Z‘ I El' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 12, December, 2025, pp. 3287-3300

Journal homepage: http://iieta.org/journals/isi

Adaptive Graph Convolution Deep Learning Model for Multilingual Hand Sign Recognition |

with Texture and Frequency-Based Features

Check for
updates

Ishrag Abdul Alameer**® Nidaa A. Abbas?, Mehdi Ebady Manaa®*

! Department of Computer Science, Faculty of Women Science, University of Babylon, Babylon 51002, Iraq

2 Department of Software, Faculty of Information Technology, University of Babylon, Babylon 51002, Iraq

3 Department of Information Networks, College of Information Technology, University of Babylon, Hilla 51002, Iraq
4 Intelligent Medical Systems Department, College of Sciences, Al-Mustagbal University, Hilla 51001, Iraq

Corresponding Author Email: ishrag.abdalmer@uobabylon.edu.ig

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301221

ABSTRACT

Received: 22 August 2025

Revised: 5 November 2025
Accepted: 25 November 2025
Available online: 31 December 2025

Keywords:

hand sign recognition, K-Nearest
Neighbors, Graph Convolutional Network,
multimodal feature fusion, texture features,
American Sign Language, frequency-domain
analysis, Arabic Sign Language

Sign language recognition facilitates direct communication between a deaf or hard-of-
hearing person and individuals who are not familiar with sign language. This paper proposes
a multilingual recognition framework based on an integration of Graph Convolutional
Networks (GCNs), standard Convolutional Neural Networks (CNNs), and recurrent models
(Gated Recurrent Units (GRU) & Long Short-Term Memory (LSTM)) to capture structural,
spatial as well as temporal information. During preprocessing the images are converted into
grayscale; enhanced using histogram equalization and Gaussian filtering; resized-and
normalized so as to improve visual consistency across them. The system then extracts
complementary descriptors by Principal Component Analysis (PCA), Fast Fourier
Transform (FFT) and Tamura texture features, providing statistical cue, frequency domain
cue and perceptual texture cue respectively. These feature vectors build up a K-Nearest
Neighbors (k-NN) graph where each node connects its most similar neighbors in terms of
Euclidean distance forming adjacency matrix encoding local similarity patterns. The
resultant graph structure allows efficient propagation and aggregation of information inside
Graph Convolutional Network (GCN) layers strengthening discriminative representation
towards classification. The proposed approach is evaluated on Arabic Sign Language
(ArSL) and American Sign Language (ASL) benchmark datasets, where it achieves 97%
and 100% accuracies, respectively. Results show that a combination of graph-based
learning with CNN and recurrent modeling makes recognition more robust while the

modular design gives a scalable base to extend the framework for other sign languages.

1. INTRODUCTION

Sign language is a fully developed natural human language
using hand shapes, movements and orientations together with
facial expressions and body postures. It has its own grammar
and vocabulary, independent of spoken languages, but is used
for the same general communicative purposes [1].

Each sign language arises from its cultural-linguistic
community embodying particular historical social influences.
Sign languages have two big parts: manual and non-manual
signs. The manual sign has different components such as the
position, orientation, shape, and movement of the hand or
hands while the non-manual sign is about body movement
most especially facial expression. Non-manual signs are
important in specifying and emphasizing meanings carried by
manual gestures but since they provide core information
content of a message, most studies focus on manuals [2].

Sign Language Recognition (SLR) is a branch of research
aimed at the accurate interpretation of visual signing and its
translation into spoken or written language. This technology
helps reduce communication barriers for people who are deaf
or hard of hearing, between them and those who do not know

3287

sign language [3].

Most current SLR methods fall into one of two broad
camps: image-based or sensor-based. Image-based solutions
have lately become more popular for their ease of access,
friendly use, and low hardware requisites. Applying computer
vision algorithms to recognize and track hand gestures, such
systems do not need any wearable apparatus; they can simply
be implemented on any platform with a built-in camera. The
proliferation of high-quality cameras in smartphones, tablets,
and laptops has made it easier to bring image-based SLR into
every day on-demand communication applications [4].

The basic motivation of sign language is in its function as
the natural medium of human interaction allowing a deaf
person to communicate self-expression involving
communication with other people and community
participation. Sign language, therefore, as the tool for social
inclusion, enables actual communication at educational, work,
or social situations. Its recognition as a complete linguistic
system develops steadily along with international movements
widening its visibility and usage [1].

The main objective of this paper is to propose a generalized
lightweight deep learning model that can be tuned to recognize

https://orcid.org/0009-0009-8929-1134
http://orcid.org/0000-0003-0172-7925
https://orcid.org/0000-0001-6498-8562
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301221&domain=pdf

any static sign language dataset. The rest of the paper is
organized as follows: Section 2 provides related works.
Section 3 describes the main theoretical concepts of this study.
The proposed model for this study is presented in Section 4.
Implementation details and experimental results are discussed
in Section 5. Finally, all the conclusions from this study are
explained in Section 6.

2. RELATED WORK

Many works have been carried out in the area of sign
language recognition due to this perpetual quest for an
effective and efficient method of recognizing hand gestures.
However, opportunities still abound in delivering results more
accurate and robust than the existing approaches can muster.
Recent research proposals attempt new techniques to clearly
detect and analyze complex hand movements so that a two-
way communication system involving somebody who is hard-
of-hearing or deaf on one end but does not know sign language
on the other can understand them. The related works are
classified into three main categories for systematic review:

2.1 Studies related to the preprocessing stage

These works focus on the initial stages of developing
grayscale and normalized images to enhance quality and
maintain consistency. Common techniques include converting
the image into grayscale, applying histogram equalization,
Gaussian Blur, resizing the image as per requirement, and
Normalization.

The main objective of preprocessing is to normalize
abnormal input conditions and eliminate irrelevant variations
that may badly affect learning stages later on. Several related
papers to this stage have been analyzed for this purpose.

Ahmed et al. [2] developed an American Sign Language
static image recognizer of 29 classes in the year 2025. The pre-
processing steps on each frame are grayscale conversion,
resizing to 224 x 224 pixels, normalization of the range 0-255
to [0,1], and noise removal by Gaussian/median filters. Three
Tamura texture (descriptors- coarseness, contrast,
directionality) are fused with raw image data at input level and
fed into a pruned ResNet-50 backbone. Sequential Feature
Selection further refines these features while tuning
Generalized Additive Model (GAM) classifier using tenfold
cross validation scheme. Average accuracy over all letters is
about 96.7%.

Authors emphasize that this shallow Tamura—ResNet50—
GAM hybrid comes close to YOLOv3-like deep detectors yet
low resource hungry, however real time deployment plus
generalization outside ASL dataset remain open issues.

In 2024, Abd Al-Latief et al. [3] first converted the RGB
frames into grayscale, enhances the local contrast through
histogram equalization, reduces noise, and then applies a
contour-based segmentation method to crop out the hand
region; finally resizes the cropped region to 50x50 for
classification.

It thereafter applies WAR-Strategy meta-heuristic that
prunes features and fine-tunes six classical ML classifiers-in
achieving accuracies of 93.11-100% on American, Arabic,
and Malaysian static-image datasets with training times
reduced to 0.038—10 s across these dataset languages-with sub
second inference on some models as clear strengths but is still
limited to isolated frames with conventional ML pipeline

3288

scalability ceiling inherited.
2.2 Studies related to the feature extraction stage

Research in this category aims to identify and extract the
most discriminative features from hand gestures, either
through handcrafted descriptors or learned representations.
There are many previous studies within this stage, the feature
extraction stage.

In 2023, Park et al. [4] employed a combination of 2D-
FFTand convolutional neural networks (CNNs) to address
complex hand gesture input and noise caused by the external
environment. 2D FFT have been used to convert time data
(image) into frequency domain then applied normalization and
resizing. The method’s reliance on specialized radar hardware
is an additional cost and a five-word vocabulary limits broader
sign-language applicability.

In 2023, Ahmed [5] introduces a hybrid Tamura—SIFT
pipeline for texture features. The Tamura descriptors provide
perceptual global cues (coarseness, contrast, directionality),
and SIFT injects scale- and rotation-invariant key-points that
represent fine local structure. Feature-level concatenation
forms a composite vector that carries global statistics united
with local gradients. It beats every single descriptor under
changing illumination, scale, and view by a good margin in
standard benchmarks. The richer signature improves retrieval,
segmentation, and object-recognition accuracy across multiple
datasets. The major limitation of the method is its high
computational cost which restrains real-time deployment.

2.3 Studies related to the classification stage

This group covers studies that design and evaluate models
for mapping gesture inputs to particular sign language classes.
Models run the gamut from baseline SVMs and k-NNs up to
state-of-the-art deep learning models, including CNNs and
even Graph Neural Networks (GCNs). A couple of papers also
venture hybrid models toward accuracy and generalization
enhancement.

In 2024, Miah et al. [6] proposed a two-stream GCAR
model in which an effective combination of spatial and
temporal information is achieved through GCN, sep-TCN, and
channel attention. The architecture produces very high
accuracies on big largescale datasets such as WLASL and PSL
because it represents full-body dynamics and was designed to
effectively manage joint discontinuity drawbacks. However,
results remain modest for ASLLVD and this cannot be applied
in real-time due to the complexity of the model.

In that year, a three-layer GCN with successive residual
connections applied to 21-landmark hand graphs attains 99.1%
accuracy on the ASL-Alphabet dataset. The model is
lightweight, enjoys stable gradients, and resists over-fitting,
but it speaks only to static letters, ignores temporal dynamics,
and generalizes poorly outside of America where the landmark
detector typically does not work [7].

In 2023, Vasudevan et al. [8] introduced WaveMesh
superpixels and WavePool pooling as inputs to SplineCNNs
that outperform SLIC on MNIST, Fashion-MNIST, and
CIFAR-10. The method has strengths in adaptive multiscale
graph construction but suffers from computationally
expensive wavelet preprocessing per image, requires tuning
for each image, and has not been tested on skeleton-based
sign-language data.

In 2022, Han et al. [9] proposed Vision GNN (ViG) as an

image backbone representing each patch as a graph node and
by alternating Grapher and FeedForward blocks to overcome
the over-smoothing problem. ViG-S achieves 82.1 % Top-1
on ImageNet. Its strength lies in scalable patch-level graph
reasoning that flexibly models spatial context. However, the
use of fixed k-NN graph construction and the computational
overhead of graph building, along with larger model variants,
may limit its suitability for real-time sign-language
recognition, which requires fine-grained hand-joint modeling
and temporal information.

3. THE MAIN THEORETICAL CONCEPT

Much of what follows is a definition of the key terms that
will enable the avoidance of ambiguity in describing the

research methodology and thus establish the level of
robustness that can be attained, besides helping others repeat
the work. By specifying how each abstract concept is
measured, fair comparison with other research becomes
possible. This upfront clarity helps to lay a solid groundwork
for later stages—for example, data preparation, model design,
and performance evaluation—so that every step can be
transparently examined, critiqued, and improved upon in
further investigations.

3.1 Datasets

Two global datasets, American Sign Language and the
Arabic Sign Language (ArSL) downloaded from Kaggle and
used in the experimental. Each dataset is divided into training
and testing.

fa khaa

thaa saad

kaar

ult

Figure 2. Random sample of the Arabic Sign Language (ArSL) dataset

3.1.1 American Sign Language dataset

The ASL dataset which has been used in the study has been
taken from the Kaggle repository and is available at
https://www.kaggle.com/datasets/asl-
alphabet/asl_alphabet_train. The dataset has been divided into
training and testing subsets. Particularly, the data for training
contains 29 different classes or labels corresponding to 26
alphabetical letters from A through Z plus three extra
categories labeled as "Space," "Delete," and "Nothing." Figure
1 provides an example of this data that clearly shows what kind
of images there are and how diverse they can be.

3.1.2 Arabic Sign Language

The ArSL has been sourced from Kaggle at
https://www.kaggle.com/datasets/cherryshadO/arasl-database-
54k-final_and then further divided into the training and testing
sets. It contains 54,049 images that belong to 28 different
classes, where every class signifies a letter of the Arabic
alphabet. Because generalization requires variation in hand
shape as well as orientation, images have been taken from 40
signers. An example excerpted in Figure 2 demonstrates both
manifoldness and features of the dataset.

3.2 Preprocessing concepts

3.2.1 Grayscale conversion

Grayscale takes away color information and keeps the
strength of light at every pixel. It makes it efficient and less
complex so as to allow analysis based on texture and intensity.

Iyray(x,y) = 0.299 * R(x,y) + 0.587 x G(x,y) + 1
0.114 = B(x,y) M

This formula reflects the way brightness is perceived by the
human eye. In grayscale, data is reduced to a fair amount and
content structure of the image comes out which is usually more
important for pattern recognition than color [3].

3.2.2 Histogram equalization

Histogram equalization is a method of readjusting pixel
intensities such that contrast can be improved. It helps in the
visibility of features by ensuring that pixel intensities are well
spread within the available intensity range. It helps to a great
extent in improving the clarity of the image, thus facilitating
better feature extraction and classification accuracy.

se=(L -1 =3}, () @
where,

e s,: The newly equalized intensity value.

L: The number of total intensity levels.
pr(7;7): Probability of intensity level 7; occurring.

This becomes particularly handy when the image is too pale
or lacks enough brightness. It redistributes the values of
intensity, hence more details on texture and edges which
become visible to the model [10].

3.2.3 Gaussian blur
Gaussian blur helps smooth out image noise using a
weighted average around each pixel.

1 2

2mo?

x%+y
202

G(x,y) = 5—exp (-) 3)

3290

where,

e G(x,y): The value of the Gaussian kernel at point

(x,).
g: Standard deviation of the Gaussian distribution.

By softening edges and reducing small pixel variations, it
allows the model to focus on significant patterns instead of
reacting to random noise. It provides smoother, cleaner
images, aiding in accurate detection of meaningful features
[11].

3.2.4 Image resizing

Images were equally adjusted to one size by interpolation.
It keeps all the images at one standard, fulfilling the size
requirement of analytical methods and neural networks as
input. It assures consistency, making direct comparison
between images possible and feature extraction steady [3].

3.3 Features extraction methods

3.3.1 Principal Component Analysis

PCA is a statistical technique increasingly popular for
applications such as dimensionality reduction, visualization,
noise filtering, and decorrelation. Therefore, in the context of
this study, PCA has been used as a feature extraction method
that will output DE correlated, energy ordered coefficients
(scores) carrying the most discriminative variance. These
coefficients will now be considered extracted features to be
used in classification rather than reducing dimensions [12].

Y=WTxX 4)
where,

e X:represents the original high-dimensional image data.
W . is the matrix of principal components
(eigenvectors).

Y : represents the transformed, lower-dimensional
features.

PCA finds the principal directions in the data where
variance is high. It does not emphasize dimensionality
reduction but rather feature extraction, such that the most
significant variance is preserved. By choosing these top
components, a small feature set is obtained which has high
representation and hence improves both efficiency and
accuracy in the classification process.

3.3.2 Fast Fourier Transform
FFT takes an image from the spatial domain to the
frequency domain.

ux vy
F(u,v) = M3 SN2 £ e, y)e 2))
where,

o f(x,y): Intensity at pixel (x,y).

F (u,v) : Frequency domain representation at (u, v).
M, N : Width and height of the image.

This change exposes recurring patterns and structural
regularities that were not visible in the original pixel
arrangement. A lot of textures have special frequency marks,
and FFT does a great job picking up those differences, giving
the model extra ways to spot texture-based differences. It gets
frequency-based features, offering views into structural and
textural qualities not clear in spatial areas. It boosts feature
discrimination abilities, helping in getting classification right

[4].

3.3.3 Tamura features

Tamura features are conceived as classical, manual texture
descriptors, from perceptual principles of human vision. They
were designed to approximate the psychological dimensions
by which humans perceive differences in texture and thus
encompass both low-level statistical variation and high-level
structural properties of images. Tamura features go beyond
purely statistical measures in the sense that they emphasize
textural perception dimensions—granularity, regularity, and
orientation—for image analysis applications such as content-
based image retrieval, classification, and recognition.
Standard six Tamura features are Coarseness, Contrast,
Directionality, and Line-likeness Regularity [13].

a. Coarseness (Granularity Measure)

Coarseness reflects the size of texture primitives (granules).
An image can be said to contain fine-grained or large-grained
patterns. Mathematically, coarseness is obtained as a multi-
scale average of intensities for the image. For each pixel(x,y)
give the final coarseness measure as an average over the entire
image:

Feroaseness = %Zx,y 2k@y) (6)
where, N is the number of pixels. A higher value indicates
coarser textures.
b. Variation in Pixel Intensities

Contrast measures the distribution of gray-level differences,
reflecting the degree of visual intensity variation. It combines
both standard deviation and kurtosis of the intensity histogram.
Tamura defined contrast as:

c
Feontrast = 1
(27} 4

(7

where, ¢ is the standard deviation of gray levels, and @, be the
fourth central moment (kurtosis). This ensures that both the
spread and the peakedness of intensity variations are
considered. Textures with high brightness variation will
produce higher contrast values.
c. Directionality (Orientation Distribution)
Directionality evaluates the degree to which texture exhibits
strong orientation patterns. It is based on the gradient field of
the image. Directionality is defined as the sharpness of peaks
in this histogram:
Fdirectionality =% (0, — 6peak)2(9i) ()
Lower values indicate strong directional alignment, while
higher values indicate random or isotropic textures [5].
d. Line-Likeness
Line-likeness quantifies the degree to which neighboring
pixels share similar orientations, effectively capturing linear
structures in the texture. It is based on co-occurrence of
gradient orientations.

Fline-likeness = Zi,jp(i,j)cos(Z(Hi = 6))) ©)
where, p(i, j) is the probability of two adjacent pixels having
orientations 6; and 6; . High values indicate textures
dominated by aligned linear structures.

e. Regularity

3291

Regularity measures how uniform or repetitive the texture
patterns are. It is defined as the inverse of the variance across
the other features:

1

Fregularity = (10)

1+0feqtures

where, Ofeqryres 15 the variance among the set {F.roqsenesss
Fcontrasts Fdirectionality» Fline—likeness } Regular textures such
as grids or stripes have higher regularity values.
f. Roughness

Roughness is a composite measure that integrates both
coarseness and contrast, reflecting the overall complexity of
the texture:
(11)

FCT‘D(ISETLESS + Fcontrast

Froughness =

This measure is essential for distinguishing textures that are
visually complex from those that are smooth [2].

3.4 Graph construction theory (K-Nearest Neighbors
algorithm)

K-Nearest Neighbors is a simple powerful algorithm used
for classification, regression, and clustering. In graph-based
models (like fingerprint or image matching papers), k-NN can
also be used for clustering or neighborhood graph
construction. Each node (feature or point) connects to its K
nearest nodes based on Euclidean or similarity distance. This
builds a k-NN graph, where edges represent neighborhood
relationships. This helps in organizing data and reducing
computational complexity before classification or matching
[14].

3.5 Classification deep learning networks

3.5.1 Graph Convolution Neural Network

GCN is the most cited paper in the GNN literature and the
most commonly used architecture in real-life applications.
GCNs extend the traditional convolution operation to graph
structures by defining convolutions on nodes and their
neighborhoods. GCNs include both spatial-based and spectral-
based approaches. Spatial-based GCNs directly perform
convolutions on each node’s local neighborhood, while
spectral-based GCNs use graph Laplacians to define
convolution in the frequency domain [15].

It relies on spectral convolutions that capture global graph
properties, GCNs are widely used in semi-supervised learning
tasks like node classification, community detection, and other
graph-based tasks where localized information is crucial.
Mathematically, each layer is characterized by the propagation
rule defined by Kipf and Welling [16]:

HED =g (52ADZHO WO) (12)
where,

A=A +1I:is the adjacency matrix with added self-
loop.

D:is the degree matrix of A.

H®: is the feature matrix at layer .

W®: is the weight matrix.

o: is an activation function.

Class 2
Class 3
Class 4

Class N

Figure 3. Convolution Neural Network (CNN)

3.5.2 Convolutional Neural Network

CNNs are a form of deep learning specifically created for
the analysis of visual data and thus can images and videos.
They have achieved greater accuracy than traditional machine
learning techniques. CNN architectures normally comprise a
few sequential layers, including convolutional layers that
extract features with the help of filters, pooling layers that
lower the dimensionality and complexity of computation by
reducing the size of data, flattening layers that transform
extracted features into linear vectors, dense layers generating
output through activation functions like ReL U, etc. To prevent
overfitting some neurons are randomly dropped during
training using dropout layers. Figure 3 shows an example of
convolution neural network.

CNN s find extensive applications across image processing,
robotics, medical imaging, data analysis, and business
intelligence [17].

3.5.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is particularly known as
that type of RNN among the family of recurrent neural
networks which can efficiently model sequential data. It has
two major control gates: a reset gate that, if not very correctly
tuned will allow some irrelevant past information, and an
update gate that makes new input balanced with historical
context. The rules control the flow of information in such a
way that long-range dependencies can be effectively captured
and at the same time address the problem of vanishing
gradients encountered by RNNs. The GRUs are
computationally less complex than Long Short-Term Memory
networks (LSTMSs), hence providing better efficiency as well
as faster training. The temporal patterns sign language
recognition tasks can be identified by these layers and further
utilized for improving identification concerning gesture
sequences and transitions [18].

3.5.4 Long Short-Term Memory

LSTM networks extend and improve the traditional
architecture of Recurrent Neural Networks in learning long-
range dependencies within sequential data. Where basic RNNs
mostly fail due to vanishing or exploding gradients, LSTMs
avoid such limitations with specific gating architecture. There
are an input gate controlling what new information is added to

3292

the cell state, a forget gate that continuously removes less
important information, and an output gate controlling what
part of the information should be outputted at each time step.
All these features enable the LSTM model to keep relevant
context information for very long sequences and hence make
it extremely useful in tasks such as speech recognition,
language modeling, or time-series prediction [19].

They control what information comes in and goes out of the
network, allowing it to keep important context for long
sequences while getting rid of less important information.
Because they can model time so well, LSTMs are used in all
applications that need sequence processing, including speech
recognition and language modeling; and in particular sign
language recognition where the correct understanding of rather
complicated gesture sequences is crucial [20].

4. PROPOSED METHODOLOGY

Figure 4 presents the research framework of the proposed
system. It summarizes the complete pipeline, starting from
image preprocessing and feature extraction, followed by k-NN
graph construction and data splitting, then adaptive GCN
training and testing. Finally, the model is evaluated using
standard performance metrics, including accuracy, precision,
recall, and F1-score.

This study hereby develops an adaptive GCN deep learning
model which uses the skeleton keypoints extracted for one
particular word as input. The model makes a GCN network
and inserts layers of CNN, GRU, and LSTM within the
internal structure of the network utilizing their properties to
come up with a generalized powerful model that could be used
for sign language recognition. To validate this proposed
model, two comprehensive datasets covering both American
Sign Language (ASL) and ArSL were used to test how
versatile and broadly applicable it is. This framework presents
the system under five stages: preprocessing stage, features
extraction stage, training stage, testing stage, and evaluation
stage shown in Figure 4.

4.1 Preprocessing

Preprocessing of the hand sign image dataset involves steps

meant to improve visual quality, reduce computational
requirements, and provide favorable conditions for extracting
features. It starts with grayscale conversion whereby RGB
images are transformed into single channel presentations. This
reduces data dimensionality and the cost of computation while
maintaining shape and texture clues that are very relevant
towards achieving recognition accuracy. Next, histogram
equalization is applied to enhance contrast through better
utilization of the full range by setting pixel intensities to be
more evenly spread out; detail is increased on an image surface
and minute variations supporting pattern recognition become
apparent. Images are normalized whereby pixel values get
scaled within a standard range (most commonly between 0-1)

Hand sign dataset

so as to keep consistency across the entire dataset thus
enabling steady model training.

The pictures are then run with a Gaussian blur, which takes
away high sounds and smooths out unwanted looks, making it
less likely that noise will cause mistakes when getting features.
A step that comes right after normalizing keeps the same level
of data spread after this smoothing. Changing the size of the
image helps to make all examples the same size, allowing for
consistent input handling and quick calculation during both
training and testing. Another round of normalization makes
sure data is steady before going into the feature-getting and
deep learning steps, thus making the whole finding system
better accurate strong and general.

r Y
{ Preprocessing Stage: '
I]
e ™7 N it . :
: Gravscal Histogram Gaussian Blur Image
i C’r yseare Equalization & & Resizing &
E Onversion Normalization Normalization Normalization
I - s '..,h_ ___,r"l '\-‘_ '.\ A
I - T
I.\ . g
, - - = - -
.r'f Features extraction Stage: %
r L]
I]
i Tamura 1
i PCA FF1 Features :
]
I]
| 1 | ! :
1 - n
1 1
' Combine features in one csv file ,
: 1 :
I L]
I]
I]
1]
! | Construct Graph using K-NN '
]
[]
[]
=. l :
r
! Splitting 70%train 30% test ;
. mEE_—_—_—__E_=_=_=—=—= l ----------- \ /“ ------------ 1 ------------- - o

Testing Stage:

Adaptive GCN model ‘ — Trained Adaptive GCN model
' i
1
% _,' !'\ ’
F'I -- ~
' Evaluation Stage: |
[} - _— i
i

i Accuracy F1-Score Precession Recall !
]
' Measures Measures Measures Measures :
| H

Figure 4. Research framework

3293

4.2 Features extraction

The feature extraction becomes the core of a proposed
framework for sign language recognition because it describes
how the most salient and informative features are drawn out
from preprocessed images of hand signs. Three
complementary extraction techniques-PCA, Fast Fourier
Transform (FFT), and Tamura texture descriptors-are used in
this work to provide varied viewpoints on data. As the first
step, PCA is applied as a feature-extraction transform to
generate uncorrelated, energy-ordered scores that serve to
enrich representation. Only the first ten principal components
have been retained in this study as they contain most of the
discriminative information and thus represent the strongest
relevant features necessary for classification. Next, FFT will
be applied such that image information will be converted from
the spatial domain into its frequency domain. Periodic
structures and subtle variations are well captured in their
frequency domains which can never be seen from a spatial
perspective. This step helps much when periodic textures need
recognition and minute details regarding gestures are required.
Tamura features encode those texture characteristics in terms
of a human perceptual attribute with dimensions such as
coarseness, contrast, and directionality. Such subjective intake
makes the model more sensitive to fine changes in shape and
texture. Normalization ensures equal participation for all
features at this and subsequent stages, particularly when a
feature set does not overly dominate results due to scale
differentials. After normalization has been completed, these
features from the PCA, FFT, and Tamura methods are
appended together and stored within CSV files combining
such miscellaneous features into a single representation will
guarantee very wide and strong coverage over all possible
visual and structural characteristics that exist within the
dataset. Once the properties of each image have been saved as
a vector, the KNN algorithm runs between every two vectors
to find the edges among the nodes- hence, images features
vectors in this chunk by measuring their degree of closeness
so that they can be inputted into GCNs layers which require
data structured as a graph of nodes and edges. The
consolidated feature dataset is split into 70% training data and
30% testing data to comprehensively assess and validate how
well the model generalizes, i.e., on unseen scenarios and
datasets how reliable and effective recognition systems might
turn out to be.

4.3 Graph construction procedure (K-Nearest Neighbors
graph per mini-batch)

A separate graph is constructed for each mini-batch (chunk)
of the dataset in order to provide a graph structure for
subsequent graph convolution operations. The mini-batch size
is 32 and each image features vector represnts anode in the
graph. The resulting graph for each batch contains exactly 32
node. The graph is constructed using a k-nearest neighbor rule
with K=2 under the Euclidean distance, meaning that each
node is connected to its two closest neighbors in the feature
space. Because the neighborhood relation is computed
independently for each node, the resulting k-NN adjacency is
generally asymmetric and the graph is directed. The outgoing
degree of every node is fixed at 3 outgoing edges (two edges
to the nearest neighbors plus one self-loop), whereas the
incoming degree is not fixed and varies depending on how
frequently a node is selected as a nearest neighbor by other

3294

nodes.
4.4 Classification stage

All important features are extracted in previse stage to use
in the current stage. Where the classification stage is central to
the effectiveness of the proposed methodology, transforming
refined, high-dimensional feature vectors into accurate and
interpretable class predictions. To this end, we designed a
structured yet adaptable framework integrating graph-
theoretic insights with advanced deep neural network
architectures. This careful integration allows the model to
capitalize on both spatial and temporal complexities present in
multilingual hand gesture datasets, thus enhancing
generalizability and accuracy across different languages,
particularly Arabic and English.

4.4.1 Training
representation

A more elaborate graph-based recognition pipeline where a
k-nearest-neighbor (k-NN) graph injects relational structure
into otherwise independent handcrafted descriptors. In this
setup, feature vectors become nodes and edges represent
proximity under some distance metric, typically the Euclidean
distance as a special case of Minkowski. Then, information for
one node embedding can be propagated by stacking Graph
Convolutional Network (GCN) layers such that each
embedding will have not only its own attributes but also those
of the immediate local neighborhood.

Each GCN layer works by building a k-nearest neighbor (k-
NN) graph. The single feature vectors shown as nodes in the
graph, while edges show the closeness-based similarity among
these vectors. Flexible behavior is done through changing
graph updates, where joining links change during training to
best show natural data structures across Arabic and English
datasets. Figure 5 shows an adaptive GCNs model layers. The
Adaptive GCNs layers are penetrated sequentially, meaning
that the extracted features forms from each layer serve as an
entry point to the next layer.

The Adaptive GCNs model architecture that progressively
transforms hand-sign feature vectors into a robust
representation suitable for accurate multi-class recognition
across heterogeneous datasets. First, an adaptive
neighborhood structure is introduced by constructing a k-
nearest-neighbor graph, where each feature vector is treated as
a node and edges encode proximity-based similarity. Two
consecutive GCN layers then perform neighborhood
aggregation using the normalized adjacency matrix. This stage
injects relational context into otherwise independent
descriptors and enables the model to learn similarity-
consistent patterns by propagating information across nearby
nodes, thereby improving robustness to intra-class variation
and reducing sensitivity to dataset-specific capture conditions.

Next, a stack of convolution—activation—pooling blocks
refines the graph-enriched embedding's by learning higher-
level, locally compositional patterns while max-pooling
compresses the feature maps and increases invariance to minor
perturbations. A recurrent stage, implemented as a GRU
followed by an LSTM, is subsequently applied to model
sequential dependencies within the learned representations
and to capture both short- and long-range correlations, which
further stabilizes recognition under variability and improves
generalization. Finally, the resulting representation is flattened
and passed through fully connected layers to produce class

stage: Adaptive Graph Convolutional

probabilities. Overall, by combining relational learning (GCN),
hierarchical pattern abstraction (CNN), and dependency
modeling (GRU/LSTM), the proposed architecture enhances
feature robustness and is explicitly designed to generalize
effectively across multiple sign-language datasets rather than
overfitting to a single dataset distribution.

4.4.2 Testing stage

In this stage, the trained adaptive GCN model undergoes
evaluation using the test subset (30% of the dataset, as per the
provided document).

4.5 Evaluation stage

Precision, recall, and F1-score measures are also calculated
in Figure 4 explain the results of these measures for the
proposed model. It had the highest values over all these
measures.

Accuracy measures the overall correctness of the model's
predictions and is calculated as the proportion of correctly
classified instances (both true positives and true negatives)
relative to the total number of predictions. It is formally
defined in Eq. (13), utilizing the standard classification

I Qi— ﬁh Q Q
3 O o2 Gl x|l o %l oSS
S = EEN AT E S - EE L
(= == S = o= S 1S B S S
= A BT BEE] - EE] -
AL B B B B
B © OO 3|l =l siCS s(lSiE 3|l e

2 2 = =

Leaky Relu
MaxPooling2D

components: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) [20].

TP+TN

Accuracy = —
y TP+TN+FP+FN

(13)

The ratio of True Positives to All Positives is known as
precision. It is formally defined in Eq. (14) [21].

TP
TP+FP

precision = (14)

The Recall (R) is the measure of the model correctly
identifying True Positives. It is formally defined in Eq. (15)
[22].

TP
Recall =
TP+FN

(15)

The weighted average of Precision and Recall is known as
F1-score. It is calculated through Eq. (16) [23].

2.Precision * Recall
F1—score =———F—

(16)

Precision+ Recall

=) Class 0
‘ —

—- Class 1
| —_—

= Class 2
e

Conv Layer
Leaky Relu
MaxPooling2D
Conv Layer
Leaky Relu
Conv Laver

LSTM Layer
Flatten Layer

Class n
——

O
@ </
@ i
L]
L]
L]
L]
L]
O
Fully

Output

connected
Layer

Layer

Figure 5. Adaptive Graph Convolutional Networks (GCNs) model

5. EXPERIMENTAL RESULTS

Windows 10 Professional has been utilized as an operating
system. The proposed model code and other baseline models
have been written in Python 3.6.5 and are implemented using
sklearn and Keras library. All experiments have been
conducted on processor Core 17 and 8GB RAM. Two datasets,
ASL and ArSL have been used to train and test our proposed
model.

Table 1 presents the summary of the hyper parameter
settings employed during the training phase of the proposed
model.

These settings were based on empirical evaluation and best
general practices in deep learning for an optimum tradeoff
between training efficiency and generalization performance. A
learning rate of 10-3 was used so as to keep stable convergence
during optimization. The model will be trained over 50 epochs
using a batch size of 32, which gives an efficient and consistent

3295

update of model parameters. An adaptive GCNs architecture
consists of 24 sequential layers wherein convolutional
operations use a kernel size of 3 to extract fine-grained local
patterns from the input images. Such a relatively small kernel
size allows the network to conserve spatial detail while
progressively learning hierarchical representations. Adam
algorithm is used for optimization due to its adaptive learning
rate mechanism by which speed of convergence and stability
in training are balanced, hence improving the overall accuracy.
LeakyReLU is used to solve the problem of gradients not
flowing properly in deeper networks by allowing a small
gradient, when the input is negative. This proposed model uses
two GCN layers and seven CNN layers distributed among
different layers of this model. The number of filters varies
from 8 to 64 then goes down to 16. The number of protecting
layers for GRU and LSTM is 16. This will ensure better
gradient flow going through the network and will help feature
learning be better in the later layers.

Table 1. The summary of hyper parameters setting

Name Value
Learning rate 1073
No. of epoch 50
Batch size 32
No. of layers 25
Kernel size 3
Optimizer Adam
Activation function LeakyReLU
No. of Graph Convolutional Network (GCN)
layers 2
No. of Convolutional Neural Network (CNN)
filter 8, 16, 32, 64
Gated Recurrent Unit (GRU) units 16
Long Short-Term Memory (LSTM) units 16

Table 2 provide comparing the proposed Adaptive GCN
model with the results of a previous work [24] that used the
same ArSL dataset is provided.

Table 2. Comparison accuracy of the proposed model for
Arabic Sign Language (ArSL) with other research

Researches Dataset Accuracy
Adaptive Graph Convolutional ArSL 97
Networks (GCNs) model
[24] ArSL 96.05

The proposed method reached an accuracy rate equal to
97% better than the reference model by 96.05%. Numerically,
the gain is not high, but in sign language recognition tasks
where there exist subtle changes in hand configurations and
complex gesture patterns, even small improvements are quite
significant. This improvement explicitly highlights the ability
of Adaptive GCN to extract spatial relationship and structural
dependency information from hand keypoints which is
essential in distinguishing visually similar signs. This also
elaborates that the model generalizes very well across different
signers and recording conditions so as to be robust enough for
real-world applications. The persistence advantage over all
existing methods offers empirical evidence for adaptive
mechanisms' inclusion into GCN architectures toward
improved ArSL recognition in Table 3.

Figure 6 shows both the training loss and validation loss of
ArSL dataset.

ArSL_Loss
10
5
L
?.;_7 =
0 -
SN O N W O N N 0 A < SO nm W O
QO O UV Hd A A A NN AN NN TS
9 0O O O O O O O O O OO OV OV O

| 0SS val_loss

Figure 6. Loss of Arabic Sign Language (ArSL) dataset

Figure 7 shows that both the training loss and validation loss
decrease over 50 epochs of model training on the ArSL
dataset. Losses drop steeply for the first few epochs, starting

3296

with a validation loss of about 8.4 and a training loss of about
2.9, meaning that the model is able to pick up significant trends
from the data very quickly. The next several epochs see
continued decrease, though now at a reduced pace as the model
makes adjustments to its parameters. Once el5 is passed, both
curves go flat and head toward zero - an indication that
convergence has been achieved by the model itself. The small
but steady gap between those two lines suggests the model is
likely to generalize well and thus work fine on new data - no
overt sign of overfitting.

ArSL accuracy

1.5

1 -

0.5/

0
T N O M O OO N N 0 o < SN O m O O
V O UV H ™=H A A AN NN T

Q 0O O O O 9 O O O O O O O O
— 3 CC val_acc

Figure 7. Accuracy of Arabic Sign Language (ArSL) dataset

Table 3. Evaluation metrics of the adaptive GCNs model for
Arabic Sign Language (ArSL) dataset

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 634
1 1.00 1.00 1.00 502
2 1.00 1.00 1.00 537
3 1.00 1.00 1.00 490
4 1.00 1.00 1.00 517
5 1.00 1.00 1.00 501
6 1.00 1.00 1.00 587
7 1.00 1.00 1.00 511
8 1.00 1.00 1.00 586
9 1.00 1.00 1.00 478
10 1.00 1.00 1.00 458
11 1.00 1.00 1.00 466
12 1.00 1.00 1.00 532
13 1.00 1.00 1.00 482
14 1.00 1.00 1.00 550
15 1.00 1.00 1.00 529
16 1.00 1.00 1.00 546
17 1.00 1.00 1.00 498
18 1.00 1.00 1.00 568
19 1.00 1.00 1.00 491
20 1.00 1.00 1.00 452
21 1.00 1.00 1.00 545
22 1.00 1.00 1.00 551
23 1.00 1.00 1.00 539
24 1.00 1.00 1.00 475
25 1.00 1.00 1.00 412
26 0.48 1.00 0.65 388
27 0.00 0.00 0.00 412

Accuracy 0.97 14228
Macro avg 0.95 0.96 0.95 14228
Weighted avg 0.96 0.97 0.96 14228

Notice that both of training accuracy and validation
accuracy are decreased gradually over 50 epochs for the ArSL
dataset. In the first el—e5 periods, a sharp rise in both training
and validation accuracy is observed, indicating that learning
for essential patterns within the data was quick. From about e5

to el5, growth is slow as the model makes minor adjustments
toward better comprehension. After approximately el5, both
curves settle near 1.0 indicating that indeed an extremely high
level of accuracy has been attained by this particular model;
there is close overlap between training and validation
accuracies to indicate good generalization to unseen data with
absolutely no sign of overfitting.

In the classification report proves that this model is strong
and solid by getting an overall accuracy of 97% on the ArSL
dataset with a total number of test samples equal to 14,228.
For most categories from 0 to 25 it gets perfect precision, recall,
and F1-score (1.00) meaning not only very precise in guessing
the right class (high precision) but also quite exhaustive in
finding all relevant samples (high recall). Such performance
consistency gives an indication about how robust the model is
towards minute nuances of hand gesture and at the same time
keeps capability towards differentiating visually close signs.

But results for the last two classes are low. Class 26 gets 48
percent precision and 100 percent recall, which means that
though all true instances of this class have been detected, there
is a tendency to misclassify other samples from different
classes as class 26 (higher false positives). No correct
predictions for class 27 (precision = recall = F1-score = 0.00),
has fully failed to recognize this particular sign. This can be
due to class imbalance or inadequate training samples or more
intra-class variability for that sign.

Precision at 0.95, recall at 0.96, and F1-score at 0.95 macro-
averaged over all classes indicate the healthy treatment of all
classes equally; weighted averages of precision at 0.96, recall
at 0.97, and F1-score at 0.96 denote excellent overall accuracy
when more heavily populated classes are taken into
consideration.

The model shows state-of-the-art performance on most of
the classes, except those classes which are underperforming.
In specific reference to Classes 26 and 27, thereby suggesting
targeted improvements towards these particular classes
through data collection, class balancing, or improved feature
extraction.

Table 4 provide comparing the proposed Adaptive GCN
model with the results of previous works that used the same
ASL dataset.

Table 4. Comparison accuracy of the proposed model for
American Sign Language (ASL) with other research

Researches Dataset Accuracy
Adaptive GCNs ASL 1.0
[2] ASL 96.68
[25] ASL 99.51
[26] ASL 96.96

Table 4 compares the proposed adaptive generative neural
network model with previous studies evaluated on the same
ASL dataset [2, 25, 26]. The proposed approach achieves
100% test accuracy, surpassing previously reported results
(96.68%, 99.51%, and 96.96%). While these baseline criteria
are already robust in the field of ASL recognition, the
exceptional accuracy observed in our experiments can be
attributed to the training dynamics and evaluation protocol.
Specifically, the learning curves exhibit a gradual and
consistent decrease in loss across training sessions, coinciding
with a rise in validation accuracy during training, without the
abrupt drops or instability that might typically indicate
abnormal training behavior or memory-induced distortions.
This pattern is consistent with steady convergence rather than

3297

sudden spikes in performance. Furthermore, the test set was
completely isolated from the training set, and the model was
rigorously evaluated on samples it had never encountered
during the optimization process. This minimizes the risk of
interference between training and test data and supports the
accuracy of the reported test performance under the adopted
partitioning. However, we acknowledge that achieving 100%
accuracy is uncommon and should be interpreted within the
context of the dataset and protocol used.

Both of training loss and validation loss of ASL dataset shown
in Figure 8.

ASL_Loss

o N B O

Figure 8. Loss of American Sign Language (ASL) dataset

Figure 8 which actually presents the loss curves and shows
how the training and validation loss change over 50 epochs for
the ASL dataset. Loss drops sharply at first epochs (el-e5) for
both, which means that the main patterns in the data are being
picked up very fast by the model. The drop becomes slower
between e5 and e15 as the model fine-tunes its learning further.
After about el5, both curves flatten near zero meaning that the
model has converged. The close match between training and
validation loss all through training will always speak of strong
generalization whereby a model will perform well on unseen
data without overfitting.

Figure 9 illustrates the training and validation accuracy
trends over 50 epochs for the ASL dataset.

1.5
ASL_accuracy
1 =
V
/‘r
0.5"
0
T N O M W OO N N 0 A < N O MmOV O
O O UV d AJA d 4 N &N &N NN < T T
0O O O O O O O O O O O O O
— 3 CC val_acc

Figure 9. Accuracy of American Sign Language (ASL)
dataset

In the first few epochs (el—eS5), there is a quick rise in
accuracy as the model easily picks up major patterns from the
data in Figure 9. By about €7, both training and validation
accuracy are above 0.9 and after e10 they move toward 1.0.
After about e15, the curves flatten showing that the model has
settled down and is making correct predictions most of the
time. The very close tracking between training and validation

accuracy all through indicates very good generalization and
hence no overfitting that would show itself by performance

differences on training versus unseen data.

Confusion Matrix of ASL dataset

oM O 0 0 o0 0O 0 0O O OO O O O
~-0EMy 0 O 0O 0 0 0 0O 0O O O 0 O

™~ - 0O 0O 0 0O O O OO O O
m-0 0O 0 0 0 0O 0O O O 0 O
-0 0 0 0O 0 0 0 0O 0O O O 0 O
n-0 0 0O O OEss O O O O O O O O O
o-0 0 0 O O OEseg 0 O 0O O O O O O
~-0 O 0 0O 0O O OEsw O 0O 0O O O O O
w-0 0 0 0O O O O OBFEE O O O O O O
ao-0 O 0 0 0 0O O O OFEsw O 0O O O O
g- 0O 0O 0O 0O O OO O O OFEMy O O O O

o - 0O 0O 0O OO OO O O O OFEss 0O O O
_~-0 0 0O 0O O O O 0 0O O O OEMy 0O O
_8 2 -0 0 OO OO O O O O O O OEMgO
3 : -0 0 0O OO OO OO 0O 0 0 0 0EEN
$52-000000000O0OGO0GO0O0 0
= : -0 0O OO OO O O OOTUOTUOU OU OTOQO
E -0 0O OO OO O O OOTUOTUOU OU OTOQO
w-0 O 0 O O OO OO O O O0OUOTUOTU O

5 -0 0 0O OO OO O O O O O0COTO0OTUO
-0 0 0O O O OO O O OOUOU OTU OO

g -0 0 0O OO OO O 0O OO OOCOTOTUOD

2 -0 0O OO OO O O OOTUOTUOU OU OTOQO
m-0 0O 00O OGOUOTUOTGDOTUOTUOTO OO O

E -0 0O OO OO O O OOTUOTUOU OU OTOQO
n-0 0 0 0O O OO O O O OUOU OUOTOQO

g -0 0O 0O OO OO OO O O O0COTUOTUOO

2 -0 0O OO OO O O OOTUOTUOU OU OTOQO

g -0 0O OO OO O O OOTUOTUOU OU OTOQO
™~ I I I I I I I I I I I I I I I

o0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Predicted

o
(=]

o
o

o000 000000000

smlocoooocooO0O0C OO0 OO OO

-0 000000000000

h-ocococococoococoocoaoo

15
Label

w
[=]

900

o
o

800

700

600

500

- 400

smlcocoCco0oO0O0O0OO0OO0O0O0O0O0O0OO0OQO

=

=l o000 00000000000

=]
[=]
sMlocococooco o o000 00 OO0 OO0 OO

- 300

o
(=]

sl o000 0000000000000 O0O0

o
SMlo o oo oo 0000000000 00000

o
(=]
=lo 000 0000000000000 000OO0O

o
=]

- 200

O ===l leeee Rl i)

=]
sl oo o000 000000000 OO OO0

o
o

= o000 000 000000000000 OO0 OO0

o
(=

- 100

Sl 00000 0000000000000 000000O0

o
=l o000 00 0000000000000 0O0 OO0 OO0

0000000000000 0000000C00C0O0O0O0O0OO0O

[=J=lN=Releieel-)
[=J=]N=lel)

Bl =N=N=N=l===1=0e=]
Lo
(=]

m-oococoocoocooo
-o
-ocococococooo
-ococococooo
-o
-oocooo
-oo oo
-ooo
-o o
-o

o
-~

19 20 21 22 23 2

=

25 26 27 28

Figure 10. Confusion matrix for American Sign Language (ASL) dataset

Table 5. Evaluation metrics of the adaptive Graph
Convolutional Networks (GCNs) model for American Sign
Language (ASL) dataset

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 900
1 1.00 1.00 1.00 900
2 1.00 1.00 1.00 900
3 1.00 1.00 1.00 900
4 1.00 1.00 1.00 900
5 1.00 1.00 1.00 900
6 1.00 1.00 1.00 900
7 1.00 1.00 1.00 900
8 1.00 1.00 1.00 893
9 1.00 1.00 1.00 900
10 1.00 1.00 1.00 900
11 1.00 1.00 1.00 900
12 1.00 1.00 1.00 900
13 1.00 1.00 1.00 900
14 1.00 1.00 1.00 900
15 1.00 1.00 1.00 900
16 1.00 1.00 1.00 900
17 1.00 1.00 1.00 900
18 1.00 1.00 1.00 900
19 1.00 1.00 1.00 900
20 1.00 1.00 1.00 900
21 1.00 1.00 1.00 900
22 1.00 1.00 1.00 900
23 1.00 1.00 1.00 900
24 1.00 1.00 1.00 900
25 1.00 1.00 1.00 900
26 1.00 1.00 1.00 900
27 1.00 1.00 1.00 900
28 1.00 1.00 1.00 900

Accuracy 1.00 26093
Macro avg 1.00 1.00 1.00 26093
Weighted avg 1.00 1.00 1.00 26093

3298

In Figure 10 the confusion matrix for all classes of the ASL
dataset have been shown.

The confusion matrix of the ASL dataset shows that the
proposed model achieved very high classification ability, with
values almost entirely concentrated on the main diagonal. This
means that most samples were correctly classified with
minimal transitions to other categories. This pattern reflects
predictive consistency and stability in distinguishing between
signal features, indicating that the learned representations
were sufficient to clearly separate the categories and minimize
overlap. The number of correctly classified samples in most
categories was also relatively similar, with some categories
showing a decrease compared to others. This is generally
understood to be due to a slight variation in the sample size
available for that category within the test data, rather than
classification ambiguity. Overall, these results support the
conclusion that the model efficiently generalizes signal-
associated patterns within the experimental setup, and that its
performance was unaffected by the presence of similar
categories in terms of visual structure or extracted features.
This is directly reflected in the rarity of errors outside the
matrix diagonal. Table 5 Shows the evaluation metrics of the
adaptive GCNs model for ArSL dataset with its details.

6. CONCLUSION

This paper has presented a multilingual sign language
recognition pipeline that incorporates advanced preprocessing,
complementary feature extraction, and adaptive graph-based
learning with the help of sequential deep neural modules. The
framework comprises PCA, FFT, and Tamura texture
descriptors in an adjustable architecture of GCN enriched

further by CNNs, GRUs, and LSTM layers to spatial textures
at a very detailed level; patterns within the frequency domain;
temporal dependencies. Empirical results reported herewith
significantly outperform any current state-of-the-art efforts
recording 97% accuracy on the ArSL dataset under both
macro- and weighted-average scores as well as 100% accuracy
on ASL where every single class achieves perfect precision,
recall, and F1-score.

While the ASL results underscore extraordinary recognition
capability, perfect scores must be guarded about in terms of
possible due influences by specific factors pertaining to the
dataset or overfitting. Performance disparity noticed in certain
classes of ArSL are indicative and prescriptive towards
improvements that may include balancing data, synthetic
augmentation, or more optimized class-specific-features that
can improve robustness even further. Meanwhile, these
findings have convincingly validated that handcrafted
descriptors conjoined with learned deep features within a
graph-based schema adaptively maximize the accuracy for
cross linguistic sign recognition tasks. Immediate future
directions will involve extending this very framework to
continuous sign language besides making it resilient under
real-world variability in addition to speeding up computations
on resource-constrained platforms.

REFERENCES
[1] Bhadra, R., Kar, S. (2021). Sign language detection from
hand gesture images using deep multi-layered
convolution neural network. In 2021 IEEE Second
International Conference on Control, Measurement and
Instrumentation (CMI), Kolkata, India, pp. 196-200.
https://doi.org/10.1109/CM150323.2021.9362897
Ahmed, I.T., Gwad, W.H., Hammad, B.T., Alkayal, E.
(2025). Enhancing hand gesture image recognition by
integrating various feature groups. Technologies, 13(4):
164. https://doi.org/10.3390/technologies13040164

Abd Al-Latief, S.T., Yussof, S., Ahmad, A., Khadim,
S.M., Abdulhasan, R.A. (2024). Instant sign language
recognition by WAR strategy algorithm based tuned
machine learning. International Journal of Networked
and Distributed Computing, 12(2): 344-361.
https://doi.org/10.1007/s44227-024-00039-8

Park, G., Chandrasegar, V.K., Koh, J. (2023). Accuracy
enhancement of hand gesture recognition using CNN.
IEEE Access, 11: 26496-26501.
https://doi.org/10.1109/ACCESS.2023.3254537

Ahmed, H.M. (2023). Texture feature extraction using
tamura descriptors and scale-invariant feature transform.
Journal of Education & Science, 32(4): 91-103.
https://doi.org/10.33899/edusj.2023.143728.1394

Miah, A.S.M., Hasan, M.A .M., Nishimura, S., Shin, J.
(2024). Sign language recognition using graph and
general deep neural network based on large scale dataset.
IEEE Access, 12: 34553-34569.
https://doi.org/10.1109/ACCESS.2024.3372425

Sarkar, U., Chakraborti, A., Samanta, T., Pal, S., Das, A.
(2024). Enhancing ASL recognition with GCNs and
successive residual connections. arXiv preprint
arXiv:2408.09567.
https://doi.org/10.48550/arXiv.2408.09567

Vasudevan, V., Bassenne, M., Islam, M.T., Xing, L.
(2023). Image classification using graph neural network

(2]

(4]

(7]

3299

(9]

[11]

[12]

[13]

[14]

[15]

[17]

(18]

[19]

(20]

and multiscale wavelet superpixels. Pattern Recognition
Letters, 166: 89-96.
https://doi.org/10.1016/j.patrec.2023.01.003

Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E. (2022).
Vision GNN: An image is worth graph of nodes.
Advances in Neural Information Processing Systems, 35:
8291-8303.

Syaputra, H., Nurmaini, S., Partan, R.U., Roseno, M.T.
(2025). Enhancing medical image instance segmentation
using histogram equalization and blind deblurring: A
preliminary study. Ingénierie des Systémes
d’Information, 30(5): 1363-1372.
https://doi.org/10.18280/isi.300521

Hummel, R.A., Kimia, B., Zucker, S.W. (1987).
Deblurring gaussian blur. Computer Vision, Graphics,
and Image Processing, 38(1): 66-80.
https://doi.org/10.1016/S0734-189X(87)80153-6

Al Hammami, D.J., Hassan, R.F. (2025). A hybrid 1D
CNN-LSTM model for face recognition using PCA
features. Ingénierie des Systémes d’Information, 30(8):
2067-2076. https://doi.org/10.18280/isi.300812

Kamath, R.C., Vijay, G.S., Prasad, G., Rao, P.K., Shetty,
U.K., Parameshwaran, G., Shenoy, A., Shetty, P. (2023).
Feasibility analysis of Tamura features in the
identification of machined surface images using machine
learning and image processing techniques. Engineering

Proceedings, 59(1): 92.
https://doi.org/10.3390/engproc2023059092

Alshammari, M., Stavrakakis, J., Ahmed, A.F.,
Takatsuka, M. (2023). Random projection forest
initialization for graph convolutional networks.
MethodsX, 11: 102315.
https://doi.org/10.1016/j.mex.2023.102315

Hayder, N.M.M.A., Seno, S.A. H., Noori, H.,

Zabihzadeh, D., Manaa, M.E. (2025). Improved DDoS
attack detection-based feature selection by using graph
convolutional network-transformer model. Operational
Research in Engineering Sciences: Theory and
Applications, 8(2): 22-46.
https://doi.org/10.5281/zenodo.17160174

Kipf, T.N., Welling, M. (2017). Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
https://doi.org/10.48550/arXiv.1609.02907
Al-Hammadi, M., Muhammad, G., Abdul, W.,
Alsulaiman, M., Bencherif, M.A., Mekhtiche, M.A.
(2020). Hand gesture recognition for sign language using
3DCNN. IEEE Access, 8: 79491-79509.
https://doi.org/10.1109/ACCESS.2020.2990434
Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-
Gonzélez, A.B., Corchado, J.M. (2022). Deepsign: Sign
language detection and recognition using deep learning.
Electronics, 11(11): 1780.
https://doi.org/10.3390/electronics11111780

Lépez, L.1.B., Ferri, F.M., Zea, J., Caraguay, A.L.V.,
Benalcazar, M.E. (2024). CNN-LSTM and post-
processing for EMG-based hand gesture recognition.
Intelligent Systems with Applications, 22: 200352.
https://doi.org/10.1016/j.iswa.2024.200352

Hussain, A., Ul Amin, S., Fayaz, M. (2023). An efficient
and robust hand gesture recognition system of sign
language employing finetuned Inception-V3 and
Efficientnet-B0O network. Computer Systems Science &
Engineering, 46(3): 3509-3525.

https://doi.org/10.1016/j.patrec.2023.01.003

(21]

[22]

(24]

https://doi.org/10.32604/csse.2023.037258

Shhatha, A.M., Alsaif, O.. (2025). Enhancing
cybersecurity through malware detection based on
machine learning technique. Kufa Journal of Engineering,
16(3): 82-100.
https://doi.org/10.30572/2018/KJE/160306

Sundar, B., Bagyammal, T. (2022). American sign
language recognition for alphabets using MediaPipe and
LSTM. Procedia Computer Science, 215: 642-651.
https://doi.org/10.1016/j.procs.2022.12.066

Allahem, H., El-Ghany, S.A., Abd El-Aziz, AA,
Aldughayfiq, B., Alshammeri, M., Alamri, M. (2025). A
hybrid model of feature extraction and dimensionality
reduction using ViT, PCA, and random forest for multi-
classification of brain cancer. Diagnostics, 15(11): 1392.
https://doi.org/10.3390/diagnostics 15111392

Elshaer, A.M., Ambioh, Y., Soliman, Z., Ahmed, O.,

3300

[25]

[26]

Elnakib, M., Safwat, M., Elsayed, S.M., Khalid, M.
(2024). Enhancing Arabic alphabet sign language
recognition with VGG16 deep learning investigation. In
2024 14th International Conference on Electrical
Engineering (ICEENG), Cairo, Egypt, pp. 184-186.
https://doi.org/10.1109/ICEENG58856.2024.10566400
Alsolai, H., Alsolai, L., Al-Wesabi, F.N., Othman, M.,
Rizwanullah, M., Abdelmageed, A.A. (2024).
Automated sign language detection and classification
using reptile search algorithm with hybrid deep learning.
Heliyon, 10(1): €23252.
https://doi.org/10.3390/electronics 11111780

Sharma, A., Mittal, A., Singh, S., Awatramani, V. (2020).
Hand gesture recognition using image processing and
feature extraction techniques. Procedia Computer
Science, 173: 181-190.
https://doi.org/10.1016/j.procs.2020.06.022

