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Sign language is a component element of communication between the mute and hearing-

impaired communities that are indispensable to them, but it is mostly closed-off to the 

general population. To step into that gap, the current paper outlines the design of a hybrid 

Vision Transformer-Convolutional Neural Network system, officially focused on Indian 

Sign Language (ISL) gesture recognition, strong dynamic gestures, and face muscles. The 

edited database is 1,100 video samples in 22 different classes, which were recorded in the 

heterogeneous environmental conditions, to provide the robustness. The empirical findings 

indicate that the hybrid model has an exemplary training accuracy of 100%, validation 

accuracy of 88.6%, and a test accuracy of 82.14% and thus outperforms the state-of-the-art 

that provides accuracy of 88.7% to 92% of training accuracy. Proposed system thus 

achieves enhanced accuracy by 7-11% in case of continuous sign gestures. Through this, 

inclusivity and accessibility to the deaf community are thereby enhanced and future 

possibilities involve data enhancement as well as the integration of NLP-based text-to-

speech synthesis. 
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1. INTRODUCTION

Sign language is a highly dense, visually based interaction, 

whose effectiveness is predetermined by a highly organized 

system of hand gestures in space and the concomitant use of 

musculature of the face, eye movements, articulatory gestures, 

and other non-manual signatures, which gives the speech of 

sign language an artistic shift of power [1]. There have arisen 

all over the world three hundred or so different sign systems, 

each of them diversifying iteratively in the specificity of the 

geographical region, the texture of the culture, and the subtlety 

of the language. Similar to the idea that is presented in spoken 

tongues of lingering dialects and accent, sign languages 

display substantial deviation when it comes to gesture 

construction, sequential correctness, idiomatic expression, and 

non-manual semiotic adornment. Especially, it is worth 

mentioning that Indian Sign Language (ISL) takes a prominent 

place in the South Asian linguistic landscape, which is the 

symbol of diversity and epistemic richness that defines the 

spectrum of sign languages [2]. Whereas sign languages can 

be coarsely categorized into the group of static gestures, where 

the hand shapes are created by one or both hands, and the 

group of dynamic gestures, where the temporal movement of 

the hands and the variations of the expression are added, the 

overwhelming part of the extant research has either 

overemphasized the former classification or oversimplified the 

current systems of gestures. This chauvinism poses a great gap 

in full identification of the broader spectrum of sign language 

that embraces facial expression and other more elaborate body 

languages [3]. Furthermore, the dominating paradigms are 

based on the recognition of transient manual movements or on 

those that are written in a speech form, thus overlooking the 

complete repertoire of sign-language communication and 

limiting the effectiveness of human-computer interaction 

systems that have been developed to correspond with the deaf 

community. There is an urgent need for powerful sign 

language recognition systems that go beyond the rigid gestures 

and written texts. We aim to develop a state-of-the-art solution 

that could understand dynamic sign language sufficiently well 

to include subtle facial expressions, among others, with the 

employment of state-of-the-art deep-learning algorithms. 

Precisely, this paper aims to: 

1. Propose and combine a Vision Transformer (ViT) to

enhance the Convolutional Neural Network (CNN) ability to 

identify sign language in video footage. 

2. Use a sample of naturally deaf and trained Sign Language

speakers so as to incubate the intricacy of sign languages as 

they are truly utilized. 

3. A gap in the existing work of research will be resolved

by focusing on dynamic, continuous signs with non-manual 

attributes, thus going beyond the static signs and crude 

gestures that have been prevalent in the literature. 

The contribution to this paper is introducing a video-based 

sign-language recognition model which uses Vision 

Transformer to process dynamic signs, facial expressions of 

nuanced appearances and other non-manual societal readings. 

In this way, we get the field to a stage where it is not 

constrained by its own limitations, where more inclusive and 
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effective solutions to human-computer interaction are possible 

that realize the richness and the complexity of the sign-

language interaction. After this introduction, Section 1 is the 

review of related work in sign-language recognition. Section-

2 explains the suggested methodology and elaborates on how 

it will address the challenges mentioned. Section 3 describes 

the architecture of Vision Transformer and its video 

recognition application in detail. Section 4 describes and 

discusses the results of the experiment. Finally, Section 5 

wraps up this research providing a summary of the main 

findings and future research avenues. 

2. RELATED WORK

Early manual gesture recognition has been based on 

compositional and model-based methods. As an example, 

Heap and Hogg [4] built up a hand model that is deformable 

and in 3D, and considered the Principal Component Analysis 

(PCA) to align a dynamically scaled template to observed 

images, allowing tracking motion of a hand in real-time. 

Although this method served as a great base to have precision 

in tracking, it was unable to manage scale, rotation, and 

occlusions. Complementary compositional practices also 

employed principles of perceptual grouping in describing hand 

postures by combinations of hand parts but these too had 

pragmatic obstacles as complex scenes were dealt with. The 

later works dealt with the static recognition of gestures using 

contours and special hardware. Lee and You [5] made use of 

the wrist bands to segment the region of the hand and used an 

algorithm to match and classify. They were however sensitive 

in terms of background color and not robust in problematic 

environments. Chevtchenko et al. [6] also used a multi-

objective evolutionary algorithm for the features sets and 

dimensions optimization, using Gabor filters and Zernike 

moments to reach accuracies up to 97.63% in 36 static gestures 

in a position. Huang et al. [7] target interpreting sign language 

into text or speech using a novel 3D CNN method 

automatically extracting discriminative spatial-temporal 

features from raw video streams.  Deep learning models 

triggered the adoption of more advanced architectures as the 

transition was made to video-based recognition and dynamic 

gestures. Vision Transformers (ViT) was an attractive 

alternative to Conventional Neural Networks (CNNs), and 

sometimes they outperformed them in precision and speed. On 

the same note, Lai and Yanushkevich [8] used CNNs together 

with recurrent neural networks (RNNs) to use both the spatial 

and time data, and they obtained the highest accuracy of 

85.46% with depth and skeleton data. Kamruzzaman [9] used 

ResNet50 and MobileNetV2 to do Arabic sign language 

achieving a combined accuracy of 98.2. Based on data 

augmentation mechanisms through CNNs, Zakariah et al. [10] 

and Zhang et al. [11] boosted the American sign language 

recognition and reached an accuracy of 99.52%.  These 

strategies were further applied by other scientists to other sign 

languages and methods of feature extraction. Recently, De 

Coster et al. [12] incorporated OpenPose with a multi-head 

attention mechanism to get 74.7 percent accuracy on Flemish 

Sign Language. Vaswani et al. [13] designed a CNN that was 

used to identify hand gestures in small scale image begging 

mind hand gestures on a simple background, which achieved 

an accuracy of 97.1%. Shenoy et al. [14] performed skin color 

segmentation and grid-based feature extraction to identify the 

ISL gestures which were using k-nearest neighbors (KNN) and 

hidden Markov models (HMM) with remarkable success. 

Katoch et al. [15] used a Bag of Visual Words (BOVW) model 

that was coupled with CNNs and SVMs to recognize ISL 

letters and digits whereas Rokade and Jadav [16] used a 

combination of skin color-based segmentation with artificial 

neural networks (ANN) and SVMs to obtain robust 

fingerspelling recognition in ISL. Nanivadekar and Kulkarni 

[17] created an ISL database and proposed a hand tracking and

segmentation based on three step algorithm. Badhe and

Kulkarni [18] implemented an ISL gesture translator using

hand tracking with combinational algorithm and recognition

done using template matching. Badhe and Kulkarni [19] have

proposed handcrafted feature extraction method for SL

recognition where complex grammatical rules are captured

with 98% accuracy. In addition to hand gestures, Kashika and

Venkatapur [20] used deep learning as a way to detect objects

on the panoramic video frame and Tran et al. [21] studied face

recognition relying on SVM, but another team [22] proposed

a new method of detecting objects. Sreemathy et al. [23]

showed that deep learning could be used as an ICT method of

identifying the signs of the ISL in English. Das et al [24]

combined the handcrafted features and CNN-extracted

features to counter the problem concerning the same hand

orientations and different viewing angles. Sharma et al. [25]

emphasized that transfer learning is efficient in the context of

sign language recognition, and Liu et al. [26] explored the

detection transformers which also has a feature extraction

pyramid network in order to improve recognition

performance. Al Essa et al. [27] proposed an approach of multi

connect associative memory for recognition of American

Signs. This approach solved a problem of misclassification of

static signs which are too similar in gestures.

This changing arena of methodologies between early hand-

modeling methodologies and more recent transformer-based 

architectures is indicative of a dynamic research domain. The 

limits of hand gesture and sign language recognition are 

constantly being extended with the integration of Vision 

Transformers, more advanced CNNs, and hybrid models, as 

more focus is placed on more advanced and sophisticated 

solutions. It is hoped that these developments can enhance the 

precision, flexibility, and applicability of sign language 

systems, which will favor more inclusive communication, and 

broaden the possibility of human-computer reaction under a 

variety and dynamic setting. 

3. METHODOLOGY

Conventional CNN-based models which have historically 

been used in image and video tasks have good local feature 

extraction properties. Nevertheless, they in many cases use 

sequential feature summation (e.g., through RNNs or 3D 

convolutions) to do so, which can be costly and not always 

optimal to establish long-range correlations in videos. 

Whereas purely transformer-based schemes (ViT) can capture 

both the global and temporal context and find local differences, 

they can ignore small variations in local context that can 

distinguish similar gestures. 

Through the incorporation of CNN layers into the ViT 

structure we have been able to maintain the local pattern 

recognition capabilities of CNNs whilst still exploiting the 

ViT capability to capture multi-frame complex temporal and 

contextual interactions. This synergy does enhance 

recognition and is especially accurate with complex ISL 
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gestures which are based on both fine-grained hand 

configurations and complex temporal patterns. 

CNN-Only Models: 

CNN-based methods in pure form might be too restricted in 

terms of ability to realize the temporal global context unless 

other components, including RNNs or 3D convolutions, are 

added to them. In our initial experiments, we found that, 

because of the rich spatial feature retrieval capabilities of 3D 

CNNs, their performance in interpreting long sequences of 

behaviors was lower than that of the ViT-based counterparts. 

RNN or LSTM-Based Models: 

Though RNNs or LSTMs are capable of modeling temporal 

sequences, they can be more susceptible to such problems as 

vanishing gradients across long videos and even less efficient 

than attention-based models. Initial experiments with CNN-

LSTM hybrids provided decent performance at the price of 

increased training time and reduced modeling capabilities of 

complicated time-dependent dependencies. 

Pure ViT Models: 

Pure ViT models are superior in modeling long-range 

dependencies. Nevertheless, they do not have any local feature 

extraction element and hence do not pick up finer details such 

as minute movements of the fingers or micro-expressions on 

faces. Experiments on our part showed that the general fine-

grained recognition accuracy was enhanced with the addition 

of CNN layers, especially in harsh backgrounds. 

Altogether, the hybrid ViT-CNN solution provides a middle 

ground solution based on global time modeling (transformers) 

and local space feature extraction (CNNs). Empirical studies 

demonstrate that this hybrid architecture outperforms purely 

CNN-based or purely ViT-based models and are comparable 

to CNN-RNN hybrids in accuracy, efficiency and 

generalization to various ISL gestures. 

 

3.1 Flow of the study 

 

The current research aims to develop an effective ISL 

recognition application that could decode dynamic hand 

gestures and facial expressions on the basis of video streams 

correctly. Where a large number of research focuses on 

gestural frames or static gestures, this research focuses on 

continuous gestural signs, including small video recordings of 

1 to 3 seconds. In this direction, we choose a hybrid neural 

network combining the capabilities of global attention of a ViT 

with the potential of a local feature-extraction of a CNN. The 

whole processing chain is described in Figure 1 and 

summarized in the following parts: 

 

3.1.1 Video capture 

At the first stage, we obtain a rich set of video recordings of 

deaf subjects instructing a repertoire of predetermined ISL 

gestures in a range of lighting scenarios and background 

settings, which is used to strengthen the later system against 

environmental covariate influences. 

 

3.1.2 Frame extraction 

The videos that are captured are then divided into discrete 

frames; these temporal snapshots are the two elements of the 

manual component, i. e., the hand kinematics, and the non-

manual component, i. e., the facial musculature, both of which 

cannot be done without reading the signs in any manner. 

 

3.1.3. Frame counting and padding 

We also come up with the frame tally of both records and 

the temporal maximum over the corpus; those videos that are 

shorter are electronically padded to that temporal maximum 

which normalizes the input dimension of all further processing 

phases. 

 

 
 

Figure 1. Block diagram 

 

3.1.4 Landmark detection 

A Boolean landmark-detection processes on each frame 

provide a list of salient features, most likely to occur around 

the hands and face of the signer, that provide a structured, fine-

grained image of the gestures and subtle facial expressions. A 

similar approach is seen in the work of Jo et al. [28] for 

enhancing gestural interaction used in virtual and augmented 

reality with Media-Pipe based gesture recognition interface. 

 

3.1.5 Position encoding 

The network takes spatial context through positional 

encodings to the retrieved landmarks; this process embeds 

inter-point spatial relations and relative positions of anatomy 

parts into the model and provides it with a better understanding 

of gestural structure. 

 

3.1.6 Mask computation 

A saliency mask that gives more weight to the hand, face, 

and other regions of interest is synthesized by us and 

effectively reduces background clutter, sensor noise, and focal 

capacity of the model, focusing attention on the informative 

regions of the spatial map. 

Development: ViT architecture: ViT is an architecture using 

artificial intelligence (AI) to recognize images as objects and 

extract information from them. 

Motivation: ViT architecture: ViT is a type of architecture 

based on AI that identifies objects in images and derives 

information about objects contained within the image. Instead 

of defining images, or sequentially ordered frames, as a set of 

convolutional filters, Vision Transformers conceptualize 

images as a set of tokenized patches and use multi-head self-

attention systems to encode long-range correlations and 

contextual interactions. We then subdivide the extracted 
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frames (or their spatial encodings, e.g., landmark-based ones) 

into small patches, and in this manner, a linear projection of 

the patch into a high-dimensional embedding space and 

positional embedding is generated. 

 

3.1.7 Feature fusion 

The unified approach of combining CNN with Transformer 

follows a sequential feature encoding and fusion mechanism. 

For each input video sequence, individual frames are first 

processed by a backbone of CNN, which extracts fine-grained 

spatial features corresponding to hand shape, finger 

articulation as well as non-manual cues like facial expressions 

and head orientation. The embeddings generated by CNN are 

then temporally arranged and sourced as token representations 

to the vision transformer where self-attention mechanisms 

model long-range sequential dependancies across frames. The 

transformer output is lastly fused with the CNN features by 

concatenating before classification.  

Mathematical Formulation of the model: 

Let  

 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑇} (1) 

 

be the video with T frames. 

CNN feature extraction would be 

 

𝑓𝑡 = 𝐶𝑁𝑁(𝑥𝑡);  𝑤ℎ𝑒𝑟𝑒 𝑓𝑡 ∈ ℝ𝑑 (2) 

 

Stacked spatial matrix is represented by: 

 

𝐹 = [ 𝑓1, 𝑓2, 𝑓3, . . . . . , 𝑓𝑇] (3) 

 

Position encoding is depicted by 

 

𝑍 =  𝐹 +  𝑃 (4) 

 

where, P is positional encoding matrix and Z is position aware 

feature representation. The transformation attention spaces 

query (Q), key (K) and value (V) are represented as 

 

𝑄 = 𝑍𝑊𝑄, 𝐾 = 𝑍𝑊𝐾 and 𝑉 = 𝑍𝑊𝑉  (5) 

 

The transformer output, fusion representation, and 

classification equation are as follows: 

 

𝑇𝑓 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 (𝑍) (6) 

 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 =  [𝑃𝑜𝑜𝑙(𝐹) ;  𝑃𝑜𝑜𝑙(𝑇𝑓)] (7) 

 

𝑦 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝐹𝑓𝑢𝑠𝑖𝑜𝑛 + b) (8) 

 

where, Pool represents global maxpooling and [;] indicated 

concatination of feature vectors. 

 

 
 

Figure 2. CNN- ViT fusion mechanism 

 

The method of fusion is as depicted in Figure 2. This fusion 

design enables the model to preserve fine – graned spation 

discrimination through CNN feature extraction while 

simultaneously exploiting the Transformer’s ability to capture 

temporal features. This synergy is particularly beneficial for 

dynamic ISL gesture recognition. 

 

3.1.8 ViT and adapting to the Desired Task: 

(a) Temporal Patching: Each frame or the set of landmarks 

that accompanies the frame is treated as a separate token, thus 

the transformer can focus on the spatial axis and 

simultaneously the time axis. 

(b) Temporal Positional Embedding: It makes the network 

self-temporal: the network is given the ability to represent its 

dynamic properties of motion and gesture development over 

time by encoding order in vectors indicating frame chronology. 

The application of CNN Elements and ViT Behavior: 

Although ViT is highly successful in observing the 

dependencies of the world, its peculiarity of using pure 

attention might not always adequately reflect local, subtle 

forms (such as fine grasping configurations or subtle facial 

micro-expressions). In order to address this weakness, we 

utilize CNN modules as part of the ViT pipeline. In everything 

hybrid, raw frames pass through a lightweight CNN that 

isolates salient primitives in space: edges and textures, 

contours, etc., before being subjected to the transformer. CNN 

feature maps such that result are in turn fused with the ViT 

embedding, allowing the transformer layers to have access to 

the enriched inputs that combine the benefits of global context 

framing with the benefits of distilled local detail. 

 

3.1.9 SoftMax layer 

The unprocessed output of the hybrid ViT-CNN processing 

is then fed into a SoftMax classifier to recede to an emergent 

representation, enabling categorical probabilities of every 

gesture classes repertoire of ISL to be produced, hence 

allowing decisive identification of signs with each input 

sequence. To identify the relationship, the model undertook 

and its strength, the tests involve training, validating, and 

testing the model. 

The ViT-CNN architecture was trained and optimized on 

the curated dataset of ISL and the following hyper-parameters 

and regularization options were used: 

o Learning Rate: Learning rate at the beginning will be 1e -

4 and as plateau in the validation accuracy is reached, it will 

be decreased by a factor of 0.1. 

o Number of Epochs: 50 -100, based on convergence 

patterns. 

o Batch Size: 8-16, which was selected according to the 

available memory of the GPUs and stability of the training. 

o Regularization Techniques: To address overfitting, 

dropout layers (dropout rate of 0.3–0.5) are included not only 

in the CNN layers but also in the transformer ones. Also, early 

stopping and data augmentation are applied (e.g. random 

cropping, limited rotations) to guarantee improved 

generalization. 

 

3.1.10 Model scoring 

After the training process, a detailed assessment of the 

withheld test split is performed where we calculate 

conventional performance measures such as accuracy, 

precision, recall and the F1-score to objectively assess the 

efficacy of the system in both controlled laboratory and real 

world background circumstances. This test confirms that the 

model can be dependable in distinguishing between twenty-
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two different classes of ISL gestures. 

 

3.1.11 Inference 

When its validation with sufficient accuracy is achieved, the 

hybrid ViT-CNN pronounces a real-time inference feature. 

Once a new video stream is consumed, the system will run 

landmark extraction, positional encoding, and mask 

generation sequentially and run the content through the hybrid 

network, producing an estimation of a gesture and a 

confidence estimate in the end. 

 

 

4. IMPLEMENTATION  

 

4.1 Database 

 

To work out the indispensable basis of further analyses, an 

ISL database was built strictly under a carefully curated one in 

the absence of a widely realized standardized corpus. A 

collection of 1,100 video recordings was made of the Ali 

Yavar Jung National Institute of Hearing Handicapped in 

Bandra, Mumbai, of 22 different ISL gestures executed by ten 

deaf signers. As our research objective demands to incubate 

the intricacy of sign language in its true sense, we ensured that 

the signers are naturally deaf and trained by an authentic ISL 

educator. The age group of the signers is 16 to 35 and it 

includes both male and female users. To make the system 

robust to variations like background, lighting conditions and 

signer bias, we recorded the videos in various backgrounds 

like – Classrooms, Personal desks or Cubicles. The lightning 

condition was not controlled. Also, sampling ensured to 

enclude left domninant as well as right-dominant users. Some 

recorded gestures are as shown in Figure 3.  

 

 
 

Figure 3. Twenty-two Indian sign language gestures (Image format) 

 

 
 

Figure 4. Vision Transformer (ViT) Architecture (Source: https://viso.ai/deep-learning/vision- transformer-vit/) 
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4.2 Vision transformer implementation 

 

ViT as shown in Figure 4 was thematicized to accept video 

analysis by dividing each frame into temporal patches, 

projecting the patches into linear representations, and 

encoding the latent with positional encodings through which 

the temporal structure of the video can be identified in the 

footage. The resulting ViT encoder, which includes the Layer 

Normalisation, Multi-Head Self-Attention, and Multi-Layer 

Perceptrons, converts the tokenised embeddings into an 

overall representation that can be subsequently used by 

classification tasks occurring downstream. 

The hybrid model provides the advantage of using both the 

global attentional attributes of ViT and fine-grained local 

feature extraction of CNN layers when combined with CNN 

features. The empirical analysis in the following passages 

indicates that this combined method is more accurate in 

recognition than the baseline CNN and CNN-RNN methods. 

When recovered with the local detail extraction by the CNN, 

the ViT would provide its ability to model long-range temporal 

dependencies, in the form of an architecture that is very 

sensitive to the complexities and subtleties of ISL gestures. 

In order to come up with a very efficient hand-gesture 

recognition framework based on the Vision Transformer, a 

systematic approach was adopted that entailed careful data 

segmentation, intensive training, meticulous validation and 

extensive testing as well. The second part of the paper outlines 

the approach used to divide the available data, training, 

validation, and evaluation processes of the ViT recognition 

model. 

Dataset Splitting 

It is comprised of a corpus of 1,100 videos (portraying 22 

different ISL gestures) that were recorded in varying 

conditions on ten deaf signers. To obtain a firm estimation of 

the model performance and ensure that there is generalisation 

to new data, the data was categorised into three mutually 

exclusive data subsets using subject wise split technique, 

including training data, validation data and testing data. 

Samples from the same subset were not shared across various 

subsets. The subjects used for training and validation were 

completely excluded from the testing subset ensuring that the 

model is evaluated on unseen subjects, reflecting real world 

deployment scenario.  

Training Set (80%): 

The training subset was provided with approximately 880 

videos. This large assignment ensures that this model is left 

open to numerous background variations, signer idiosyncrasy 

and subtle gesture dynamics. This diversity makes it easy to 

extract meaningful spatial-temporal patterns, and the resulting 

learning of the complex hand movements and facial 

expressions that are characteristic of ISL recognition becomes 

resilient. 

Validation Set (15%): 

There was also a set of 165 videos that would be held back 

as a validation set. This data, used in isolation from the training 

phase, is used to monitor the performance of the model in an 

iterative way. The validation set provides feedback in time by 

evaluating the accuracy, loss and (where applicable) 

specialised metrics at the end of each training epoch. 

Whenever metrics become stagnant or worse off, then it is an 

indication that metrics require adaptations of hyperparameters, 

architectural parts or regularisation methods to reduce either 

over-fitting or under-fitting. 

Testing Set (5%): 

Finally, the testing set of 55 videos was left to be included 

in the final set and serve as a purely unseen control. This 

conclusive analysis establishes the capacity of the model to 

extrapolate under new cases and provides an approximate 

estimate of its effectiveness in the real world and practical 

situations. With the help of a small but representative test set, 

end metrics such as accuracy, precision, recall, and F1- score 

are exact measures of the performance of the model on unseen 

data. 

The selected split ratios summarise a trade-off between 

maximizing training data to encourage robust learning and 

having adequate examples not seen to be validated and tested. 

Even though the fraction of the test can be viewed as small, 

the videos of the 55 types altogether are a headlong summation 

of the variegated nature of the dataset and still leave the testing 

phase as a strict and unbiased indicator of performance. 

The Vision Transformerbert model was then trained by 

starting with the 880 training videos. All the videos were pre-

processed into homogenous temporal patches and positional 

embeddings and then fed to the ViT. The CNN modules used 

were linked together to obtain local spatial aspects but the 

attention mechanisms of the ViT extracted it alongside the 

long-range association and time connection between frames. 

Parameters and Procedures of training. 

- Epochs: 50100 most common, and early stopping occurred 

when validation measures stopped improving over a specified 

patience (e.g., ten epochs). 

- Learning rate: To start with, the learning rate is initialized 

to approximately 1 -10-4 times and decreased by the same 

factor each time a plateau is reached in the validation accuracy. 

- Batch Size: Eight to sixteen, with a compromise between 

speed and stability of training, due to the limitation of using 

the GPU memory. 

Regularisation 

- Dropout: CNN and ViT layers were applied with a rate of 

0.3-0.5 to prevent over-fitting through the elimination of co-

adaptation of features. 

- Data Augmentation: Mild randomly spaced spatial 

transformations (e.g., cropping and small rotations) were 

applied as mechanisms to improve robustness and 

generalisation. 

- Early Stopping: Training was terminated when validation 

metrics stopped improving with the increase of the number of 

epochs and did not lead to needless over-training and wasted 

computations. 

Validation Process 

The model prediction on the 165 validation videos after 

each epoch was determined. Accuracy, validation loss, and, 

when it is applicable, precision-recall metrics were considered 

core metrics since they must identify core issues in class 

imbalance or particular difficulties in gestures. The differences 

in these metrics were used to perform hyper-parameter 

optimization and architecture-level changes, including 

learning rate schedule or dropout rate modulation. 

Model Testing 

After training and validation had been done, the model was 

tested on the 55-video test subset. These samples that were not 

observed during training and validation provided a true 

measure of generalisation. Gesture predictions of the model 

were compared with ground-truth gestures and the ultimate 

performance indicators, accuracy, precision, recall, and F1-

score, were calculated. These outcomes have been compared 

to the existing practices and reported to exemplify the 

effectiveness of the model based on ViT. 
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Outcome and Significance 

The study provides credible evidence of the validity and 

applicability of the trained ISL recognition model by adopting 

the comprehensive approach, including a reasonable division 

of data, extensive hyper-parameter optimization through the 

use of validation, and a strict final analysis of the test on 

unknown data. The attained output highlights the potential of 

Vision Transformers especially with CNN components, to 

drive sign language recognition systems to the next stage of 

being more inclusive and accessible communicative 

technologies. 

Model Evaluation 

An integrated assessment plan was used to effectively 

evaluate the performance of the Vision Transformer-based 

sign language recognition model. The evaluation involved a 

set of measures, such as accuracy, as well as precision, recall, 

and F1-score, thus providing detailed information about the 

model effectiveness and efficacy. 

Accuracy: Accuracy is a fundamental metric that measures 

the proportion of correctly predicted instances from the total 

instances in the testing dataset. Itis a primary indicator of the 

model's overall correctness in recognizing hand gestures [21]. 

Mathematically, accuracy is defined as the ratio of true 

positive (TP) and true negative (TN) predictions to the total 

number of predictions: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑂𝑇𝐴𝐿 𝑃𝑅𝐸𝐷𝐼𝐶𝑇𝐼𝑂𝑁𝑆
  (9) 

 

Precision: Precision gauges the model's ability to correctly 

identify positive instances (correctly recognizing a specific 

hand gesture) among all instances predicted as positive. It 

focuses on the model's propensity to avoid false positives, i.e., 

instances wrongly classified as positive. Precision is 

calculated using the formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (10) 

 

Recall (Sensitivity): Recall, also known as sensitivity or the 

true positive rate, quantifies the model's capacity to correctly 

identify positive instances from all actual positive instances 

[21]. This metric highlights the model's ability to capture all 

relevant occurrences of a particular hand gesture. A recall is 

calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (11) 

 

F1-Score: The F1-score is a harmonic mean of precision and 

recall, providing a balanced assessment of the model's 

performance by considering false positives and false negatives. 

It offers a single metric considering Type I (false positive) and 

Type II (false negative) errors. The F1-score is calculated as 

follows: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (12) 

 

The capabilities of the ViT based sign language recognition 

model can be holistically evaluated with the help of these 

metrics. High accuracy indicates a strong overall performance 

and precision identifies the model accuracy in performing a 

positive prediction. As mentioned, recall highlights the 

effectiveness of the model in capturing all the positive 

instances, whereas F1-score provides a balanced trade-off of 

precision and recall to rightfully consider that between false 

positive and false negative. 

The evaluation measures presented in the model based on 

the testing data allow a deep insight into its shortcomings and 

advantages. Moreover, these measures allow making strict 

parallels with the current methods and standards, which allows 

obtaining useful information about the possible practical 

implementation of the ViT-based hand gesture recognition 

system into practice related to the interaction through the ISL. 

 

 

5. RESULTS 

 

This paper is dedicated to strict analysis and subtle 

understanding of naturally pre-established ISL frameworks, 

and the major aim to outline the gap in communication 

between the disabled population and the rest of the community. 

The study combines ViT modules with traditional CNN 

models by building an indigenous ISL dataset by recording 

participants who are deaf and therefore enhancing the 

recognition accuracy. 

The sensitive application of encoder transformer avoids the 

use of complicated data preprocessing, and the discriminating 

addition of the ViT highlights the strength and performance 

measure of the model. 

Model Summary: 

Table 1 provides a concise overview of the model 

architecture and the cumulative trainable parameters. 

 

Table 1. Model summary 

 
Layer (Type) Output Shape Parameters # 

Input_1 (Input Layer) (None,144,258) 0 

Frame_position_embed

ding 

(None,144,258) 37152 

Transformer_layer (None,144,258) 270646 

Global_max_pooling1d (None,258) 0 

Dropout (None,258) 0 

Dense_2(None,22) (None, 22) 5698 

Total Parameters: 313496 

Trainable parameters: 313496 

Non- trainable parameters: 0 

 

Training and Validation Performance: 

During the course of training, significant success is found. 

Training accuracy reaches amazing 100‛, which shows the 

ability of the model to generalize the training data. The 

training accuracy is 95, and the recall is 92 with the resulting 

F1-score of 0.95 in 1,393 epochs. These measures highlight 

the capability of the model to pick the positive instances 

correctly and have a balance between the precision and recall. 

During validation stage, the model maintains a healthy 

performance. The agreement of validation stabilizes to 88.60 

per cent, and the precision is 87 and the recall is 86. Validation 

F1-score: 0.89, realized in 2,987 epochs. These statistics show 

that the model is a good generalization, which can still 

maintain a good performance when it is applied to data that is 

not seen. 

Construction: testing Performance and Comparative 

Analysis: 

The model when rigorously tested on another set of 55 

videos gives a testing accuracy of 82.14. Accuracy is 81.89, 

and recall is 81.36 with an F1-score of 0.81 in 3,000 epochs. 

Such findings support the effectiveness of the model in 

identifying ISL gestures in real world situations. 
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These performance metrics point out the consistency of 

proficiency of the model in training, validation and testing 

phases. 

 

Table 2. Model performance 

 

Phase 
Training (880 

Videos) 

Validation (165 

Videos) 

Testing (55 

Videos) 

Accuracy 

(%) 
100 88.60 82.14 

Precision 

(%) 
95 87 81.89 

Recall (%) 92 86 81.36 

F1-Score 0.95 0.89 0.81 

Epochs 1393 2987 3000 

 

Class -Level Performance and Error Analysis: 

To gain more insights, the performance of the model was 

analyzed according to the classes, presented in Table 2. And 

Figure 5 can be seen as the confusion matrix. The results 

evidently show strong validation of the system’s suitability to 

correctly classify signs like Namaste, Hello, Danger, Help Me, 

and I am Hungry. This proves the system’s ability to perform 

practical ISL translation as the signs included are for: Greeting, 

Emergency Communication and conveying basic needs. 

Classification summary indicated that the features which are 

visually and dynamically distinct lead to near- perfect 

separability. The most contributing features to classification 

are Hand Shape, Orientation, Motion Pattern and Semantic 

uniqueness of the gestures. Although the majority of classes 

have high F1-scores, some of the classes such as “Ten” have 

relatively lower F1. In order to gain more insight into these 

discrepancies, a confusion matrix was obtained, as shown in 

Figure 5. The confusion chart demonstrates that gestures with 

similar hand shapes or orientations were wrongly classified 

quite often. The confusion matrix has strong diagonal 

dominance. An example is that the model was more likely to 

confuse the signs that have similar fingers arrangement or 

indicate slight rotations in their hands. 

Some of the difficult classes include, but are not limited to, 

classes: Ten and Nine which exhibit a significant level of inter-

class confusion as a result of the fact that these two classes are 

similar in their hand shape and position. Equally, those signs 

that require rapid changes or faint body expressions were also 

mistaken. The model may not be able to differentiate between 

gestures that are differentiated by slight variance in finger 

positioning or slight movement of the wrist and such therefore 

will be misclassified. The classification results can be grouped 

in 3 distinct categories. Group A: Perfectly Classified Classes, 

Group B: Moderately Strong Classes, Group C: Weak Classes 

as seen in Table 3. We can see that the gestures where 

distinctive sand shapes and motions are dominant have been 

precisely classified with a high F1-score. The gestures where 

partial feature overlap is possible within the neighboring 

frames are moderately low in F1-score. The most misclassified 

signs are too similar in nature. The hand posture, orientation 

and visual similarity between the signs One, Ten and Hundred 

are too close. The analysis indicated that the error pattern is 

not random, however semantically more meaningful. Visual 

Resemblances of Gestures here stand out as a possible cause 

of misclassification. Little movements in bending fingers or 

the position of thumbs can be very hard to detect by the model. 

The results demonstrate that the proposed framework achieved 

excellent recognition for emergency, basic need and other 

conversational gestures, while giving challenges in some 

numeric sign gestures with similar visual patterns due to high 

inter-class similarity and subtle articulation differences.  

Even specific refinements (like a more careful data 

augmentation, better landmark detection, or using other cues, 

like depth or skeleton data) can be made by looking at cases of 

misclassification and understanding their causes. 

 

 
 

Figure 5. Confusion matrix 
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Table 3. Grouping of classes as per performance of the recognition 

Group F1-Score Gestures Included Gestural Characteristics 

A (Perfectly Classified) Approx 100% 

India 

Namaste 

Hello 

Sorry 

Danger 

Help Me 

I am Hungry 

Two 

Five 

Eight 

Distinct Hand Shapes and Motions 

Low Intra Class Variations 

Low Intra Class Similarities 

B (Moderately Strong) 65-85% 

Thank You 

Fire 

Three 

Four 

Six 

Seven 

Nine 

Thousand 

Partial visual overlap with neighboring frame 

Similar finger counts or transitions 

Variation in signing speed and orientation 

C (Weak Classification) Less than 50% 

One 

Ten 

Hundred 

Single Finger Count 

Similar hand position/ posture 

Visual Similarity 

Table 4. Class wise performance 

Class Name 
Accuracy 

% 

Precision 

% 

Recall 

% 
F1-Score 

India 100 100 100 100 

Namaste 100 100 100 100 

Hello 100 100 100 100 

Thank you 96 80 100 89 

Please 100 100 33 50 

Sorry 100 100 100 100 

Danger 100 100 100 100 

Fire 95 67 100 80 

Help Me 100 100 100 100 

I am Hungry 100 100 100 100 

One 70 50 62 50 

Two 100 100 100 100 

Three 100 100 67 80 

Four 93 50 100 67 

Five 100 100 100 100 

Six 100 100 67 80 

Seven 94 50 100 67 

Eight 100 100 100 100 

Nine 60 50 100 67 

Ten 50 33 33 33 

Hundred 50 50 33 40 

Thousand 92 50 100 67 

By examining misclassifications as depicted in Table 4 and 

understanding their underlying causes, targeted 

improvements—such as more elaborate data augmentation, 

refined landmark detection, or incorporating additional cues 

(like depth or skeleton data)—can be implemented. 

Consequences of the Real-World Usage:  

The noted matter of confusion has an important implication 

for the usage of the sign recognition system in the life 

environment. This is a must in the daily communicative 

interactions of a system where slight differences in gestures 

must be dealt with high accuracy. In other settings, including 

educational institutions, clinical facilities, or customer service 

touchpoints, misclassification of a particular gesture could 

trigger the occurrence of an expensive misunderstanding. This 

may lead to a necessity on the part of practitioners to embrace 

more vivid signing conventions, or the training corpus may be 

expanded by engineers to a wider cohort of signer 

heterogeneity and ambient environmental situations. 

Future work could be done by increasing the size of the 

corpus to include a wider range of difficult gestures examples. 

Adding multi-modal sensors of sensory data (depth sensors 

or skeletal tracking) to provide a more detailed context system. 

Optimizing the hybrid ViT-CNN like in a cross-head, i.e., 

adding to the model, to reinforce its local element extraction 

capabilities, especially on gestures of nearly the same shape. 

Implementation of domain adaptation measures so that 

there is robustness to the context environment interactions and 

variations in the background. 

6. CONCLUSIONS

This research predicts the existence of a major gap in 

current academic literature. The literature corpus on the 

subject has concentrated mostly on the static sign, which 

places minimal interest in the dynamic sign on which the 

associated facial expressions have a significant role. Our 

question, on the other hand, takes the holistic approach to ISL 

recognition, at the same time looking to the changing gestures 

and the fine nature of the role of facial expressions. 

Based on the idea of augmenting existing CNN techniques 

with the ViT, our methodology provides efficient 

classification of a wide range of gestures, which does not 

require large-scale data augmentation or transfer learning. The 

efficiency results in a decrease in training time and 

computational complexity hence curbing problems that are 

common in recurrent architectures. 

Our proposed framework is efficacious as well as evidenced 

to have attained a validation accuracy of 88.60 and a test 

accuracy of 82.14 which are performance metrics exceeding 

the present-day state-of-the-art. A case study that was done by 

ablation proves that convolutional encoding shows significant 

improvement on accuracy in the recognition of ISL. Going 

forward, we will explore an expanded range of pre-trained ViT 

frameworks by increasing recognition accuracy further. 

Furthermore, we would increase the dataset to cover a more 

diverse range of dynamic signs and facial expressions. In 

addition, the introduction of Natural Language Processing 
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(NLP) as a text-to-speech processing solution and the creation 

of a user-friendly graphical user interface (GUI) are inscribed 

as some of the major goals, which will expand the application 

and availability of the suggested method. 

By focusing on dynamic gestures and facial expressions, 

this study essentially draws attention to a significant gap in the 

field of sign language recognition. The effective application of 

ViT methodologies will not only find the way to create 

superiority over traditional CNN methods, but also set the path 

to make significant developments in sign language 

interpretation, thus contributing to more inclusive 

communication between various communities. 
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