
Optimizer Comparison for a GoogleNet-Based Tuberculosis Classification Model

Aeri Rachmad1* , Husni1 , Mohammad Syarief1 , Eka Mala Sari Rochman1 ,Yuli Panca Asmara2 ,

Miswanto3 , Suci Hernawati4

1 Department of Informatics, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia
2 Faculty of Engineering and Quantity Surveying, INTI International University, Negeri Sembilan 71800, Malaysia
3 Department of Mathematics, Faculty of Science and Technology, University of Airlangga, Surabaya 60115, Indonesia
4 Department of Health, Head of the Batuputih Community Health Center, Sumenep 69453, Indonesia

Corresponding Author Email: aery_r@trunojoyo.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301207 ABSTRACT

Received: 13 September 2025

Revised: 5 December 2025

Accepted: 13 December 2025

Available online: 31 December 2025

Tuberculosis (TB) continues to pose a significant challenge to global public health,

especially in countries with limited healthcare infrastructure. Early identification is key to

mitigation; however, the interpretation of microscopic images poses a significant obstacle.

This research proposes the use of Deep Learning Models, specifically GoogleNet, for the

identification of TB bacteria from microscopic images. The study uses a dataset comprising

1,266 microscopic images to identify TB bacteria. This dataset is then divided into two

parts, with 80% of the data used for training (1,012 images) and 20% for testing (254

images). Before being fed into the model, the images are processed using median filter

techniques to enhance quality and consistency. This study proposes the use of Deep

Learning models, particularly GoogleNet, as a method for detecting TB bacteria in

microscopic images. Four optimization algorithms, RMSprop, SGD, Adam, and SGDM,

are evaluated and compared to identify the most effective configuration for optimal

performance. The experimental findings indicate that the Adam optimizer yields the best

results for TB classification. By applying transfer learning techniques, the GoogleNet model

is trained and evaluated using standard metrics. The evaluation results demonstrate high

accuracy and efficiency in training time. The model achieved excellent accuracy, precision,

recall, and F1-Score, each at 98.52%.

Keywords:

tuberculosis bacteria, microscopic images,

deep learning, GoogleNet, Adam optimizer

1. INTRODUCTION

There is still a long way to go in the fight against

tuberculosis (TB), but it is especially crucial in countries with

low per capita income and poor healthcare infrastructure,

where people often have trouble getting medical care [1].

Mycobacterium tuberculosis is the germs that cause this

disease. If it is not adequately recognized and treated, it can

have major effects on the person's health, as well as on social

and economic elements of their life [2]. After trying a lot of

different ways to find and cure the condition, one of the biggest

problems in the future will be getting an accurate diagnosis [1].

Microbiological bacterial identification on a blood sample

[3] is one way to tell if someone has tuberculosis in isolation.

The TBC microscopy sample identification approach is quick

and cheap. Nevertheless, variability in subjective assessment

and heterogeneity in microscopic image quality may adversely

affect the accuracy and consistency of the diagnosis [4]. In

recent years, new hopes have emerged to overcome this

constraint and enhance the efficiency of the initial TBC

identification process, especially with the evolution of

building-specific technology, particularly Convolutional

Neural Networks (CNNs) [5]. In this research, we examined

the application of GoogleNet, a CNN, for the bacteriological

identification of TBC from microscope pictures. Transfer

learning techniques are used to feed the GoogleNet model tiny

photos of microorganisms [6]. This lets the model exploit

information that is already in the bigger dataset. The

evaluation employs conventional criteria in medical research,

including anxiety, pressure, recall, and F1-score. This study

emphasizes the significance of an optimization approach in

assessing model performance, while also addressing

architectural layout. The study sought to identify the optimal

combination of various algorithms, including RMSprop, SGD,

Adam, and SGDM, to enhance the assessment of the model's

efficacy in media TB detection.

The research findings indicate that the sampled pattern can

detect TBC bacteria with a significant degree of sensitivity.

The GoogleNet model can also do better than manual

microbiology-based methods when it comes to diagnosing. All

of these suggest that CNN with GoogleNet architecture for

identifying bacteria using microscopy could be a useful tool

for diagnosing and treating TB around the world.

2. METHODOLOGY AND METHODS

2.1 System architecture

The initial stage in building the architecture in Figure 1 is to

Ingénierie des Systèmes d’Information
Vol. 30, No. 12, December, 2025, pp. 3155-3162

Journal homepage: http://iieta.org/journals/isi

3155

mailto:aery_r@trunojoyo.ac.id
https://orcid.org/0000-0002-4322-2944
https://orcid.org/0000-0001-5045-5781
https://orcid.org/0009-0009-0304-3296
https://orcid.org/0000-0001-7324-1380
https://orcid.org/0000-0001-6930-0771
https://orcid.org/0000-0003-4322-5317
https://orcid.org/0009-0000-5659-9911
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301207&domain=pdf

take photographs of TB with a microscope. This method

makes sure that the data is good enough to be used for further

analysis. The following step after taking the picture is

preprocessing, which uses a median filter. To get rid of noise

in photographs while maintaining crucial information, which

is very critical for correct analysis, you apply a median filter.

Figure 1. System diagram

After that, the processed TB dataset will be divided into two

parts: 80:20. In this part, 80% will be training data to teach the

model, and 20% will be test data to see how well the model

works. It is very important to split this dataset so that the model

doesn't overfit, which is when it fits too closely to the training

data and doesn't generalize well to new data.

Then, the next step is to use a CNN with the GoogleNet

architecture to classify the data. GoogleNet was chosen since

it has been shown to be able to handle complex image data and

complex hierarchical features. GoogleNet uses a structure

called an "inception module" that lets the network efficiently

extract features from different scales. The inception module

lets the network process images with different levels of

resolution at the same time by using many parallel paths in one

layer. This makes the visual representations richer.

After the classification process is complete, the results will

be evaluated thoroughly to measure the accuracy, precision,

recall and F1-score value of the model developed. This

evaluation will also include the time it takes to classify the

entire dataset. This analysis is important for figuring out how

well Google's CNN model can classify TB image data while

also considering how long it takes to do it.

2.2 Sputum images dataset

The dataset employed in this study comprises sputum

images obtained using a microscope. A total of 1,266 images

were successfully collected. The dataset is divided into two

classes: 633 images of sputum from TB patients and 633

images from non-TB individuals. Below are examples of TB-

positive and TB-negative sputum images as shown in Figure 2

and Figure 3.

Figure 2. Images of tuberculosis individuals

Figure 3. Images of non- tuberculosis individuals

2.3 Median filter on sputum images

The median filter was originally introduced by Tukey [7]

and is a nonlinear filtering technique that operates by sliding a

narrow window across the image, often with an odd number of

pixels [8]. Compared to linear smoothing filters of the same

size, it is particularly successful in removing impulsive noise,

sometimes known as salt-and-pepper noise [9]. In practice, the

filter sorts the pixel values in the window and replaces the

center pixel with its median. This method reduces harsh

changes, allowing the pixel values to merge more organically

with their neighbors. Additionally, the Median Filter can also

change the values of isolated pixel groups, which have

brightness or darkness levels different from their neighbors

and have an area less than n2/2, by using the median value from

an nxn matrix. Consequently, the noise removed by the

Median Filter will have values similar to the median intensity

of its neighboring pixels [8].

Figure 4. Block diagram of the median filter workflow

3156

Figure 4 shows that in the context of the sequence P(1) <

P(2) < P(3) < P(n), the statement refers to the process of sorting

data elements from the smallest rank (P(1)) to the largest rank

(P(n)). In other words, each data element is sorted based on its

relative value in the dataset, from smallest to largest as shown

in Figure 5. For example, if we have a dataset containing

values 3, 7, 1, and 5, after the sorting process, the sequence of

values will be 1, 3, 5, and 7. Meanwhile, the value of m

corresponds to the formula:

𝑚 =
𝑛+1

2
(1)

where, n = number of data, m = new median value.

Figure 5. Example of median filter application

2.4 Architecture GoogleNet

The main development offered by GoogleNet is its

application to a structure known as inception model [10].

Overall, inception adopts the concept of a network within a

network, consisting of sub-networks to optimize performance.

In the context of image processing, an efficient local structure

is rarely applied repeatedly from start to finish to obtain better

feature representations. In its application, three types of

inception structures tailored to different needs are introduced:

generally, 1 × 1 convolutions are used to reduce dimensions

before applying more complex 3 × 3 and 5 × 5 convolutions,

thereby improving computational efficiency and enhancing

feature representation quality. Furthermore, the use of

inception modules enables the network to learn hierarchical

representations from simple to complex features, with each

sub-network focusing on processing different features in the

image. This allows the network to be more adaptive and

capable of capturing various levels of detail in image data,

improving object recognition and classification performance.

This network has quite impressive capabilities in classifying

patterns from around 1000 images. Additionally, compared to

AlexNet, GoogLeNet uses significantly fewer parameters,

about 12 times fewer [11]. Like most neural networks used in

computer vision contexts, this model takes images as input and

produces labels for the classes it learns, along with confidence

levels as output [12]. The GoogLeNet architecture consists of

a total of 22 layers, which include 9 inception modules. The

modified inception modules, as seen in Figure 6, utilize

adaptable filters with sizes ranging from (1 × 1) to (5 × 5) to

perform convolution in parallel. This approach assists in

capturing various levels of detail from the existing features

[13].

Figure 6. GoogleNet architecture

2.5 Optimization algorithm

The optimization process in machine learning plays a

crucial role as an essential tool to adjust the values of the

objective function based on the available data. Through

consistent iterative steps, the algorithm continuously updates

the model parameters to minimize prediction errors. Thus, the

model can continuously learn from the available data and

improve its accuracy. This study used four different

optimization methods to boost the model's efficiency, which

shed light on the ways in which each technique aids in the

development of better machine learning algorithms.

RMSprop is a modification of the AdaGrad method that

seeks to enhance performance in non-convex scenarios by

altering the accumulation of gradients by the application of an

exponential moving average. When utilizing a conventional

learning rate of 0.001 in Stochastic Gradient Descent (SGD),

RMSprop helps fix the problem of the learning rate dropping

too quickly. To understand how RMSprop works better, look

at how the parameters vary in Eqs. (2)-(4). Gives a general idea

of how the RMSprop algorithm updates model parameters

depending on the gradients that have been collected [14].

𝑟 = 𝜌𝑟 + (1 − 𝜌)𝑔ʘ𝑔 (2)

∆𝜃 =
𝛼

𝛿+√𝑟
ʘ𝑔 (3)

𝜃 = 𝜃 + ∆𝜃 (4)

In this instance, r denotes the accumulation of the squared

gradient, which is beneficial for modulating parameter updates

by considering gradient fluctuations. The parameter p

functions as the decay rate, dictating the rate at which the

accumulation of the square gradient diminishes with time. The

computed parameter update is referred to as ∆θ, representing

the modification required for the model parameters. The

learning rate, denoted by α, is the magnitude of adjustment

applied at each iteration during parameter updates. The

3157

constant ẟ, valued at 107, is employed to avert division by zero

in the computation. Ultimately, θ represents the first model

parameter subject to modification. All these parts collaborate

to ensure the model learns from the input effectively and

efficiently.

A prominent variant of the gradient descent optimization

technique is SGD. In contrast to batch gradient descent, which

modifies parameters solely after processing the complete

dataset, SGD updates parameters following each unique

training example. This regular updating enables the algorithm

to converge more rapidly, rendering it particularly

advantageous for extensive datasets. Due to its efficiency and

responsiveness, SGD is frequently utilized in situations

requiring swift parameter modifications, typically with a

learning rate of 0.01. The SGD parameter update rule is

presented in Eq. (5), which demonstrates the iterative

optimization of model parameters utilizing the gradient of an

individual data point at each iteration.

𝜃=𝜃 − 𝜂 ∗ ∇𝜃J(𝜃; 𝑥
𝑖; 𝑦𝑖) (5)

Here, θ indicates the parameter that is modified with each

iteration of model training, whereas η denotes the learning rate,

which determines the magnitude of the adjustment. The pair xi

represents the input data and the output data utilized in that

phase. In each iteration, the model refines θ utilizing the

gradient derived from the data, so enhancing the parameters

incrementally with each cycle. In this manner, SGD facilitates

the model's continuous enhancement by learning from

individual examples, enabling rapid adaptation and effective

responsiveness to variations in the training data [14].

Adam is a widely utilized optimization algorithm that

integrates concepts from two proven techniques: RMSProp

and Momentum. RMSProp incorporates the capability to

automatically modify the learning rate for each parameter,

hence addressing the prevalent challenge of selecting an

appropriate learning rate. Simultaneously, it employs the

concept of momentum to ensure updates go in a consistent

manner, rather than changing too abruptly. By integrating

these two methodologies, Adam renders the optimization

process both stable and efficient. This has rendered it one of

the most prevalent algorithms in machine learning, facilitating

robust performance across various tasks.

𝑚𝑖 = 𝛽1𝑚𝑖 + (1 − 𝛽1)
𝜕𝐿

𝜕𝜃𝑖
(6)

𝑣𝑖 = 𝛽1𝑣𝑖 + (1 − 𝛽2) (
𝜕𝐿

𝜕𝜃𝑖
)
2

(7)

In this context, parameter (6) refers to momentum, while

parameter (7) represents the exponential moving variance used

in the optimization algorithm. Momentum (6) helps speed up

convergence by keeping the parameter updates moving in a

consistent direction. On the other hand, the exponential

moving variance (7) adapts the learning rate for each

parameter, making the optimization process more stable and

efficient. When the initialization values for time steps and

decay rates are too small, parameters (6) and (7) tend to

approach a value close to 1, which can introduce bias in the

estimation. To mitigate this issue, bias correction and moment

estimation are conducted through the division of the

parameters in Eqs. (6) and (7) by the difference between 1 and

the decay factor. This adjustment stabilizes the moment

calculations and produces more accurate estimates.

Implementing this adjustment helps minimize the initial

estimation bias, leading to more dependable parameter values

throughout the optimization process. This step is essential to

ensure consistent and dependable results, especially when

dealing with sensitive initial conditions.

𝑚̂ =
𝑚𝑖

1 − 𝛽1
(8)

𝑣̂ =
𝑣𝑖

1 − 𝛽2
(9)

Adam, an optimization algorithm proposed by its

developers, suggests setting β₁ to 0.9, β₂ to 0.999, and ε to 10⁻⁸.

These values were determined through extensive experiments

to provide strong performance across a wide range of tasks. In

this setup, beta-1 and beta-2 control the exponential moving

averages of the gradient and the squared gradient, while

epsilon is included to prevent division by zero. After the

optimal values for parameters (8) and (9) have been obtained,

which represent these moving averages, the Adam update

formula can then be applied.

𝜃𝑡+1 = 𝜃𝑡 −
𝜕

√𝑣𝑡 + 𝜀
.𝑚𝑡 (10)

According to its formulation (10), Adam combines the core

ideas of RMSProp with the momentum method in gradient

estimation to improve both speed and stability during model

training. By using the exponential moving average of the

gradient together with the exponential moving variance, Adam

can adjust the learning rate for each parameter individually.

This adaptability gives Adam an advantage over earlier

optimization algorithms [15-17].

Stochastic Gradient Descent with Momentum (SGDM) is

an adaptation of the gradient descent optimization technique

that modifies model parameters during the processing of

training data. SGDM is distinguished by the use of a

momentum factor, which accelerates convergence and

mitigates oscillations, especially in the context of extensive

datasets. SGDM changes parameters by integrating

momentum from prior updates, enabling the model to navigate

more smoothly through both flat and steep gradient areas,

rather than solely relying on the complete dataset for updates.

The standard learning rate for SGD is typically established at

0.01, but this figure may be modified based on the intricacy of

the issue.

Gt = ∇𝜃J(𝜃; 𝑥
𝑖; 𝑦𝑖) (11)

In SGDM, the parameter θ is revised at each step. The

learning rate η dictates the magnitude of each update step,

whereas xi and yi denote the input-output data pairs utilized in

training. With each iteration, θ is modified according to the

processed data, enabling the model to progressively enhance

its performance by learning from each instance [18].

2.6 Confusion matrix

Figure 7 illustrates how the four mentioned values are

arranged in the confusion matrix. This version also lists the

total number of observations in the top left corner, as well as

the marginal counts at the top and left side of the matrix. The

colors used for each section of the matrix represent the

3158

combination of categories that form the values within it [19].

For example, the color green represents true positives, which

consist of false positives and false negatives. Each model has

four values that describe its own performance. Therefore, the

importance of each of these values must be considered when

comparing the overall performance of the models [20].

Classification metrics are calculated from the numbers in the

confusion matrix, so to understand these metrics, one must

understand the meaning of each value within it [21].

Figure 7. Confusion matrix

True Positive: This means the model correctly detected the

disease.

True Negative: This means the model correctly identified

that there is no disease.

False Positive: This means the model incorrectly identified

someone as having the disease when they actually do not.

False Negative: This means the model failed to detect

someone who actually has the disease.

With a confusion matrix, various model performance

evaluation metrics can be calculated, such as accuracy,

precision, sensitivity (recall), specificity, and F1-score [22]. A

confusion matrix is a very useful tool for understanding the

performance of a classification model and identifying areas

where the model needs improvement. A brief explanation of

some commonly used evaluation metrics alongside the

confusion matrix [23]:

Accuracy

The percentage of total correct predictions made by the

model out of all the test data.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision

The percentage of true positive predictions out of all

positive predictions made by the model.

Precision =
TP

TP + FP
(13)

Recall

The percentage of positive data successfully identified by

the model out of all the actual positive data.

Recall =
TP

TP + FN
(14)

F1-Score

The harmonic mean between precision and sensitivity. It is

used to compromise between both in one metric.

F1 – Score = 2TP/(2TP+FN+FP) (15)

3. RESULT

3.1 Test scenario

The subsequent phase of the research involves training the

GoogleNet model on a dataset of TB bacterial pictures derived

from microscopic observations. A series of tests was

performed using several optimizers, such as Adam, RMSProp,

SGD, and SGDM. The batch size was kept at 16, the learning

rate was set at 0.0001, and the number of epochs was set to 20

to get the best results. The experimental data are thereafter

displayed in tabular format to facilitate further research in the

domain of tuberculosis diagnosis by microscopic image

analysis, as seen in Table 1 [21].

Table 1. Test scenario [21]

Optimizer Batch Learning Rate Epoch

Test Scenario

Adam 16 0.0001 20

RMSProp 16 0.0001 20

SGD 16 0.0001 20

SGDM 16 0.0001 20

Table 2. Comparison of metric values between the training and validation phases

Loss Accuracy Precision Recall F1-Score Time(s)

Train 9.74 98.03 98.06 98.03 98.03 76.04

Validation 5.80 98.52 98.52 98.52 98.52 122.81

3.2 Test result

Experimental results related to Tuberculosis show that the

GoogleNet model achieves excellent performance when

optimized with Adam, employing a learning rate of 0.0001, a

batch size of 16, and 20 epochs. The corresponding test results

are presented in Figures 8-11.

The results presented in Figure 8, obtained using the

GoogleNet model with the RMSProp optimizer, indicate that

the model attains 89.74% accuracy on the training data,

accompanied by a loss of 25.66%. Its performance on the

validation data is likewise highly satisfactory, reaching an

accuracy of 95.57% and a loss of 14.80%. These outcomes

suggest that the model is able to learn from the training data

exceptionally well and maintain high performance on the

validation data, demonstrating strong generalization

capabilities.

The results presented in Figure 9, obtained using the

3159

GoogleNet model with the SGD optimizer, indicate that the

model performs reasonably well on the training data, an

accuracy of 53.52% and a loss of 68.72% are obtained. In

addition, the model demonstrates comparable performance on

the validation dataset, with an accuracy of 55.17% and a loss

of 68.51%. These findings suggest that the model is

successfully learning from the training data and shows stable

performance on the validation data, although further

improvements are needed to increase accuracy.

Figure 8. RMSProp optimizer trial result graph

Figure 9. SGD optimizer trial result graph

The test results in Figure 10, obtained using the GoogleNet

model with the SGDM optimizer, indicate that the model

performs reasonably well on the training data, with an

accuracy of 47.96% with a loss of 71.85% is achieved.

Furthermore, the model demonstrates satisfactory

performance on the validation data, reaching an accuracy of

43.35% and a loss of 72.01%. These results suggest that the

model can effectively extract meaningful learning patterns

from the training data, but still requires further improvements

to reduce loss and increase accuracy on both the training and

validation data.

Regarding the loss, Figure 11 shows a value of 5.80%,

reflecting a low error rate during training. Moreover, the

model attains an accuracy of 98.52%, demonstrating its strong

capability to classify tuberculosis images with high precision.

Besides high accuracy, the GoogleNet model also shows

excellent results in terms of precision, recall, and F1-Score,

each reaching 98.52%. Precision measures the accuracy of the

model's positive predictions, while recall measures how well

the model finds all positive instances. The F1-Score is the

harmonic mean of precision and recall, providing an overall

picture of the model's performance in classification. Not only

in terms of prediction quality, but the GoogleNet model also

demonstrates efficiency in training time. With only about

76.04 seconds required to train the model, it shows that this

model is not only accurate and consistent but also efficient in

the use of computational resources, as shown in Table 2.

Figure 10. SGDM optimizer trial result graph

Figure 11. Adam optimizer trial result graph

Figure 12. GoogleNet experimental results of metrics

3160

between GoogleNet training and validation stages

Figure 12 presents a comparison of the metrics obtained

during the training and validation phases, depicting the

model's stability and effectiveness in both stages.

Figure 13 illustrates that the loss curve of the GoogleNet

model for TB classification exhibits a consistent decline in

training loss values across successive epochs, indicating the

model's progress in understanding the data patterns. However,

there is variation in the loss on the validation data, suggesting

the possibility of overfitting at some points. At Epoch 7, the

loss value decreases on both the training and validation data,

reflecting good performance on both datasets. Subsequently,

at Epoch 12, the training loss value reaches its lowest point,

indicating that the model has successfully adapted to the

training data. Although there is a slight increase in validation

loss at Epoch 12, the model's performance remains high with

good accuracy.

Figure 14 shows a graph depicting the accuracy

performance of the GoogleNet model in classifying

Tuberculosis bacteria during the training and validation

process. The image shows some fluctuations in the accuracy

results on the training data and validation results during the

epoch. Overall, an increase in accuracy was observed on both

data types as the epochs progressed, indicated by the

GoogleNet model's increased ability to classify data more

accurately. There are several indicators of marked accuracy

improvements, showing that the model’s performance has

generally improved. The more iterations performed, the higher

the accuracy achieved by the GoogleNet model in classifying

TB data.

Figure 13. GoogleNet loss performance

Figure 14. GoogleNet accuracy performance

4. CONCLUSIONS

The conclusion from the experimental results indicates that

the GoogleNet model excels in TB classification. For this

classification task, the Adam optimizer was utilized with a

batch size 16, a learning rate of 0.0001, and a total of 20

training epochs. With a loss rate of 5.80% and an accuracy rate

of 98.52%, the model demonstrates excellent capability in

accurately classifying TB images. Additionally, the model has

high precision, recall, and F1-Score, each reaching 98.52%.

The performance graph of GoogleNet loss shows a decrease in

loss values on the training data from epoch to epoch, indicating

the model's progress in understanding the data patterns.

Despite some variation in the validation loss, the model's

performance remains high with good accuracy. Overall, the

graph illustrates the improvement in GoogleNet's accuracy in

classifying TB data as the iterations progress.

Future research will focus on implementing layer selection

techniques in the CNN architecture to reduce training time and

computational costs, while simultaneously improving the

overall accuracy and robustness of the model.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the

Ministry of Higher Education, Science, and Technology

(KEMENDIKTISAINTEK) for funding this research through

the Fundamental Regular Research (PFR) Grant in 2025. We

also extend our appreciation to Universitas Trunojoyo Madura,

Universitas Airlangga Surabaya, and INTI International

University Malaysia for their valuable collaboration in this

research project.

REFERENCES

[1] World Health Organization. (2019). Global tuberculosis

report 2019.

https://www.who.int/publications/i/item/global-

tuberculosis-report-2019.

[2] Sugirtha, G.E., Murugesan, G. (2017). Detection of

tuberculosis bacilli from microscopic sputum smear

images. In 2017 Third International Conference on

Biosignals, Images and Instrumentation (ICBSII),

Chennai, India, pp. 1-6.

https://doi.org/10.1109/ICBSII.2017.8082271

[3] Mithra, K.S., Emmanuel, W.R.S. (2018). FHDT: Fuzzy

and hyco-entropy-based decision tree classifier for

tuberculosis diagnosis from sputum images. Sādhanā, 43:

125. https://doi.org/10.1007/s12046-018-0878-y

[4] Tamtyas, F.I., Rini, C.S. (2020). The detection of TB

lungs with microscopic and the rapid molecular test

methods. Medicra (Journal of Medical Laboratory

Science/Technology), 3(1): 1-4.

https://doi.org/10.21070/medicra.v3i1.650

[5] Rachmad, A., Chamidah, N., Rulaningtyas, R. (2020).

Mycobacterium tuberculosis images classification based

on combining of Convolutional Neural Network and

support vector machine. Communications in

Mathematical Biology and Neuroscience, 2020: 85.

https://doi.org/10.28919/cmbn/5035

[6] Kumar, S., Arif, T., Alotaibi, A.S., Malik, M.B., Manhas,

J. (2023). Advances towards automatic detection and

classification of parasites microscopic images using deep

Convolutional Neural Network: Methods, models and

research directions. Archives of Computational Methods

in Engineering, 30(3): 2013-2039.

https://doi.org/10.1007/s11831-022-09858-w

3161

[7] Zhu, Y.L., Huang, C. (2012). An improved median

filtering algorithm for image noise reduction. Physics

Procedia, 25: 609-616.

https://doi.org/10.1016/j.phpro.2012.03.133

[8] Qur'ana, T.W. (2018). Perbaikan citra menggunakan

median filter untuk meningkatkan akurasi pada

klasifikasi motif sasirangan. Technologia: Jurnal Ilmiah,

9(4), 270-279. https://doi.org/10.31602/tji.v9i4.1543

[9] Maulana, I., Andono, P.N. (2016). Analisa perbandingan

adaptif median filter dan median filter dalam reduksi

noise salt & pepper. Cogito Smart Journal, 2(2): 157-166.

https://doi.org/10.31154/cogito.v2i2.26.157-166

[10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., et al. (2015).

Going deeper with convolutions. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Boston, MA, USA, pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[11] Rachmad, A., Syarief, M., Hutagalung, J., Hernawati, S.,

Rochman, E.M.S., Asmara, Y.P. (2024). Comparison of

CNN architectures for Mycobacterium tuberculosis

classification in sputum images. Ingénierie des Systèmes

d’Information, 29(1): 49-56.

https://doi.org/10.18280/isi.290106

[12] Al-Huseiny, M. (2021). Transfer learning with

GoogLeNet for detection of lung cancer. Indonesian

Journal of Electrical Engineering and computer science.

Indonesian Journal of Electrical Engineering and

Computer Science, 22(2): 1078-1086.

https://doi.org/10.11591/ijeecs.v22.i2.pp1078-1086

[13] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, NV, USA, pp. 770-778,.

https://doi.org/10.1109/CVPR.2016.90

[14] Munir, K., Elahi, H., Ayub, A., Frezza, F., Rizzi, A.

(2019). Cancer diagnosis using deep learning: A

bibliographic review. Cancers, 11(9): 1235.

https://doi.org/10.3390/cancers11091235

[15] Kusumah, H., Zahran, M.S., Rifqi, K.N., Putri, A.D.,

Hapsari, E.M.W. (2023). Deep learning pada detektor

jerawat: Model YOLOv5. Journal Sensi: Strategic of

Education in Information System, 9(1): 24-35.

https://doi.org/10.33050/sensi.v9i1.2620

[16] Arouri, Y., Sayyafzadeh, M. (2022). An adaptive

moment estimation framework for well placement

optimization. Computational Geosciences, 26(4): 957-

973. https://doi.org/10.1007/s10596-022-10135-9

[17] Kingma, D.P. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

[18] Yuan, W., Hu, F., Lu, L. (2022). A new non-adaptive

optimization method: Stochastic Gradient Descent with

Momentum and difference. Applied Intelligence, 52(4):

3939-3953. https://doi.org/10.1007/s10489-021-02224-6

[19] Tharwat, A. (2021). Classification assessment methods.

Applied computing and informatics, 17(1): 168-192.

https://doi.org/10.1016/j.aci.2018.08.003

[20] Ponraj, A., Nagaraj, P., Balakrishnan, D., Srinivasu, P.N.,

Shafi, J., Kim, W., Ijaz, M.F. (2025). A multi-patch-

based deep learning model with VGG19 for breast cancer

classifications in the pathology images. Digital Health,

11: 20552076241313161.

https://doi.org/10.1177/20552076241313161

[21] Rachmad, A., Husni, Hutagalung, J., Hapsari, D.,

Hernawati, S., Syarief, M., Rochman, E.M.S., Asmara,

Y.P. (2024). Deep learning optimization of the

EfficienNet architecture for classification of tuberculosis

bacteria. Mathematical Modelling of Engineering

Problems, 11(10): 2664-2670.

https://doi.org/10.18280/mmep.111008

[22] Chen, R.C., Dewi, C., Huang, S.W., Caraka, R.E. (2020).

Selecting critical features for data classification based on

machine learning methods. Journal of Big Data, 7(1): 52.

https://doi.org/10.1186/s40537-020-00327-4

[23] Mehdiyev, N., Enke, D., Fettke, P., Loos, P. (2016).

Evaluating forecasting methods by considering different

accuracy measures. Procedia Computer Science, 95: 264-

271. https://doi.org/10.1016/j.procs.2016.09.332

3162

