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Sign language is a component element of communication between the mute and hearing-
impaired communities that are indispensable to them, but it is mostly closed-off to the
general population. To step into that gap, the current paper outlines the design of a hybrid
Vision Transformer-Convolutional Neural Network system, officially focused on Indian
Sign Language (ISL) gesture recognition, strong dynamic gestures, and face muscles. The
edited database is 1,100 video samples in 22 different classes, which were recorded in the
heterogeneous environmental conditions, to provide the robustness. The empirical findings
indicate that the hybrid model has an exemplary training accuracy of 100%, validation
accuracy of 88.6%, and a test accuracy of 82.14% and thus outperforms the state-of-the-art
that provides accuracy of 88.7% to 92% of training accuracy. Proposed system thus
achieves enhanced accuracy by 7-11% in case of continuous sign gestures. Through this,
inclusivity and accessibility to the deaf community are thereby enhanced and future
possibilities involve data enhancement as well as the integration of NLP-based text-to-

speech synthesis.

1. INTRODUCTION

Sign language is a highly dense, visually based interaction,
whose effectiveness is predetermined by a highly organized
system of hand gestures in space and the concomitant use of
musculature of the face, eye movements, articulatory gestures,
and other non-manual signatures, which gives the speech of
sign language an artistic shift of power [1]. There have arisen
all over the world three hundred or so different sign systems,
each of them diversifying iteratively in the specificity of the
geographical region, the texture of the culture, and the subtlety
of the language. Similar to the idea that is presented in spoken
tongues of lingering dialects and accent, sign languages
display substantial deviation when it comes to gesture
construction, sequential correctness, idiomatic expression, and
non-manual semiotic adornment. Especially, it is worth
mentioning that Indian Sign Language (ISL) takes a prominent
place in the South Asian linguistic landscape, which is the
symbol of diversity and epistemic richness that defines the
spectrum of sign languages [2]. Whereas sign languages can
be coarsely categorized into the group of static gestures, where
the hand shapes are created by one or both hands, and the
group of dynamic gestures, where the temporal movement of
the hands and the variations of the expression are added, the
overwhelming part of the extant research has either
overemphasized the former classification or oversimplified the
current systems of gestures. This chauvinism poses a great gap
in full identification of the broader spectrum of sign language
that embraces facial expression and other more elaborate body
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languages [3]. Furthermore, the dominating paradigms are
based on the recognition of transient manual movements or on
those that are written in a speech form, thus overlooking the
complete repertoire of sign-language communication and
limiting the effectiveness of human-computer interaction
systems that have been developed to correspond with the deaf
community. There is an urgent need for powerful sign
language recognition systems that go beyond the rigid gestures
and written texts. We aim to develop a state-of-the-art solution
that could understand dynamic sign language sufficiently well
to include subtle facial expressions, among others, with the
employment of state-of-the-art deep-learning algorithms.
Precisely, this paper aims to:

1. Propose and combine a Vision Transformer (ViT) to
enhance the Convolutional Neural Network (CNN) ability to
identify sign language in video footage.

2. Use a sample of naturally deaf and trained Sign Language
speakers so as to incubate the intricacy of sign languages as
they are truly utilized.

3. A gap in the existing work of research will be resolved
by focusing on dynamic, continuous signs with non-manual
attributes, thus going beyond the static signs and crude
gestures that have been prevalent in the literature.

The contribution to this paper is introducing a video-based
sign-language recognition model which uses Vision
Transformer to process dynamic signs, facial expressions of
nuanced appearances and other non-manual societal readings.
In this way, we get the field to a stage where it is not
constrained by its own limitations, where more inclusive and
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effective solutions to human-computer interaction are possible
that realize the richness and the complexity of the sign-
language interaction. After this introduction, Section 1 is the
review of related work in sign-language recognition. Section-
2 explains the suggested methodology and elaborates on how
it will address the challenges mentioned. Section 3 describes
the architecture of Vision Transformer and its video
recognition application in detail. Section 4 describes and
discusses the results of the experiment. Finally, Section 5
wraps up this research providing a summary of the main
findings and future research avenues.

2. RELATED WORK

Early manual gesture recognition has been based on
compositional and model-based methods. As an example,
Heap and Hogg [4] built up a hand model that is deformable
and in 3D, and considered the Principal Component Analysis
(PCA) to align a dynamically scaled template to observed
images, allowing tracking motion of a hand in real-time.
Although this method served as a great base to have precision
in tracking, it was unable to manage scale, rotation, and
occlusions. Complementary compositional practices also
employed principles of perceptual grouping in describing hand
postures by combinations of hand parts but these too had
pragmatic obstacles as complex scenes were dealt with. The
later works dealt with the static recognition of gestures using
contours and special hardware. Lee and You [5] made use of
the wrist bands to segment the region of the hand and used an
algorithm to match and classify. They were however sensitive
in terms of background color and not robust in problematic
environments. Chevtchenko et al. [6] also used a multi-
objective evolutionary algorithm for the features sets and
dimensions optimization, using Gabor filters and Zernike
moments to reach accuracies up to 97.63% in 36 static gestures
in a position. Huang et al. [7] target interpreting sign language
into text or speech using a novel 3D CNN method
automatically extracting discriminative spatial-temporal
features from raw video streams. Deep learning models
triggered the adoption of more advanced architectures as the
transition was made to video-based recognition and dynamic
gestures. Vision Transformers (ViT) was an attractive
alternative to Conventional Neural Networks (CNNs), and
sometimes they outperformed them in precision and speed. On
the same note, Lai and Yanushkevich [8] used CNNs together
with recurrent neural networks (RNNs) to use both the spatial
and time data, and they obtained the highest accuracy of
85.46% with depth and skeleton data. Kamruzzaman [9] used
ResNet50 and MobileNetV2 to do Arabic sign language
achieving a combined accuracy of 98.2. Based on data
augmentation mechanisms through CNNs, Zakariah et al. [10]
and Zhang et al. [11] boosted the American sign language
recognition and reached an accuracy of 99.52%. These
strategies were further applied by other scientists to other sign
languages and methods of feature extraction. Recently, De
Coster et al. [12] incorporated OpenPose with a multi-head
attention mechanism to get 74.7 percent accuracy on Flemish
Sign Language. Vaswani et al. [13] designed a CNN that was
used to identify hand gestures in small scale image begging
mind hand gestures on a simple background, which achieved
an accuracy of 97.1%. Shenoy et al. [14] performed skin color
segmentation and grid-based feature extraction to identify the
ISL gestures which were using k-nearest neighbors (KNN) and
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hidden Markov models (HMM) with remarkable success.
Katoch et al. [15] used a Bag of Visual Words (BOVW) model
that was coupled with CNNs and SVMs to recognize ISL
letters and digits whereas Rokade and Jadav [16] used a
combination of skin color-based segmentation with artificial
neural networks (ANN) and SVMs to obtain robust
fingerspelling recognition in ISL. Nanivadekar and Kulkarni
[17] created an ISL database and proposed a hand tracking and
segmentation based on three step algorithm. Badhe and
Kulkarni [18] implemented an ISL gesture translator using
hand tracking with combinational algorithm and recognition
done using template matching. Badhe and Kulkarni [19] have
proposed handcrafted feature extraction method for SL
recognition where complex grammatical rules are captured
with 98% accuracy. In addition to hand gestures, Kashika and
Venkatapur [20] used deep learning as a way to detect objects
on the panoramic video frame and Tran et al. [21] studied face
recognition relying on SVM, but another team [22] proposed
a new method of detecting objects. Sreemathy et al. [23]
showed that deep learning could be used as an ICT method of
identifying the signs of the ISL in English. Das et al [24]
combined the handcrafted features and CNN-extracted
features to counter the problem concerning the same hand
orientations and different viewing angles. Sharma et al. [25]
emphasized that transfer learning is efficient in the context of
sign language recognition, and Liu et al. [26] explored the
detection transformers which also has a feature extraction
pyramid network in order to improve recognition
performance. Al Essa et al. [27] proposed an approach of multi
connect associative memory for recognition of American
Signs. This approach solved a problem of misclassification of
static signs which are too similar in gestures.

This changing arena of methodologies between early hand-
modeling methodologies and more recent transformer-based
architectures is indicative of a dynamic research domain. The
limits of hand gesture and sign language recognition are
constantly being extended with the integration of Vision
Transformers, more advanced CNNs, and hybrid models, as
more focus is placed on more advanced and sophisticated
solutions. It is hoped that these developments can enhance the
precision, flexibility, and applicability of sign language
systems, which will favor more inclusive communication, and
broaden the possibility of human-computer reaction under a
variety and dynamic setting.

3. METHODOLOGY

Conventional CNN-based models which have historically
been used in image and video tasks have good local feature
extraction properties. Nevertheless, they in many cases use
sequential feature summation (e.g., through RNNs or 3D
convolutions) to do so, which can be costly and not always
optimal to establish long-range correlations in videos.
Whereas purely transformer-based schemes (ViT) can capture
both the global and temporal context and find local differences,
they can ignore small variations in local context that can
distinguish similar gestures.

Through the incorporation of CNN layers into the ViT
structure we have been able to maintain the local pattern
recognition capabilities of CNNs whilst still exploiting the
VIT capability to capture multi-frame complex temporal and
contextual interactions. This synergy does enhance
recognition and is especially accurate with complex ISL



gestures which are based on both fine-grained hand
configurations and complex temporal patterns.

CNN-Only Models:

CNN-based methods in pure form might be too restricted in
terms of ability to realize the temporal global context unless
other components, including RNNs or 3D convolutions, are
added to them. In our initial experiments, we found that,
because of the rich spatial feature retrieval capabilities of 3D
CNNs, their performance in interpreting long sequences of
behaviors was lower than that of the ViT-based counterparts.

RNN or LSTM-Based Models:

Though RNNs or LSTMs are capable of modeling temporal
sequences, they can be more susceptible to such problems as
vanishing gradients across long videos and even less efficient
than attention-based models. Initial experiments with CNN-
LSTM hybrids provided decent performance at the price of
increased training time and reduced modeling capabilities of
complicated time-dependent dependencies.

Pure VIiT Models:

Pure VIiT models are superior in modeling long-range
dependencies. Nevertheless, they do not have any local feature
extraction element and hence do not pick up finer details such
as minute movements of the fingers or micro-expressions on
faces. Experiments on our part showed that the general fine-
grained recognition accuracy was enhanced with the addition
of CNN layers, especially in harsh backgrounds.

Altogether, the hybrid ViT-CNN solution provides a middle
ground solution based on global time modeling (transformers)
and local space feature extraction (CNNs). Empirical studies
demonstrate that this hybrid architecture outperforms purely
CNN-based or purely ViT-based models and are comparable
to CNN-RNN hybrids in accuracy, efficiency and
generalization to various ISL gestures.

3.1 Flow of the study

The current research aims to develop an effective ISL
recognition application that could decode dynamic hand
gestures and facial expressions on the basis of video streams
correctly. Where a large number of research focuses on
gestural frames or static gestures, this research focuses on
continuous gestural signs, including small video recordings of
1 to 3 seconds. In this direction, we choose a hybrid neural
network combining the capabilities of global attention of a ViT
with the potential of a local feature-extraction of a CNN. The
whole processing chain is described in Figure 1 and
summarized in the following parts:

3.1.1 Video capture

At the first stage, we obtain a rich set of video recordings of
deaf subjects instructing a repertoire of predetermined ISL
gestures in a range of lighting scenarios and background
settings, which is used to strengthen the later system against
environmental covariate influences.

3.1.2 Frame extraction

The videos that are captured are then divided into discrete
frames; these temporal snapshots are the two elements of the
manual component, i. e., the hand kinematics, and the non-
manual component, i. e., the facial musculature, both of which
cannot be done without reading the signs in any manner.

3.1.3. Frame counting and padding
We also come up with the frame tally of both records and
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the temporal maximum over the corpus; those videos that are
shorter are electronically padded to that temporal maximum
which normalizes the input dimension of all further processing
phases.

Inference

- 1

Video Capture

Model Evaluation

Frame ]
Conversion
l Model Training,
Validation and Testing
Counting
Maximum ]
number of Frames
& Palddm SoftMax Layer

1

Vision Transformer
Encoder

Max Pooling Layer

Landmark Detection

l ConvolutionLayer

Position Encoding

|

Mask Computation

Multi head Attention

I-’I-.I-.I

Layer Normalization

Figure 1. Block diagram

3.1.4 Landmark detection

A Boolean landmark-detection processes on each frame
provide a list of salient features, most likely to occur around
the hands and face of the signer, that provide a structured, fine-
grained image of the gestures and subtle facial expressions. A
similar approach is seen in the work of Jo et al. [28] for
enhancing gestural interaction used in virtual and augmented
reality with Media-Pipe based gesture recognition interface.

3.1.5 Position encoding

The network takes spatial context through positional
encodings to the retrieved landmarks; this process embeds
inter-point spatial relations and relative positions of anatomy
parts into the model and provides it with a better understanding
of gestural structure.

3.1.6 Mask computation

A saliency mask that gives more weight to the hand, face,
and other regions of interest is synthesized by us and
effectively reduces background clutter, sensor noise, and focal
capacity of the model, focusing attention on the informative
regions of the spatial map.

Development: ViT architecture: ViT is an architecture using
artificial intelligence (Al) to recognize images as objects and
extract information from them.

Motivation: ViT architecture: ViT is a type of architecture
based on Al that identifies objects in images and derives
information about objects contained within the image. Instead
of defining images, or sequentially ordered frames, as a set of
convolutional filters, Vision Transformers conceptualize
images as a set of tokenized patches and use multi-head self-
attention systems to encode long-range correlations and
contextual interactions. We then subdivide the extracted



frames (or their spatial encodings, e.g., landmark-based ones)
into small patches, and in this manner, a linear projection of
the patch into a high-dimensional embedding space and
positional embedding is generated.

3.1.7 Feature fusion

The unified approach of combining CNN with Transformer
follows a sequential feature encoding and fusion mechanism.
For each input video sequence, individual frames are first
processed by a backbone of CNN, which extracts fine-grained
spatial features corresponding to hand shape, finger
articulation as well as non-manual cues like facial expressions
and head orientation. The embeddings generated by CNN are
then temporally arranged and sourced as token representations
to the vision transformer where self-attention mechanisms
model long-range sequential dependancies across frames. The
transformer output is lastly fused with the CNN features by
concatenating before classification.

Mathematical Formulation of the model:

Let

X ={x1,x2,x3, ..., xT} (1)

be the video with T frames.
CNN feature extraction would be

f: = CNN(x,); where f, € R¢ )
Stacked spatial matrix is represented by:
F=[fufofs..  frl 3)
Position encoding is depicted by
Z=F+P 4
where, P is positional encoding matrix and Z is position aware
feature representation. The transformation attention spaces
query (Q), key (K) and value (V) are represented as

Q = ZWy, K = ZWy and V = ZW, (5)

The transformer output, fusion representation, and
classification equation are as follows:

Tr = Transformer (Z) (6)
Ffusion = [Pool(F); POOl(Tf)] @)
y = Softmax (W Fpysion +b) ®)

where, Pool represents global maxpooling and [;] indicated
concatination of feature vectors.

Input CNN Spatial —1

Frames Features

Input — ViT+Positional —  Temporal
Frames Encoding

Features

Figure 2. CNN- ViT fusion mechanism

The method of fusion is as depicted in Figure 2. This fusion

design enables the model to preserve fine — graned spation
discrimination through CNN feature extraction while
simultaneously exploiting the Transformer’s ability to capture
temporal features. This synergy is particularly beneficial for
dynamic ISL gesture recognition.

3.1.8 ViT and adapting to the Desired Task:

(a) Temporal Patching: Each frame or the set of landmarks
that accompanies the frame is treated as a separate token, thus
the transformer can focus on the spatial axis and
simultaneously the time axis.

(b) Temporal Positional Embedding: It makes the network
self-temporal: the network is given the ability to represent its
dynamic properties of motion and gesture development over
time by encoding order in vectors indicating frame chronology.
The application of CNN Elements and ViT Behavior:

Although VIiT is highly successful in observing the
dependencies of the world, its peculiarity of using pure
attention might not always adequately reflect local, subtle
forms (such as fine grasping configurations or subtle facial
micro-expressions). In order to address this weakness, we
utilize CNN modules as part of the ViT pipeline. In everything
hybrid, raw frames pass through a lightweight CNN that
isolates salient primitives in space: edges and textures,
contours, etc., before being subjected to the transformer. CNN
feature maps such that result are in turn fused with the ViT
embedding, allowing the transformer layers to have access to
the enriched inputs that combine the benefits of global context
framing with the benefits of distilled local detail.

3.1.9 SoftMax layer

The unprocessed output of the hybrid ViT-CNN processing
is then fed into a SoftMax classifier to recede to an emergent
representation, enabling categorical probabilities of every
gesture classes repertoire of ISL to be produced, hence
allowing decisive identification of signs with each input
sequence. To identify the relationship, the model undertook
and its strength, the tests involve training, validating, and
testing the model.

The VIiT-CNN architecture was trained and optimized on
the curated dataset of ISL and the following hyper-parameters
and regularization options were used:

o0 Learning Rate: Learning rate at the beginning will be 1e -
4 and as plateau in the validation accuracy is reached, it will
be decreased by a factor of 0.1.

0 Number of Epochs: 50 -100, based on convergence
patterns.

o Batch Size: 8-16, which was selected according to the
available memory of the GPUs and stability of the training.

0 Regularization Techniques: To address overfitting,
dropout layers (dropout rate of 0.3—0.5) are included not only
in the CNN layers but also in the transformer ones. Also, early
stopping and data augmentation are applied (e.g. random
cropping, limited rotations) to guarantee improved
generalization.

3.1.10 Model scoring

After the training process, a detailed assessment of the
withheld test split is performed where we calculate
conventional performance measures such as accuracy,
precision, recall and the F1-score to objectively assess the
efficacy of the system in both controlled laboratory and real
world background circumstances. This test confirms that the
model can be dependable in distinguishing between twenty-



two different classes of ISL gestures.

3.1.11 Inference

When its validation with sufficient accuracy is achieved, the
hybrid ViT-CNN pronounces a real-time inference feature.
Once a new video stream is consumed, the system will run
landmark extraction, positional encoding, and mask
generation sequentially and run the content through the hybrid
network, producing an estimation of a gesture and a
confidence estimate in the end.

4. IMPLEMENTATION
4.1 Database

To work out the indispensable basis of further analyses, an

Hundred

ISL database was built strictly under a carefully curated one in
the absence of a widely realized standardized corpus. A
collection of 1,100 video recordings was made of the Ali
Yavar Jung National Institute of Hearing Handicapped in
Bandra, Mumbai, of 22 different ISL gestures executed by ten
deaf signers. As our research objective demands to incubate
the intricacy of sign language in its true sense, we ensured that
the signers are naturally deaf and trained by an authentic ISL
educator. The age group of the signers is 16 to 35 and it
includes both male and female users. To make the system
robust to variations like background, lighting conditions and
signer bias, we recorded the videos in various backgrounds
like — Classrooms, Personal desks or Cubicles. The lightning
condition was not controlled. Also, sampling ensured to
enclude left domninant as well as right-dominant users. Some
recorded gestures are as shown in Figure 3.

Thousand

Figure 3. Twenty-two Indian sign language gestures (Image format)
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Figure 4. Vision Transformer (ViT) Architecture (Source: https://viso.ai/deep-learning/vision- transformer-vit/)
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4.2 Vision transformer implementation

ViT as shown in Figure 4 was thematicized to accept video
analysis by dividing each frame into temporal patches,
projecting the patches into linear representations, and
encoding the latent with positional encodings through which
the temporal structure of the video can be identified in the
footage. The resulting ViT encoder, which includes the Layer
Normalisation, Multi-Head Self-Attention, and Multi-Layer
Perceptrons, converts the tokenised embeddings into an
overall representation that can be subsequently used by
classification tasks occurring downstream.

The hybrid model provides the advantage of using both the
global attentional attributes of ViT and fine-grained local
feature extraction of CNN layers when combined with CNN
features. The empirical analysis in the following passages
indicates that this combined method is more accurate in
recognition than the baseline CNN and CNN-RNN methods.
When recovered with the local detail extraction by the CNN,
the ViT would provide its ability to model long-range temporal
dependencies, in the form of an architecture that is very
sensitive to the complexities and subtleties of ISL gestures.

In order to come up with a very efficient hand-gesture
recognition framework based on the Vision Transformer, a
systematic approach was adopted that entailed careful data
segmentation, intensive training, meticulous validation and
extensive testing as well. The second part of the paper outlines
the approach used to divide the available data, training,
validation, and evaluation processes of the ViT recognition
model.

Dataset Splitting

It is comprised of a corpus of 1,100 videos (portraying 22
different ISL gestures) that were recorded in varying
conditions on ten deaf signers. To obtain a firm estimation of
the model performance and ensure that there is generalisation
to new data, the data was categorised into three mutually
exclusive data subsets using subject wise split technique,
including training data, validation data and testing data.
Samples from the same subset were not shared across various
subsets. The subjects used for training and validation were
completely excluded from the testing subset ensuring that the
model is evaluated on unseen subjects, reflecting real world
deployment scenario.

Training Set (80%):

The training subset was provided with approximately 880
videos. This large assignment ensures that this model is left
open to numerous background variations, signer idiosyncrasy
and subtle gesture dynamics. This diversity makes it easy to
extract meaningful spatial-temporal patterns, and the resulting
learning of the complex hand movements and facial
expressions that are characteristic of ISL recognition becomes
resilient.

Validation Set (15%):

There was also a set of 165 videos that would be held back
as a validation set. This data, used in isolation from the training
phase, is used to monitor the performance of the model in an
iterative way. The validation set provides feedback in time by
evaluating the accuracy, loss and (where applicable)
specialised metrics at the end of each training epoch.
Whenever metrics become stagnant or worse off, then it is an
indication that metrics require adaptations of hyperparameters,
architectural parts or regularisation methods to reduce either
over-fitting or under-fitting.

Testing Set (5%):
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Finally, the testing set of 55 videos was left to be included
in the final set and serve as a purely unseen control. This
conclusive analysis establishes the capacity of the model to
extrapolate under new cases and provides an approximate
estimate of its effectiveness in the real world and practical
situations. With the help of a small but representative test set,
end metrics such as accuracy, precision, recall, and F1- score
are exact measures of the performance of the model on unseen
data.

The selected split ratios summarise a trade-off between
maximizing training data to encourage robust learning and
having adequate examples not seen to be validated and tested.
Even though the fraction of the test can be viewed as small,
the videos of the 55 types altogether are a headlong summation
of the variegated nature of the dataset and still leave the testing
phase as a strict and unbiased indicator of performance.

The Vision Transformerbert model was then trained by
starting with the 880 training videos. All the videos were pre-
processed into homogenous temporal patches and positional
embeddings and then fed to the ViT. The CNN modules used
were linked together to obtain local spatial aspects but the
attention mechanisms of the ViT extracted it alongside the
long-range association and time connection between frames.

Parameters and Procedures of training.

- Epochs: 50100 most common, and early stopping occurred
when validation measures stopped improving over a specified
patience (e.g., ten epochs).

- Learning rate: To start with, the learning rate is initialized
to approximately 1 -10-4 times and decreased by the same
factor each time a plateau is reached in the validation accuracy.

- Batch Size: Eight to sixteen, with a compromise between
speed and stability of training, due to the limitation of using
the GPU memory.

Regularisation

- Dropout: CNN and ViT layers were applied with a rate of
0.3-0.5 to prevent over-fitting through the elimination of co-
adaptation of features.

- Data Augmentation: Mild randomly spaced spatial
transformations (e.g., cropping and small rotations) were
applied as mechanisms to improve robustness and
generalisation.

- Early Stopping: Training was terminated when validation
metrics stopped improving with the increase of the number of
epochs and did not lead to needless over-training and wasted
computations.

Validation Process

The model prediction on the 165 validation videos after
each epoch was determined. Accuracy, validation loss, and,
when it is applicable, precision-recall metrics were considered
core metrics since they must identify core issues in class
imbalance or particular difficulties in gestures. The differences
in these metrics were used to perform hyper-parameter
optimization and architecture-level changes, including
learning rate schedule or dropout rate modulation.

Model Testing

After training and validation had been done, the model was
tested on the 55-video test subset. These samples that were not
observed during training and validation provided a true
measure of generalisation. Gesture predictions of the model
were compared with ground-truth gestures and the ultimate
performance indicators, accuracy, precision, recall, and F1-
score, were calculated. These outcomes have been compared
to the existing practices and reported to exemplify the
effectiveness of the model based on ViT.



Outcome and Significance

The study provides credible evidence of the validity and
applicability of the trained ISL recognition model by adopting
the comprehensive approach, including a reasonable division
of data, extensive hyper-parameter optimization through the
use of validation, and a strict final analysis of the test on
unknown data. The attained output highlights the potential of
Vision Transformers especially with CNN components, to
drive sign language recognition systems to the next stage of
being more inclusive and accessible communicative
technologies.

Model Evaluation

An integrated assessment plan was used to effectively
evaluate the performance of the Vision Transformer-based
sign language recognition model. The evaluation involved a
set of measures, such as accuracy, as well as precision, recall,
and Fl-score, thus providing detailed information about the
model effectiveness and efficacy.

Accuracy: Accuracy is a fundamental metric that measures
the proportion of correctly predicted instances from the total
instances in the testing dataset. Itis a primary indicator of the
model's overall correctness in recognizing hand gestures [21].
Mathematically, accuracy is defined as the ratio of true
positive (TP) and true negative (TN) predictions to the total
number of predictions:

TP+TN

Accuracy = ————
Y TOTAL PREDICTIONS

(€))

Precision: Precision gauges the model's ability to correctly
identify positive instances (correctly recognizing a specific
hand gesture) among all instances predicted as positive. It
focuses on the model's propensity to avoid false positives, i.e.,

instances wrongly classified as positive. Precision is
calculated using the formula:
.. TP
Precision = P (10)

Recall (Sensitivity): Recall, also known as sensitivity or the
true positive rate, quantifies the model's capacity to correctly
identify positive instances from all actual positive instances
[21]. This metric highlights the model's ability to capture all
relevant occurrences of a particular hand gesture. A recall is
calculated as:

TP
TP+FN

Recall =

(11

F1-Score: The F1-score is a harmonic mean of precision and
recall, providing a balanced assessment of the model's

performance by considering false positives and false negatives.

It offers a single metric considering Type I (false positive) and
Type II (false negative) errors. The Fl-score is calculated as
follows:

2xPrecision*Recall

F1 Score = (12)

Precision+Recall

The capabilities of the ViT based sign language recognition
model can be holistically evaluated with the help of these
metrics. High accuracy indicates a strong overall performance
and precision identifies the model accuracy in performing a
positive prediction. As mentioned, recall highlights the
effectiveness of the model in capturing all the positive
instances, whereas F1-score provides a balanced trade-off of

3307

precision and recall to rightfully consider that between false
positive and false negative.

The evaluation measures presented in the model based on
the testing data allow a deep insight into its shortcomings and
advantages. Moreover, these measures allow making strict
parallels with the current methods and standards, which allows
obtaining useful information about the possible practical
implementation of the ViT-based hand gesture recognition
system into practice related to the interaction through the ISL.

5. RESULTS

This paper is dedicated to strict analysis and subtle
understanding of naturally pre-established ISL frameworks,
and the major aim to outline the gap in communication
between the disabled population and the rest of the community.

The study combines ViT modules with traditional CNN
models by building an indigenous ISL dataset by recording
participants who are deaf and therefore enhancing the
recognition accuracy.

The sensitive application of encoder transformer avoids the
use of complicated data preprocessing, and the discriminating
addition of the ViT highlights the strength and performance
measure of the model.

Model Summary:

Table 1 provides a concise overview of the model

architecture and the cumulative trainable parameters.

Table 1. Model summary

Layer (Type) Output Shape Parameters #

Input_1 (Input Layer) (None,144,258) 0

Frame_position_embed (None,144,258) 37152

ding

Transformer layer (None,144,258) 270646
Global _max_poolingld (None,258) 0
Dropout (None,258) 0

Dense 2(None,22) (None, 22) 5698

Total Parameters: 313496
Trainable parameters: 313496
Non- trainable parameters: 0

Training and Validation Performance:

During the course of training, significant success is found.
Training accuracy reaches amazing 100°, which shows the
ability of the model to generalize the training data. The
training accuracy is 95, and the recall is 92 with the resulting
Fl-score of 0.95 in 1,393 epochs. These measures highlight
the capability of the model to pick the positive instances
correctly and have a balance between the precision and recall.

During validation stage, the model maintains a healthy
performance. The agreement of validation stabilizes to 88.60
per cent, and the precision is 87 and the recall is 86. Validation
F1-score: 0.89, realized in 2,987 epochs. These statistics show
that the model is a good generalization, which can still
maintain a good performance when it is applied to data that is
not seen.

Construction:
Analysis:

The model when rigorously tested on another set of 55
videos gives a testing accuracy of 82.14. Accuracy is 81.89,
and recall is 81.36 with an F1-score of 0.81 in 3,000 epochs.
Such findings support the effectiveness of the model in
identifying ISL gestures in real world situations.

testing Performance and Comparative



These performance metrics point out the consistency of
proficiency of the model in training, validation and testing
phases.

Table 2. Model performance

Phase Training (880 Validation (165  Testing (55
Videos) Videos) Videos)
Accuracy
(%) 100 88.60 82.14
Precision
(%) 95 87 81.89
Recall (%) 92 86 81.36
F1-Score 0.95 0.89 0.81
Epochs 1393 2987 3000

Class -Level Performance and Error Analysis:

To gain more insights, the performance of the model was
analyzed according to the classes, presented in Table 2. And
Figure 5 can be seen as the confusion matrix. The results
evidently show strong validation of the system’s suitability to
correctly classify signs like Namaste, Hello, Danger, Help Me,
and I am Hungry. This proves the system’s ability to perform
practical ISL translation as the signs included are for: Greeting,
Emergency Communication and conveying basic needs.
Classification summary indicated that the features which are
visually and dynamically distinct lead to near- perfect
separability. The most contributing features to classification
are Hand Shape, Orientation, Motion Pattern and Semantic
uniqueness of the gestures. Although the majority of classes
have high F1-scores, some of the classes such as “Ten” have
relatively lower F1. In order to gain more insight into these
discrepancies, a confusion matrix was obtained, as shown in
Figure 5. The confusion chart demonstrates that gestures with
similar hand shapes or orientations were wrongly classified
quite often. The confusion matrix has strong diagonal

dominance. An example is that the model was more likely to
confuse the signs that have similar fingers arrangement or
indicate slight rotations in their hands.

Some of the difficult classes include, but are not limited to,
classes: Ten and Nine which exhibit a significant level of inter-
class confusion as a result of the fact that these two classes are
similar in their hand shape and position. Equally, those signs
that require rapid changes or faint body expressions were also
mistaken. The model may not be able to differentiate between
gestures that are differentiated by slight variance in finger
positioning or slight movement of the wrist and such therefore
will be misclassified. The classification results can be grouped
in 3 distinct categories. Group A: Perfectly Classified Classes,
Group B: Moderately Strong Classes, Group C: Weak Classes
as seen in Table 3. We can see that the gestures where
distinctive sand shapes and motions are dominant have been
precisely classified with a high F1-score. The gestures where
partial feature overlap is possible within the neighboring
frames are moderately low in F1-score. The most misclassified
signs are too similar in nature. The hand posture, orientation
and visual similarity between the signs One, Ten and Hundred
are too close. The analysis indicated that the error pattern is
not random, however semantically more meaningful. Visual
Resemblances of Gestures here stand out as a possible cause
of misclassification. Little movements in bending fingers or
the position of thumbs can be very hard to detect by the model.
The results demonstrate that the proposed framework achieved
excellent recognition for emergency, basic need and other
conversational gestures, while giving challenges in some
numeric sign gestures with similar visual patterns due to high
inter-class similarity and subtle articulation differences.

Even specific refinements (like a more careful data
augmentation, better landmark detection, or using other cues,
like depth or skeleton data) can be made by looking at cases of
misclassification and understanding their causes.

Confusion Matrix with Class Names

India - 1 o a0 o o a o 0
Namaste - o n 0 o 1] o 1] 0 a
Hello- ¢ o] 2 o Q i} Q 4] Q
Thank You- 0 o a 1 a o a 4] L]
Please - o o a o1 o a o a
Serry - 0 o 1] [¥] 0 2 Q [y] ]
Danger- 0 o Q o Q o [u] Q
Fire- 0 0 a 1} a 1} a 1 4]
HelpMe-o © o o a o 4 a
Iam Hungry - 0 o o o a 0
One-0 ©o @ ©0 O O 0 O

Two-0 ©o o o a4 o a9 o @0

True Labels

Three-0 o 0o o a o a 0 @
Four-o ©0 1 ©0 4@ ©0 @ 0 @
Five - 0 [v] a 4] a 4] Q 4] L]
Sk-0 ©o 0o o 49 o a4 o @

Seven- 0 0 Q o] Q o ] o a
Eight- ¢ o a o Q [u] Q 1 Q
Mine - o [i} a [i} a [i} a [1} 4]
Ten-0o o 4o o a o a o a

Hundred - o o q 1} i 0 ] 0 a
Thousand - 1} a 1} a 1} a 1} [

N ]
& F T E S s
@ & < < 2
<& &£
N

> e A & @ a8
&£ F S P @
& &« 0

o

C R T - N P S~ J- SRR RN« SR 3
S 40@ ‘(o\) Q*“ c.;c:‘ Q:gz, Q}é\ t'\\(\ A g\b& o"‘&o

Predicted Labels

Figure 5. Confusion matrix



Table 3. Grouping of classes as per performance of the recognition

Group F1-Score Gestures Included Gestural Characteristics
India
Namaste
Hello
Ds:rfgr}e]r Distinct Hand Shapes and Motions
A (Perfectly Classified) Approx 100% Low Intra Class Variations
Help Me L
Low Intra Class Similarities
I am Hungry
Two
Five
Eight
Thank You
Fire
Three L . . .
Four Partial .Vlgual overlap with ne1ghb0'r1.ng frame
B (Moderately Strong) 65-85% Six Similar finger counts or transitions
Variation in signing speed and orientation
Seven
Nine
Thousand
One Single Finger Count
C (Weak Classification) Less than 50% Ten Similar hand position/ posture
Hundred Visual Similarity

Table 4. Class wise performance

Accuracy Precision Recall

Class Name % % % F1-Score
India 100 100 100 100
Namaste 100 100 100 100
Hello 100 100 100 100
Thank you 96 80 100 89
Please 100 100 33 50
Sorry 100 100 100 100
Danger 100 100 100 100
Fire 95 67 100 80
Help Me 100 100 100 100
I am Hungry 100 100 100 100
One 70 50 62 50
Two 100 100 100 100
Three 100 100 67 80
Four 93 50 100 67
Five 100 100 100 100
Six 100 100 67 80
Seven 94 50 100 67
Eight 100 100 100 100
Nine 60 50 100 67
Ten 50 33 33 33
Hundred 50 50 33 40
Thousand 92 50 100 67

By examining misclassifications as depicted in Table 4 and
understanding  their  underlying  causes, targeted
improvements—such as more elaborate data augmentation,
refined landmark detection, or incorporating additional cues
(like depth or skeleton data)—can be implemented.
Consequences of the Real-World Usage:

The noted matter of confusion has an important implication
for the usage of the sign recognition system in the life
environment. This is a must in the daily communicative
interactions of a system where slight differences in gestures
must be dealt with high accuracy. In other settings, including
educational institutions, clinical facilities, or customer service
touchpoints, misclassification of a particular gesture could
trigger the occurrence of an expensive misunderstanding. This
may lead to a necessity on the part of practitioners to embrace
more vivid signing conventions, or the training corpus may be
expanded by engineers to a wider cohort of signer
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heterogeneity and ambient environmental situations.
Future work could be done by increasing the size of the
corpus to include a wider range of difficult gestures examples.
Adding multi-modal sensors of sensory data (depth sensors
or skeletal tracking) to provide a more detailed context system.
Optimizing the hybrid ViT-CNN like in a cross-head, i.e.,
adding to the model, to reinforce its local element extraction
capabilities, especially on gestures of nearly the same shape.
Implementation of domain adaptation measures so that
there is robustness to the context environment interactions and
variations in the background.

6. CONCLUSIONS

This research predicts the existence of a major gap in
current academic literature. The literature corpus on the
subject has concentrated mostly on the static sign, which
places minimal interest in the dynamic sign on which the
associated facial expressions have a significant role. Our
question, on the other hand, takes the holistic approach to ISL
recognition, at the same time looking to the changing gestures
and the fine nature of the role of facial expressions.

Based on the idea of augmenting existing CNN techniques
with the ViT, our methodology provides efficient
classification of a wide range of gestures, which does not
require large-scale data augmentation or transfer learning. The
efficiency results in a decrease in training time and
computational complexity hence curbing problems that are
common in recurrent architectures.

Our proposed framework is efficacious as well as evidenced
to have attained a validation accuracy of 88.60 and a test
accuracy of 82.14 which are performance metrics exceeding
the present-day state-of-the-art. A case study that was done by
ablation proves that convolutional encoding shows significant
improvement on accuracy in the recognition of ISL. Going
forward, we will explore an expanded range of pre-trained ViT
frameworks by increasing recognition accuracy further.
Furthermore, we would increase the dataset to cover a more
diverse range of dynamic signs and facial expressions. In
addition, the introduction of Natural Language Processing



(NLP) as a text-to-speech processing solution and the creation
of a user-friendly graphical user interface (GUI) are inscribed
as some of the major goals, which will expand the application
and availability of the suggested method.

By focusing on dynamic gestures and facial expressions,
this study essentially draws attention to a significant gap in the
field of sign language recognition. The effective application of

ViT

methodologies will not only find the way to create

superiority over traditional CNN methods, but also set the path

to make
interpretation,

in
to

significant
thus

developments
contributing

sign
more

language
inclusive

communication between various communities.
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