In this research, we examined

the application of GoogleNet, a CNN, for the bacteriological

identification of TBC from microscope pictures. Transfer

learning techniques are used to feed the GoogleNet model tiny 

photos of microorganisms [6]. This lets the model exploit 

information that is already in the bigger dataset. The 

evaluation employs conventional criteria in medical research, 

including anxiety, pressure, recall, and F1-score. This study 

emphasizes the significance of an optimization approach in 

assessing model performance, while also addressing 

architectural layout. The study sought to identify the optimal 

combination of various algorithms, including RMSprop, SGD, 

Adam, and SGDM, to enhance the assessment of the model's 

efficacy in media TB detection. 

The research findings indicate that the sampled pattern can 

detect TBC bacteria with a significant degree of sensitivity. 

The GoogleNet model can also do better than manual 

microbiology-based methods when it comes to diagnosing. All 

of these suggest that CNN with GoogleNet architecture for 

identifying bacteria using microscopy could be a useful tool 

for diagnosing and treating TB around the world. 

2. METHODOLOGY AND METHODS

2.1 System architecture 

The initial stage in building the architecture in Figure 1 is to 
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take photographs of TB with a microscope. This method 

makes sure that the data is good enough to be used for further 

analysis. The following step after taking the picture is 

preprocessing, which uses a median filter. To get rid of noise 

in photographs while maintaining crucial information, which 

is very critical for correct analysis, you apply a median filter. 

Figure 1. System diagram 

After that, the processed TB dataset will be divided into two 

parts: 80:20. In this part, 80% will be training data to teach the 

model, and 20% will be test data to see how well the model 

works. It is very important to split this dataset so that the model 

doesn't overfit, which is when it fits too closely to the training 

data and doesn't generalize well to new data. 

Then, the next step is to use a CNN with the GoogleNet 

architecture to classify the data. GoogleNet was chosen since 

it has been shown to be able to handle complex image data and 

complex hierarchical features. GoogleNet uses a structure 

called an "inception module" that lets the network efficiently 

extract features from different scales. The inception module 

lets the network process images with different levels of 

resolution at the same time by using many parallel paths in one 

layer. This makes the visual representations richer. 

After the classification process is complete, the results will 

be evaluated thoroughly to measure the accuracy, precision, 

recall and F1-score value of the model developed. This 

evaluation will also include the time it takes to classify the 

entire dataset. This analysis is important for figuring out how 

well Google's CNN model can classify TB image data while 

also considering how long it takes to do it. 

2.2 Sputum images dataset 

The dataset employed in this study comprises sputum 

images obtained using a microscope. A total of 1,266 images 

were successfully collected. The dataset is divided into two 

classes: 633 images of sputum from TB patients and 633 

images from non-TB individuals. Below are examples of TB-

positive and TB-negative sputum images as shown in Figure 2 

and Figure 3. 

Figure 2. Images of tuberculosis individuals 

Figure 3. Images of non- tuberculosis individuals 

2.3 Median filter on sputum images 

The median filter was originally introduced by Tukey [7] 

and is a nonlinear filtering technique that operates by sliding a 

narrow window across the image, often with an odd number of 

pixels [8]. Compared to linear smoothing filters of the same 

size, it is particularly successful in removing impulsive noise, 

sometimes known as salt-and-pepper noise [9]. In practice, the 

filter sorts the pixel values in the window and replaces the 

center pixel with its median. This method reduces harsh 

changes, allowing the pixel values to merge more organically 

with their neighbors. Additionally, the Median Filter can also 

change the values of isolated pixel groups, which have 

brightness or darkness levels different from their neighbors 

and have an area less than n2/2, by using the median value from 

an nxn matrix. Consequently, the noise removed by the 

Median Filter will have values similar to the median intensity 

of its neighboring pixels [8]. 

Figure 4. Block diagram of the median filter workflow 

3156



Figure 4 shows that in the context of the sequence P(1) < 

P(2) < P(3) < P(n), the statement refers to the process of sorting 

data elements from the smallest rank (P(1)) to the largest rank 

(P(n)). In other words, each data element is sorted based on its 

relative value in the dataset, from smallest to largest as shown 

in Figure 5. For example, if we have a dataset containing 

values 3, 7, 1, and 5, after the sorting process, the sequence of 

values will be 1, 3, 5, and 7. Meanwhile, the value of m 

corresponds to the formula: 

𝑚 =
𝑛+1

2
(1) 

where, n = number of data, m = new median value. 

Figure 5. Example of median filter application 

2.4 Architecture GoogleNet 

The main development offered by GoogleNet is its 

application to a structure known as inception model [10]. 

Overall, inception adopts the concept of a network within a 

network, consisting of sub-networks to optimize performance. 

In the context of image processing, an efficient local structure 

is rarely applied repeatedly from start to finish to obtain better 

feature representations. In its application, three types of 

inception structures tailored to different needs are introduced: 

generally, 1 × 1 convolutions are used to reduce dimensions 

before applying more complex 3 × 3 and 5 × 5 convolutions, 

thereby improving computational efficiency and enhancing 

feature representation quality. Furthermore, the use of 

inception modules enables the network to learn hierarchical 

representations from simple to complex features, with each 

sub-network focusing on processing different features in the 

image. This allows the network to be more adaptive and 

capable of capturing various levels of detail in image data, 

improving object recognition and classification performance. 

This network has quite impressive capabilities in classifying 

patterns from around 1000 images. Additionally, compared to 

AlexNet, GoogLeNet uses significantly fewer parameters, 

about 12 times fewer [11]. Like most neural networks used in 

computer vision contexts, this model takes images as input and 

produces labels for the classes it learns, along with confidence 

levels as output [12]. The GoogLeNet architecture consists of 

a total of 22 layers, which include 9 inception modules. The 

modified inception modules, as seen in Figure 6, utilize 

adaptable filters with sizes ranging from (1 × 1) to (5 × 5) to 

perform convolution in parallel. This approach assists in 

capturing various levels of detail from the existing features 

[13]. 

Figure 6. GoogleNet architecture 

2.5 Optimization algorithm 

The optimization process in machine learning plays a 

crucial role as an essential tool to adjust the values of the 

objective function based on the available data. Through 

consistent iterative steps, the algorithm continuously updates 

the model parameters to minimize prediction errors. Thus, the 

model can continuously learn from the available data and 

improve its accuracy. This study used four different 

optimization methods to boost the model's efficiency, which 

shed light on the ways in which each technique aids in the 

development of better machine learning algorithms.  

RMSprop is a modification of the AdaGrad method that 

seeks to enhance performance in non-convex scenarios by 

altering the accumulation of gradients by the application of an 

exponential moving average. When utilizing a conventional 

learning rate of 0.001 in Stochastic Gradient Descent (SGD), 

RMSprop helps fix the problem of the learning rate dropping 

too quickly. To understand how RMSprop works better, look 

at how the parameters vary in Eqs. (2)-(4). Gives a general idea 

of how the RMSprop algorithm updates model parameters 

depending on the gradients that have been collected [14]. 

𝑟 = 𝜌𝑟 + (1 − 𝜌)𝑔ʘ𝑔 (2) 

∆𝜃 =
𝛼

𝛿+√𝑟
ʘ𝑔 (3) 

𝜃 = 𝜃 + ∆𝜃 (4) 

In this instance, r denotes the accumulation of the squared 

gradient, which is beneficial for modulating parameter updates 

by considering gradient fluctuations. The parameter p 

functions as the decay rate, dictating the rate at which the 

accumulation of the square gradient diminishes with time. The 

computed parameter update is referred to as ∆θ, representing 

the modification required for the model parameters. The 

learning rate, denoted by α, is the magnitude of adjustment 

applied at each iteration during parameter updates. The 
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constant ẟ, valued at 107, is employed to avert division by zero 

in the computation. Ultimately, θ represents the first model 

parameter subject to modification. All these parts collaborate 

to ensure the model learns from the input effectively and 

efficiently. 

A prominent variant of the gradient descent optimization 

technique is SGD. In contrast to batch gradient descent, which 

modifies parameters solely after processing the complete 

dataset, SGD updates parameters following each unique 

training example. This regular updating enables the algorithm 

to converge more rapidly, rendering it particularly 

advantageous for extensive datasets. Due to its efficiency and 

responsiveness, SGD is frequently utilized in situations 

requiring swift parameter modifications, typically with a 

learning rate of 0.01. The SGD parameter update rule is 

presented in Eq. (5), which demonstrates the iterative 

optimization of model parameters utilizing the gradient of an 

individual data point at each iteration. 

𝜃=𝜃 − 𝜂 ∗ ∇𝜃J(𝜃; 𝑥
𝑖; 𝑦𝑖) (5) 

Here, θ indicates the parameter that is modified with each 

iteration of model training, whereas η denotes the learning rate, 

which determines the magnitude of the adjustment. The pair xi 

represents the input data and the output data utilized in that 

phase. In each iteration, the model refines θ utilizing the 

gradient derived from the data, so enhancing the parameters 

incrementally with each cycle. In this manner, SGD facilitates 

the model's continuous enhancement by learning from 

individual examples, enabling rapid adaptation and effective 

responsiveness to variations in the training data [14]. 

Adam is a widely utilized optimization algorithm that 

integrates concepts from two proven techniques: RMSProp 

and Momentum. RMSProp incorporates the capability to 

automatically modify the learning rate for each parameter, 

hence addressing the prevalent challenge of selecting an 

appropriate learning rate. Simultaneously, it employs the 

concept of momentum to ensure updates go in a consistent 

manner, rather than changing too abruptly. By integrating 

these two methodologies, Adam renders the optimization 

process both stable and efficient. This has rendered it one of 

the most prevalent algorithms in machine learning, facilitating 

robust performance across various tasks. 

𝑚𝑖 = 𝛽1𝑚𝑖 + (1 − 𝛽1)
𝜕𝐿

𝜕𝜃𝑖
(6) 

𝑣𝑖 = 𝛽1𝑣𝑖 + (1 − 𝛽2) (
𝜕𝐿

𝜕𝜃𝑖
)
2

(7) 

In this context, parameter (6) refers to momentum, while 

parameter (7) represents the exponential moving variance used 

in the optimization algorithm. Momentum (6) helps speed up 

convergence by keeping the parameter updates moving in a 

consistent direction. On the other hand, the exponential 

moving variance (7) adapts the learning rate for each 

parameter, making the optimization process more stable and 

efficient. When the initialization values for time steps and 

decay rates are too small, parameters (6) and (7) tend to 

approach a value close to 1, which can introduce bias in the 

estimation. To mitigate this issue, bias correction and moment 

estimation are conducted through the division of the 

parameters in Eqs. (6) and (7) by the difference between 1 and 

the decay factor. This adjustment stabilizes the moment 

calculations and produces more accurate estimates. 

Implementing this adjustment helps minimize the initial 

estimation bias, leading to more dependable parameter values 

throughout the optimization process. This step is essential to 

ensure consistent and dependable results, especially when 

dealing with sensitive initial conditions. 

𝑚̂ =
𝑚𝑖

1 − 𝛽1
(8) 

𝑣̂ =
𝑣𝑖

1 − 𝛽2
(9) 

Adam, an optimization algorithm proposed by its 

developers, suggests setting β₁ to 0.9, β₂ to 0.999, and ε to 10⁻⁸. 

These values were determined through extensive experiments 

to provide strong performance across a wide range of tasks. In 

this setup, beta-1 and beta-2 control the exponential moving 

averages of the gradient and the squared gradient, while 

epsilon is included to prevent division by zero. After the 

optimal values for parameters (8) and (9) have been obtained, 

which represent these moving averages, the Adam update 

formula can then be applied. 

𝜃𝑡+1 = 𝜃𝑡 −
𝜕

√𝑣𝑡 + 𝜀
.𝑚𝑡 (10) 

According to its formulation (10), Adam combines the core 

ideas of RMSProp with the momentum method in gradient 

estimation to improve both speed and stability during model 

training. By using the exponential moving average of the 

gradient together with the exponential moving variance, Adam 

can adjust the learning rate for each parameter individually. 

This adaptability gives Adam an advantage over earlier 

optimization algorithms [15-17]. 

Stochastic Gradient Descent with Momentum (SGDM) is 

an adaptation of the gradient descent optimization technique 

that modifies model parameters during the processing of 

training data. SGDM is distinguished by the use of a 

momentum factor, which accelerates convergence and 

mitigates oscillations, especially in the context of extensive 

datasets. SGDM changes parameters by integrating 

momentum from prior updates, enabling the model to navigate 

more smoothly through both flat and steep gradient areas, 

rather than solely relying on the complete dataset for updates. 

The standard learning rate for SGD is typically established at 

0.01, but this figure may be modified based on the intricacy of 

the issue. 

Gt = ∇𝜃J(𝜃; 𝑥
𝑖; 𝑦𝑖) (11) 

In SGDM, the parameter θ is revised at each step. The 

learning rate η dictates the magnitude of each update step, 

whereas xi and yi denote the input-output data pairs utilized in 

training. With each iteration, θ is modified according to the 

processed data, enabling the model to progressively enhance 

its performance by learning from each instance [18]. 

2.6 Confusion matrix 

Figure 7 illustrates how the four mentioned values are 

arranged in the confusion matrix. This version also lists the 

total number of observations in the top left corner, as well as 

the marginal counts at the top and left side of the matrix. The 

colors used for each section of the matrix represent the 

3158



combination of categories that form the values within it [19]. 

For example, the color green represents true positives, which 

consist of false positives and false negatives. Each model has 

four values that describe its own performance. Therefore, the 

importance of each of these values must be considered when 

comparing the overall performance of the models [20]. 

Classification metrics are calculated from the numbers in the 

confusion matrix, so to understand these metrics, one must 

understand the meaning of each value within it [21]. 

Figure 7. Confusion matrix 

True Positive: This means the model correctly detected the 

disease. 

True Negative: This means the model correctly identified 

that there is no disease. 

False Positive: This means the model incorrectly identified 

someone as having the disease when they actually do not. 

False Negative: This means the model failed to detect 

someone who actually has the disease. 

With a confusion matrix, various model performance 

evaluation metrics can be calculated, such as accuracy, 

precision, sensitivity (recall), specificity, and F1-score [22]. A 

confusion matrix is a very useful tool for understanding the 

performance of a classification model and identifying areas 

where the model needs improvement. A brief explanation of 

some commonly used evaluation metrics alongside the 

confusion matrix [23]: 

Accuracy 

The percentage of total correct predictions made by the 

model out of all the test data. 

Accuracy =
TP + TN

TP + TN + FP + FN
(12) 

Precision 

The percentage of true positive predictions out of all 

positive predictions made by the model. 

Precision =
TP

TP + FP
(13) 

Recall 

The percentage of positive data successfully identified by 

the model out of all the actual positive data. 

Recall =
TP

TP + FN
(14) 

F1-Score 

The harmonic mean between precision and sensitivity. It is 

used to compromise between both in one metric. 

F1 – Score = 2TP/(2TP+FN+FP) (15) 

3. RESULT

3.1 Test scenario 

The subsequent phase of the research involves training the 

GoogleNet model on a dataset of TB bacterial pictures derived 

from microscopic observations. A series of tests was 

performed using several optimizers, such as Adam, RMSProp, 

SGD, and SGDM. The batch size was kept at 16, the learning 

rate was set at 0.0001, and the number of epochs was set to 20 

to get the best results. The experimental data are thereafter 

displayed in tabular format to facilitate further research in the 

domain of tuberculosis diagnosis by microscopic image 

analysis, as seen in Table 1 [21]. 

Table 1. Test scenario [21] 

Optimizer Batch Learning Rate Epoch 

Test Scenario 

Adam 16 0.0001 20 

RMSProp 16 0.0001 20 

SGD 16 0.0001 20 

SGDM 16 0.0001 20 

Table 2. Comparison of metric values between the training and validation phases 

Loss Accuracy Precision Recall F1-Score Time(s) 

Train 9.74 98.03 98.06 98.03 98.03 76.04 

Validation 5.80 98.52 98.52 98.52 98.52 122.81 

3.2 Test result 

Experimental results related to Tuberculosis show that the 

GoogleNet model achieves excellent performance when 

optimized with Adam, employing a learning rate of 0.0001, a 

batch size of 16, and 20 epochs. The corresponding test results 

are presented in Figures 8-11. 

The results presented in Figure 8, obtained using the 

GoogleNet model with the RMSProp optimizer, indicate that 

the model attains 89.74% accuracy on the training data, 

accompanied by a loss of 25.66%. Its performance on the 

validation data is likewise highly satisfactory, reaching an 

accuracy of 95.57% and a loss of 14.80%. These outcomes 

suggest that the model is able to learn from the training data 

exceptionally well and maintain high performance on the 

validation data, demonstrating strong generalization 

capabilities. 

The results presented in Figure 9, obtained using the 
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GoogleNet model with the SGD optimizer, indicate that the 

model performs reasonably well on the training data, an 

accuracy of 53.52% and a loss of 68.72% are obtained. In 

addition, the model demonstrates comparable performance on 

the validation dataset, with an accuracy of 55.17% and a loss 

of 68.51%. These findings suggest that the model is 

successfully learning from the training data and shows stable 

performance on the validation data, although further 

improvements are needed to increase accuracy. 

Figure 8. RMSProp optimizer trial result graph 

Figure 9. SGD optimizer trial result graph 

The test results in Figure 10, obtained using the GoogleNet 

model with the SGDM optimizer, indicate that the model 

performs reasonably well on the training data, with an 

accuracy of 47.96% with a loss of 71.85% is achieved. 

Furthermore, the model demonstrates satisfactory 

performance on the validation data, reaching an accuracy of 

43.35% and a loss of 72.01%. These results suggest that the 

model can effectively extract meaningful learning patterns 

from the training data, but still requires further improvements 

to reduce loss and increase accuracy on both the training and 

validation data. 

Regarding the loss, Figure 11 shows a value of 5.80%, 

reflecting a low error rate during training. Moreover, the 

model attains an accuracy of 98.52%, demonstrating its strong 

capability to classify tuberculosis images with high precision. 

Besides high accuracy, the GoogleNet model also shows 

excellent results in terms of precision, recall, and F1-Score, 

each reaching 98.52%. Precision measures the accuracy of the 

model's positive predictions, while recall measures how well 

the model finds all positive instances. The F1-Score is the 

harmonic mean of precision and recall, providing an overall 

picture of the model's performance in classification. Not only 

in terms of prediction quality, but the GoogleNet model also 

demonstrates efficiency in training time. With only about 

76.04 seconds required to train the model, it shows that this 

model is not only accurate and consistent but also efficient in 

the use of computational resources, as shown in Table 2. 

Figure 10. SGDM optimizer trial result graph 

Figure 11. Adam optimizer trial result graph 

Figure 12. GoogleNet experimental results of metrics 
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between GoogleNet training and validation stages 

Figure 12 presents a comparison of the metrics obtained 

during the training and validation phases, depicting the 

model's stability and effectiveness in both stages. 

Figure 13 illustrates that the loss curve of the GoogleNet 

model for TB classification exhibits a consistent decline in 

training loss values across successive epochs, indicating the 

model's progress in understanding the data patterns. However, 

there is variation in the loss on the validation data, suggesting 

the possibility of overfitting at some points. At Epoch 7, the 

loss value decreases on both the training and validation data, 

reflecting good performance on both datasets. Subsequently, 

at Epoch 12, the training loss value reaches its lowest point, 

indicating that the model has successfully adapted to the 

training data. Although there is a slight increase in validation 

loss at Epoch 12, the model's performance remains high with 

good accuracy. 

Figure 14 shows a graph depicting the accuracy 

performance of the GoogleNet model in classifying 

Tuberculosis bacteria during the training and validation 

process. The image shows some fluctuations in the accuracy 

results on the training data and validation results during the 

epoch. Overall, an increase in accuracy was observed on both 

data types as the epochs progressed, indicated by the 

GoogleNet model's increased ability to classify data more 

accurately. There are several indicators of marked accuracy 

improvements, showing that the model’s performance has 

generally improved. The more iterations performed, the higher 

the accuracy achieved by the GoogleNet model in classifying 

TB data. 

Figure 13. GoogleNet loss performance 

Figure 14. GoogleNet accuracy performance 

4. CONCLUSIONS

The conclusion from the experimental results indicates that 

the GoogleNet model excels in TB classification. For this 

classification task, the Adam optimizer was utilized with a 

batch size 16, a learning rate of 0.0001, and a total of 20 

training epochs. With a loss rate of 5.80% and an accuracy rate 

of 98.52%, the model demonstrates excellent capability in 

accurately classifying TB images. Additionally, the model has 

high precision, recall, and F1-Score, each reaching 98.52%. 

The performance graph of GoogleNet loss shows a decrease in 

loss values on the training data from epoch to epoch, indicating 

the model's progress in understanding the data patterns. 

Despite some variation in the validation loss, the model's 

performance remains high with good accuracy. Overall, the 

graph illustrates the improvement in GoogleNet's accuracy in 

classifying TB data as the iterations progress. 

Future research will focus on implementing layer selection 

techniques in the CNN architecture to reduce training time and 

computational costs, while simultaneously improving the 

overall accuracy and robustness of the model. 
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