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Sign language recognition facilitates direct communication between a deaf or hard-of-

hearing person and individuals who are not familiar with sign language. This paper proposes 

a multilingual recognition framework based on an integration of Graph Convolutional 

Networks (GCNs), standard Convolutional Neural Networks (CNNs), and recurrent models 

(Gated Recurrent Units (GRU) & Long Short-Term Memory (LSTM)) to capture structural, 

spatial as well as temporal information. During preprocessing the images are converted into 

grayscale; enhanced using histogram equalization and Gaussian filtering; resized-and 

normalized so as to improve visual consistency across them. The system then extracts 

complementary descriptors by Principal Component Analysis (PCA), Fast Fourier 

Transform (FFT) and Tamura texture features, providing statistical cue, frequency domain 

cue and perceptual texture cue respectively. These feature vectors build up a K-Nearest 

Neighbors (k-NN) graph where each node connects its most similar neighbors in terms of 

Euclidean distance forming adjacency matrix encoding local similarity patterns. The 

resultant graph structure allows efficient propagation and aggregation of information inside 

Graph Convolutional Network (GCN) layers strengthening discriminative representation 

towards classification. The proposed approach is evaluated on Arabic Sign Language 

(ArSL) and American Sign Language (ASL) benchmark datasets, where it achieves 97% 

and 100% accuracies, respectively. Results show that a combination of graph-based 

learning with CNN and recurrent modeling makes recognition more robust while the 

modular design gives a scalable base to extend the framework for other sign languages. 
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1. INTRODUCTION

Sign language is a fully developed natural human language 

using hand shapes, movements and orientations together with 

facial expressions and body postures. It has its own grammar 

and vocabulary, independent of spoken languages, but is used 

for the same general communicative purposes [1]. 

Each sign language arises from its cultural-linguistic 

community embodying particular historical social influences. 

Sign languages have two big parts: manual and non-manual 

signs. The manual sign has different components such as the 

position, orientation, shape, and movement of the hand or 

hands while the non-manual sign is about body movement 

most especially facial expression. Non-manual signs are 

important in specifying and emphasizing meanings carried by 

manual gestures but since they provide core information 

content of a message, most studies focus on manuals [2]. 

Sign Language Recognition (SLR) is a branch of research 

aimed at the accurate interpretation of visual signing and its 

translation into spoken or written language. This technology 

helps reduce communication barriers for people who are deaf 

or hard of hearing, between them and those who do not know 

sign language [3]. 

Most current SLR methods fall into one of two broad 

camps: image-based or sensor-based. Image-based solutions 

have lately become more popular for their ease of access, 

friendly use, and low hardware requisites. Applying computer 

vision algorithms to recognize and track hand gestures, such 

systems do not need any wearable apparatus; they can simply 

be implemented on any platform with a built-in camera. The 

proliferation of high-quality cameras in smartphones, tablets, 

and laptops has made it easier to bring image-based SLR into 

every day on-demand communication applications [4]. 

The basic motivation of sign language is in its function as 

the natural medium of human interaction allowing a deaf 

person to communicate self-expression involving 

communication with other people and community 

participation. Sign language, therefore, as the tool for social 

inclusion, enables actual communication at educational, work, 

or social situations. Its recognition as a complete linguistic 

system develops steadily along with international movements 

widening its visibility and usage [1]. 

The main objective of this paper is to propose a generalized 

lightweight deep learning model that can be tuned to recognize 
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any static sign language dataset. The rest of the paper is 

organized as follows: Section 2 provides related works. 

Section 3 describes the main theoretical concepts of this study. 

The proposed model for this study is presented in Section 4. 

Implementation details and experimental results are discussed 

in Section 5. Finally, all the conclusions from this study are 

explained in Section 6. 

 

 

2. RELATED WORK 

 

Many works have been carried out in the area of sign 

language recognition due to this perpetual quest for an 

effective and efficient method of recognizing hand gestures. 

However, opportunities still abound in delivering results more 

accurate and robust than the existing approaches can muster. 

Recent research proposals attempt new techniques to clearly 

detect and analyze complex hand movements so that a two-

way communication system involving somebody who is hard-

of-hearing or deaf on one end but does not know sign language 

on the other can understand them. The related works are 

classified into three main categories for systematic review: 

 

2.1 Studies related to the preprocessing stage 

 

These works focus on the initial stages of developing 

grayscale and normalized images to enhance quality and 

maintain consistency. Common techniques include converting 

the image into grayscale, applying histogram equalization, 

Gaussian Blur, resizing the image as per requirement, and 

Normalization. 

The main objective of preprocessing is to normalize 

abnormal input conditions and eliminate irrelevant variations 

that may badly affect learning stages later on. Several related 

papers to this stage have been analyzed for this purpose. 

Ahmed et al. [2] developed an American Sign Language 

static image recognizer of 29 classes in the year 2025. The pre-

processing steps on each frame are grayscale conversion, 

resizing to 224 × 224 pixels, normalization of the range 0–255 

to [0,1], and noise removal by Gaussian/median filters. Three 

Tamura texture (descriptors- coarseness, contrast, 

directionality) are fused with raw image data at input level and 

fed into a pruned ResNet-50 backbone. Sequential Feature 

Selection further refines these features while tuning 

Generalized Additive Model (GAM) classifier using tenfold 

cross validation scheme. Average accuracy over all letters is 

about 96.7%. 

Authors emphasize that this shallow Tamura–ResNet50–

GAM hybrid comes close to YOLOv3-like deep detectors yet 

low resource hungry, however real time deployment plus 

generalization outside ASL dataset remain open issues. 

In 2024, Abd Al-Latief et al. [3] first converted the RGB 

frames into grayscale, enhances the local contrast through 

histogram equalization, reduces noise, and then applies a 

contour-based segmentation method to crop out the hand 

region; finally resizes the cropped region to 50×50 for 

classification. 

It thereafter applies WAR-Strategy meta-heuristic that 

prunes features and fine-tunes six classical ML classifiers-in 

achieving accuracies of 93.11–100% on American, Arabic, 

and Malaysian static-image datasets with training times 

reduced to 0.038–10 s across these dataset languages-with sub 

second inference on some models as clear strengths but is still 

limited to isolated frames with conventional ML pipeline 

scalability ceiling inherited.  

 

2.2 Studies related to the feature extraction stage 

 

Research in this category aims to identify and extract the 

most discriminative features from hand gestures, either 

through handcrafted descriptors or learned representations. 

There are many previous studies within this stage, the feature 

extraction stage. 

In 2023, Park et al. [4] employed a combination of 2D-

FFTand convolutional neural networks (CNNs) to address 

complex hand gesture input and noise caused by the external 

environment. 2D FFT have been used to convert time data 

(image) into frequency domain then applied normalization and 

resizing. The method’s reliance on specialized radar hardware 

is an additional cost and a five-word vocabulary limits broader 

sign-language applicability. 

In 2023, Ahmed [5] introduces a hybrid Tamura–SIFT 

pipeline for texture features. The Tamura descriptors provide 

perceptual global cues (coarseness, contrast, directionality), 

and SIFT injects scale- and rotation-invariant key-points that 

represent fine local structure. Feature-level concatenation 

forms a composite vector that carries global statistics united 

with local gradients. It beats every single descriptor under 

changing illumination, scale, and view by a good margin in 

standard benchmarks. The richer signature improves retrieval, 

segmentation, and object-recognition accuracy across multiple 

datasets. The major limitation of the method is its high 

computational cost which restrains real-time deployment. 

 

2.3 Studies related to the classification stage 

 

This group covers studies that design and evaluate models 

for mapping gesture inputs to particular sign language classes. 

Models run the gamut from baseline SVMs and k-NNs up to 

state-of-the-art deep learning models, including CNNs and 

even Graph Neural Networks (GCNs). A couple of papers also 

venture hybrid models toward accuracy and generalization 

enhancement. 

In 2024, Miah et al. [6] proposed a two-stream GCAR 

model in which an effective combination of spatial and 

temporal information is achieved through GCN, sep-TCN, and 

channel attention. The architecture produces very high 

accuracies on big largescale datasets such as WLASL and PSL 

because it represents full-body dynamics and was designed to 

effectively manage joint discontinuity drawbacks. However, 

results remain modest for ASLLVD and this cannot be applied 

in real-time due to the complexity of the model. 

In that year, a three-layer GCN with successive residual 

connections applied to 21-landmark hand graphs attains 99.1% 

accuracy on the ASL-Alphabet dataset. The model is 

lightweight, enjoys stable gradients, and resists over-fitting, 

but it speaks only to static letters, ignores temporal dynamics, 

and generalizes poorly outside of America where the landmark 

detector typically does not work [7]. 

In 2023, Vasudevan et al. [8] introduced WaveMesh 

superpixels and WavePool pooling as inputs to SplineCNNs 

that outperform SLIC on MNIST, Fashion-MNIST, and 

CIFAR-10. The method has strengths in adaptive multiscale 

graph construction but suffers from computationally 

expensive wavelet preprocessing per image, requires tuning 

for each image, and has not been tested on skeleton-based 

sign-language data.  

In 2022, Han et al. [9] proposed Vision GNN (ViG) as an 
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image backbone representing each patch as a graph node and 

by alternating Grapher and FeedForward blocks to overcome 

the over-smoothing problem. ViG-S achieves 82.1 % Top-1 

on ImageNet. Its strength lies in scalable patch-level graph 

reasoning that flexibly models spatial context. However, the 

use of fixed k-NN graph construction and the computational 

overhead of graph building, along with larger model variants, 

may limit its suitability for real-time sign-language 

recognition, which requires fine-grained hand-joint modeling 

and temporal information. 

 

 

3. THE MAIN THEORETICAL CONCEPT 

 

Much of what follows is a definition of the key terms that 

will enable the avoidance of ambiguity in describing the 

research methodology and thus establish the level of 

robustness that can be attained, besides helping others repeat 

the work. By specifying how each abstract concept is 

measured, fair comparison with other research becomes 

possible. This upfront clarity helps to lay a solid groundwork 

for later stages—for example, data preparation, model design, 

and performance evaluation—so that every step can be 

transparently examined, critiqued, and improved upon in 

further investigations. 

 

3.1 Datasets 

 

Two global datasets, American Sign Language and the 

Arabic Sign Language (ArSL) downloaded from Kaggle and 

used in the experimental. Each dataset is divided into training 

and testing. 

 

 
 

Figure 1. Random sample of American Sign Language (ASL) dataset 

 

 
 

Figure 2. Random sample of the Arabic Sign Language (ArSL) dataset 
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3.1.1 American Sign Language dataset 

The ASL dataset which has been used in the study has been 

taken from the Kaggle repository and is available at 

https://www.kaggle.com/datasets/asl-

alphabet/asl_alphabet_train. The dataset has been divided into 

training and testing subsets. Particularly, the data for training 

contains 29 different classes or labels corresponding to 26 

alphabetical letters from A through Z plus three extra 

categories labeled as "Space," "Delete," and "Nothing." Figure 

1 provides an example of this data that clearly shows what kind 

of images there are and how diverse they can be. 

 

3.1.2 Arabic Sign Language 

The ArSL has been sourced from Kaggle at 

https://www.kaggle.com/datasets/cherryshad0/arasl-database-

54k-final and then further divided into the training and testing 

sets. It contains 54,049 images that belong to 28 different 

classes, where every class signifies a letter of the Arabic 

alphabet. Because generalization requires variation in hand 

shape as well as orientation, images have been taken from 40 

signers. An example excerpted in Figure 2 demonstrates both 

manifoldness and features of the dataset. 

 

3.2 Preprocessing concepts 

 

3.2.1 Grayscale conversion 

Grayscale takes away color information and keeps the 

strength of light at every pixel. It makes it efficient and less 

complex so as to allow analysis based on texture and intensity. 

 

𝐼𝑔𝑟𝑎𝑦(𝑥, 𝑦) = 0.299 ∗ 𝑅(𝑥, 𝑦) + 0.587 ∗ 𝐺(𝑥, 𝑦) +

0.114 ∗ 𝐵(𝑥, 𝑦)  
(1) 

 

This formula reflects the way brightness is perceived by the 

human eye. In grayscale, data is reduced to a fair amount and 

content structure of the image comes out which is usually more 

important for pattern recognition than color [3]. 

 

3.2.2 Histogram equalization 

Histogram equalization is a method of readjusting pixel 

intensities such that contrast can be improved. It helps in the 

visibility of features by ensuring that pixel intensities are well 

spread within the available intensity range. It helps to a great 

extent in improving the clarity of the image, thus facilitating 

better feature extraction and classification accuracy. 

 

𝑠𝑘 = (𝐿 − 1) = ∑ 𝑝𝑟(𝑟𝑗)𝑘
𝑗=0   (2) 

 

where, 

• 𝑠𝑘: The newly equalized intensity value. 

• 𝐿: The number of total intensity levels. 

• 𝑝𝑟(𝑟𝑗): Probability of intensity level 𝑟𝑗  occurring. 

This becomes particularly handy when the image is too pale 

or lacks enough brightness. It redistributes the values of 

intensity, hence more details on texture and edges which 

become visible to the model [10]. 

 

3.2.3 Gaussian blur 

Gaussian blur helps smooth out image noise using a 

weighted average around each pixel.  

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 exp ( −
𝑥2+𝑦2

2𝜎2 )  (3) 

 

where, 

• 𝐺(𝑥, 𝑦) : The value of the Gaussian kernel at point 
(𝑥, 𝑦). 

• 𝜎: Standard deviation of the Gaussian distribution. 

By softening edges and reducing small pixel variations, it 

allows the model to focus on significant patterns instead of 

reacting to random noise. It provides smoother, cleaner 

images, aiding in accurate detection of meaningful features 

[11]. 

 

3.2.4 Image resizing 

Images were equally adjusted to one size by interpolation. 

It keeps all the images at one standard, fulfilling the size 

requirement of analytical methods and neural networks as 

input. It assures consistency, making direct comparison 

between images possible and feature extraction steady [3]. 

 

3.3 Features extraction methods 

 

3.3.1 Principal Component Analysis 

PCA is a statistical technique increasingly popular for 

applications such as dimensionality reduction, visualization, 

noise filtering, and decorrelation. Therefore, in the context of 

this study, PCA has been used as a feature extraction method 

that will output DE correlated, energy ordered coefficients 

(scores) carrying the most discriminative variance. These 

coefficients will now be considered extracted features to be 

used in classification rather than reducing dimensions [12]. 

 

𝑌 = 𝑊𝑇 ∗ 𝑋 (4) 

 

where, 

• 𝑋: represents the original high-dimensional image data. 

• 𝑊 : is the matrix of principal components 

(eigenvectors). 

• 𝑌 : represents the transformed, lower-dimensional 

features. 

PCA finds the principal directions in the data where 

variance is high. It does not emphasize dimensionality 

reduction but rather feature extraction, such that the most 

significant variance is preserved. By choosing these top 

components, a small feature set is obtained which has high 

representation and hence improves both efficiency and 

accuracy in the classification process. 

 

3.3.2 Fast Fourier Transform 

FFT takes an image from the spatial domain to the 

frequency domain. 

 

𝐹(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑒−2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0
𝑀−1
𝑥=0   (5) 

 

where, 

• 𝑓(𝑥, 𝑦): Intensity at pixel (𝑥, 𝑦). 

• 𝐹(𝑢, 𝑣) : Frequency domain representation at (𝑢, 𝑣). 

• 𝑀, 𝑁 : Width and height of the image. 

This change exposes recurring patterns and structural 

regularities that were not visible in the original pixel 

arrangement. A lot of textures have special frequency marks, 

and FFT does a great job picking up those differences, giving 

the model extra ways to spot texture-based differences. It gets 

frequency-based features, offering views into structural and 

textural qualities not clear in spatial areas. It boosts feature 

discrimination abilities, helping in getting classification right 

3290



 

[4]. 

 

3.3.3 Tamura features 

Tamura features are conceived as classical, manual texture 

descriptors, from perceptual principles of human vision. They 

were designed to approximate the psychological dimensions 

by which humans perceive differences in texture and thus 

encompass both low-level statistical variation and high-level 

structural properties of images. Tamura features go beyond 

purely statistical measures in the sense that they emphasize 

textural perception dimensions—granularity, regularity, and 

orientation—for image analysis applications such as content-

based image retrieval, classification, and recognition. 

Standard six Tamura features are Coarseness, Contrast, 

Directionality, and Line-likeness Regularity [13]. 

a. Coarseness (Granularity Measure) 

Coarseness reflects the size of texture primitives (granules). 

An image can be said to contain fine-grained or large-grained 

patterns. Mathematically, coarseness is obtained as a multi-

scale average of intensities for the image. For each pixel(x,y) 

give the final coarseness measure as an average over the entire 

image: 

 

𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 =
1

𝑁
∑ 2𝑘(𝑥,𝑦)

𝑥,𝑦   (6) 

 

where, 𝑁  is the number of pixels. A higher value indicates 

coarser textures. 

b. Variation in Pixel Intensities 

Contrast measures the distribution of gray-level differences, 

reflecting the degree of visual intensity variation. It combines 

both standard deviation and kurtosis of the intensity histogram. 

Tamura defined contrast as: 

 

𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
σ

𝛼4
1

4⁄
  (7) 

 

where, σ is the standard deviation of gray levels, and 𝛼4 be the 

fourth central moment (kurtosis). This ensures that both the 

spread and the peakedness of intensity variations are 

considered. Textures with high brightness variation will 

produce higher contrast values. 

c. Directionality (Orientation Distribution) 

Directionality evaluates the degree to which texture exhibits 

strong orientation patterns. It is based on the gradient field of 

the image. Directionality is defined as the sharpness of peaks 

in this histogram: 

 

𝐹directionality = ∑  (𝜃𝑖 −𝑖  𝜃𝑝𝑒𝑎𝑘)2(𝜃𝑖)  (8) 

 

Lower values indicate strong directional alignment, while 

higher values indicate random or isotropic textures [5]. 

d. Line-Likeness 

Line-likeness quantifies the degree to which neighboring 

pixels share similar orientations, effectively capturing linear 

structures in the texture. It is based on co-occurrence of 

gradient orientations. 

 

𝐹line−likeness =  ∑ 𝑝(𝑖, 𝑗)cos(2(𝑖,𝑗 𝜃𝑖 − 𝜃𝑗))  (9) 

 

where, 𝑝(𝑖, 𝑗) is the probability of two adjacent pixels having 

orientations 𝜃𝑖  and 𝜃𝑗 . High values indicate textures 

dominated by aligned linear structures. 

e. Regularity 

Regularity measures how uniform or repetitive the texture 

patterns are. It is defined as the inverse of the variance across 

the other features: 

 

𝐹𝑟egularity =
1

1+𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  (10) 

 

where, 𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  is the variance among the set {𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 , 

𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 , 𝐹directionality, 𝐹line−likeness }. Regular textures such 

as grids or stripes have higher regularity values. 

f. Roughness 

Roughness is a composite measure that integrates both 

coarseness and contrast, reflecting the overall complexity of 

the texture: 

 

𝐹𝑟oughness = 𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 + 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  (11) 

 

This measure is essential for distinguishing textures that are 

visually complex from those that are smooth [2]. 

 

3.4 Graph construction theory (K-Nearest Neighbors 

algorithm) 

 

K-Nearest Neighbors is a simple powerful algorithm used 

for classification, regression, and clustering. In graph-based 

models (like fingerprint or image matching papers), k-NN can 

also be used for clustering or neighborhood graph 

construction. Each node (feature or point) connects to its K 

nearest nodes based on Euclidean or similarity distance. This 

builds a k-NN graph, where edges represent neighborhood 

relationships. This helps in organizing data and reducing 

computational complexity before classification or matching 

[14].  

 

3.5 Classification deep learning networks 

 

3.5.1 Graph Convolution Neural Network 

GCN is the most cited paper in the GNN literature and the 

most commonly used architecture in real-life applications. 

GCNs extend the traditional convolution operation to graph 

structures by defining convolutions on nodes and their 

neighborhoods. GCNs include both spatial-based and spectral-

based approaches. Spatial-based GCNs directly perform 

convolutions on each node’s local neighborhood, while 

spectral-based GCNs use graph Laplacians to define 

convolution in the frequency domain [15]. 

It relies on spectral convolutions that capture global graph 

properties, GCNs are widely used in semi-supervised learning 

tasks like node classification, community detection, and other 

graph-based tasks where localized information is crucial. 

Mathematically, each layer is characterized by the propagation 

rule defined by Kipf and Welling [16]: 

 

𝐻(𝑙+1) = 𝜎 ( D̃−1
2  Α̃ D̃−1

2 𝐻(𝑙) 𝑊(𝑙))  (12) 

 

where, 

• Α̃ = 𝐴 + 𝐼: is the adjacency matrix with added self-

loop. 

• D: ̃is the degree matrix of Α̃. 

• 𝐻(𝑙): is the feature matrix at layer l. 

• 𝑊(𝑙): is the weight matrix. 

• 𝜎: is an activation function. 

 

3291



 

 
 

Figure 3. Convolution Neural Network (CNN) 

 

3.5.2 Convolutional Neural Network 

CNNs are a form of deep learning specifically created for 

the analysis of visual data and thus can images and videos. 

They have achieved greater accuracy than traditional machine 

learning techniques. CNN architectures normally comprise a 

few sequential layers, including convolutional layers that 

extract features with the help of filters, pooling layers that 

lower the dimensionality and complexity of computation by 

reducing the size of data, flattening layers that transform 

extracted features into linear vectors, dense layers generating 

output through activation functions like ReLU, etc. To prevent 

overfitting some neurons are randomly dropped during 

training using dropout layers. Figure 3 shows an example of 

convolution neural network. 

CNNs find extensive applications across image processing, 

robotics, medical imaging, data analysis, and business 

intelligence [17]. 

 

3.5.3 Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is particularly known as 

that type of RNN among the family of recurrent neural 

networks which can efficiently model sequential data. It has 

two major control gates: a reset gate that, if not very correctly 

tuned will allow some irrelevant past information, and an 

update gate that makes new input balanced with historical 

context. The rules control the flow of information in such a 

way that long-range dependencies can be effectively captured 

and at the same time address the problem of vanishing 

gradients encountered by RNNs. The GRUs are 

computationally less complex than Long Short-Term Memory 

networks (LSTMs), hence providing better efficiency as well 

as faster training. The temporal patterns sign language 

recognition tasks can be identified by these layers and further 

utilized for improving identification concerning gesture 

sequences and transitions [18]. 

 

3.5.4 Long Short-Term Memory 

LSTM networks extend and improve the traditional 

architecture of Recurrent Neural Networks in learning long-

range dependencies within sequential data. Where basic RNNs 

mostly fail due to vanishing or exploding gradients, LSTMs 

avoid such limitations with specific gating architecture. There 

are an input gate controlling what new information is added to 

the cell state, a forget gate that continuously removes less 

important information, and an output gate controlling what 

part of the information should be outputted at each time step. 

All these features enable the LSTM model to keep relevant 

context information for very long sequences and hence make 

it extremely useful in tasks such as speech recognition, 

language modeling, or time-series prediction [19]. 

They control what information comes in and goes out of the 

network, allowing it to keep important context for long 

sequences while getting rid of less important information. 

Because they can model time so well, LSTMs are used in all 

applications that need sequence processing, including speech 

recognition and language modeling; and in particular sign 

language recognition where the correct understanding of rather 

complicated gesture sequences is crucial [20]. 

 

 

4. PROPOSED METHODOLOGY 

 

Figure 4 presents the research framework of the proposed 

system. It summarizes the complete pipeline, starting from 

image preprocessing and feature extraction, followed by k-NN 

graph construction and data splitting, then adaptive GCN 

training and testing. Finally, the model is evaluated using 

standard performance metrics, including accuracy, precision, 

recall, and F1-score. 

This study hereby develops an adaptive GCN deep learning 

model which uses the skeleton keypoints extracted for one 

particular word as input. The model makes a GCN network 

and inserts layers of CNN, GRU, and LSTM within the 

internal structure of the network utilizing their properties to 

come up with a generalized powerful model that could be used 

for sign language recognition. To validate this proposed 

model, two comprehensive datasets covering both American 

Sign Language (ASL) and ArSL were used to test how 

versatile and broadly applicable it is. This framework presents 

the system under five stages: preprocessing stage, features 

extraction stage, training stage, testing stage, and evaluation 

stage shown in Figure 4. 

 

4.1 Preprocessing 

 

Preprocessing of the hand sign image dataset involves steps 
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meant to improve visual quality, reduce computational 

requirements, and provide favorable conditions for extracting 

features. It starts with grayscale conversion whereby RGB 

images are transformed into single channel presentations. This 

reduces data dimensionality and the cost of computation while 

maintaining shape and texture clues that are very relevant 

towards achieving recognition accuracy. Next, histogram 

equalization is applied to enhance contrast through better 

utilization of the full range by setting pixel intensities to be 

more evenly spread out; detail is increased on an image surface 

and minute variations supporting pattern recognition become 

apparent. Images are normalized whereby pixel values get 

scaled within a standard range (most commonly between 0-1) 

so as to keep consistency across the entire dataset thus 

enabling steady model training. 

The pictures are then run with a Gaussian blur, which takes 

away high sounds and smooths out unwanted looks, making it 

less likely that noise will cause mistakes when getting features. 

A step that comes right after normalizing keeps the same level 

of data spread after this smoothing. Changing the size of the 

image helps to make all examples the same size, allowing for 

consistent input handling and quick calculation during both 

training and testing. Another round of normalization makes 

sure data is steady before going into the feature-getting and 

deep learning steps, thus making the whole finding system 

better accurate strong and general. 

Figure 4. Research framework 
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4.2 Features extraction 

 

The feature extraction becomes the core of a proposed 

framework for sign language recognition because it describes 

how the most salient and informative features are drawn out 

from preprocessed images of hand signs. Three 

complementary extraction techniques-PCA, Fast Fourier 

Transform (FFT), and Tamura texture descriptors-are used in 

this work to provide varied viewpoints on data. As the first 

step, PCA is applied as a feature-extraction transform to 

generate uncorrelated, energy-ordered scores that serve to 

enrich representation. Only the first ten principal components 

have been retained in this study as they contain most of the 

discriminative information and thus represent the strongest 

relevant features necessary for classification. Next, FFT will 

be applied such that image information will be converted from 

the spatial domain into its frequency domain. Periodic 

structures and subtle variations are well captured in their 

frequency domains which can never be seen from a spatial 

perspective. This step helps much when periodic textures need 

recognition and minute details regarding gestures are required. 

Tamura features encode those texture characteristics in terms 

of a human perceptual attribute with dimensions such as 

coarseness, contrast, and directionality. Such subjective intake 

makes the model more sensitive to fine changes in shape and 

texture. Normalization ensures equal participation for all 

features at this and subsequent stages, particularly when a 

feature set does not overly dominate results due to scale 

differentials. After normalization has been completed, these 

features from the PCA, FFT, and Tamura methods are 

appended together and stored within CSV files combining 

such miscellaneous features into a single representation will 

guarantee very wide and strong coverage over all possible 

visual and structural characteristics that exist within the 

dataset. Once the properties of each image have been saved as 

a vector, the KNN algorithm runs between every two vectors 

to find the edges among the nodes- hence, images features 

vectors in this chunk by measuring their degree of closeness 

so that they can be inputted into GCNs layers which require 

data structured as a graph of nodes and edges. The 

consolidated feature dataset is split into 70% training data and 

30% testing data to comprehensively assess and validate how 

well the model generalizes, i.e., on unseen scenarios and 

datasets how reliable and effective recognition systems might 

turn out to be. 

 

4.3 Graph construction procedure (K-Nearest Neighbors 

graph per mini-batch) 

 

A separate graph is constructed for each mini-batch (chunk) 

of the dataset in order to provide a graph structure for 

subsequent graph convolution operations. The mini-batch size 

is 32 and each image features vector represnts anode in the 

graph. The resulting graph for each batch contains exactly 32 

node. The graph is constructed using a k-nearest neighbor rule 

with 𝐾=2 under the Euclidean distance, meaning that each 

node is connected to its two closest neighbors in the feature 

space. Because the neighborhood relation is computed 

independently for each node, the resulting k-NN adjacency is 

generally asymmetric and the graph is directed. The outgoing 

degree of every node is fixed at 3 outgoing edges (two edges 

to the nearest neighbors plus one self-loop), whereas the 

incoming degree is not fixed and varies depending on how 

frequently a node is selected as a nearest neighbor by other 

nodes. 

 

4.4 Classification stage 

 

All important features are extracted in previse stage to use 

in the current stage. Where the classification stage is central to 

the effectiveness of the proposed methodology, transforming 

refined, high-dimensional feature vectors into accurate and 

interpretable class predictions. To this end, we designed a 

structured yet adaptable framework integrating graph-

theoretic insights with advanced deep neural network 

architectures. This careful integration allows the model to 

capitalize on both spatial and temporal complexities present in 

multilingual hand gesture datasets, thus enhancing 

generalizability and accuracy across different languages, 

particularly Arabic and English. 

 

4.4.1 Training stage: Adaptive Graph Convolutional 

representation 

A more elaborate graph-based recognition pipeline where a 

k-nearest-neighbor (k-NN) graph injects relational structure 

into otherwise independent handcrafted descriptors. In this 

setup, feature vectors become nodes and edges represent 

proximity under some distance metric, typically the Euclidean 

distance as a special case of Minkowski. Then, information for 

one node embedding can be propagated by stacking Graph 

Convolutional Network (GCN) layers such that each 

embedding will have not only its own attributes but also those 

of the immediate local neighborhood. 

Each GCN layer works by building a k-nearest neighbor (k-

NN) graph. The single feature vectors shown as nodes in the 

graph, while edges show the closeness-based similarity among 

these vectors. Flexible behavior is done through changing 

graph updates, where joining links change during training to 

best show natural data structures across Arabic and English 

datasets. Figure 5 shows an adaptive GCNs model layers. The 

Adaptive GCNs layers are penetrated sequentially, meaning 

that the extracted features forms from each layer serve as an 

entry point to the next layer. 

The Adaptive GCNs model architecture that progressively 

transforms hand-sign feature vectors into a robust 

representation suitable for accurate multi-class recognition 

across heterogeneous datasets. First, an adaptive 

neighborhood structure is introduced by constructing a k-

nearest-neighbor graph, where each feature vector is treated as 

a node and edges encode proximity-based similarity. Two 

consecutive GCN layers then perform neighborhood 

aggregation using the normalized adjacency matrix. This stage 

injects relational context into otherwise independent 

descriptors and enables the model to learn similarity-

consistent patterns by propagating information across nearby 

nodes, thereby improving robustness to intra-class variation 

and reducing sensitivity to dataset-specific capture conditions. 

Next, a stack of convolution–activation–pooling blocks 

refines the graph-enriched embedding's by learning higher-

level, locally compositional patterns while max-pooling 

compresses the feature maps and increases invariance to minor 

perturbations. A recurrent stage, implemented as a GRU 

followed by an LSTM, is subsequently applied to model 

sequential dependencies within the learned representations 

and to capture both short- and long-range correlations, which 

further stabilizes recognition under variability and improves 

generalization. Finally, the resulting representation is flattened 

and passed through fully connected layers to produce class 
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probabilities. Overall, by combining relational learning (GCN), 

hierarchical pattern abstraction (CNN), and dependency 

modeling (GRU/LSTM), the proposed architecture enhances 

feature robustness and is explicitly designed to generalize 

effectively across multiple sign-language datasets rather than 

overfitting to a single dataset distribution. 

4.4.2 Testing stage 

In this stage, the trained adaptive GCN model undergoes 

evaluation using the test subset (30% of the dataset, as per the 

provided document). 

4.5 Evaluation stage 

Precision, recall, and F1-score measures are also calculated 

in Figure 4 explain the results of these measures for the 

proposed model. It had the highest values over all these 

measures.  

Accuracy measures the overall correctness of the model's 

predictions and is calculated as the proportion of correctly 

classified instances (both true positives and true negatives) 

relative to the total number of predictions. It is formally 

defined in Eq. (13), utilizing the standard classification 

components: True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) [20]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(13) 

The ratio of True Positives to All Positives is known as 

precision. It is formally defined in Eq. (14) [21]. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(14) 

The Recall (R) is the measure of the model correctly 

identifying True Positives. It is formally defined in Eq. (15) 

[22]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(15) 

The weighted average of Precision and Recall is known as 

F1-score. It is calculated through Eq. (16) [23]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
(16) 

Figure 5. Adaptive Graph Convolutional Networks (GCNs) model 

5. EXPERIMENTAL RESULTS

Windows 10 Professional has been utilized as an operating 

system. The proposed model code and other baseline models 

have been written in Python 3.6.5 and are implemented using 

sklearn and Keras library. All experiments have been 

conducted on processor Core i7 and 8GB RAM. Two datasets, 

ASL and ArSL have been used to train and test our proposed 

model. 

Table 1 presents the summary of the hyper parameter 

settings employed during the training phase of the proposed 

model. 

These settings were based on empirical evaluation and best 

general practices in deep learning for an optimum tradeoff 

between training efficiency and generalization performance. A 

learning rate of 10-3 was used so as to keep stable convergence 

during optimization. The model will be trained over 50 epochs 

using a batch size of 32, which gives an efficient and consistent 

update of model parameters. An adaptive GCNs architecture 

consists of 24 sequential layers wherein convolutional 

operations use a kernel size of 3 to extract fine-grained local 

patterns from the input images. Such a relatively small kernel 

size allows the network to conserve spatial detail while 

progressively learning hierarchical representations. Adam 

algorithm is used for optimization due to its adaptive learning 

rate mechanism by which speed of convergence and stability 

in training are balanced, hence improving the overall accuracy. 

LeakyReLU is used to solve the problem of gradients not 

flowing properly in deeper networks by allowing a small 

gradient, when the input is negative. This proposed model uses 

two GCN layers and seven CNN layers distributed among 

different layers of this model. The number of filters varies 

from 8 to 64 then goes down to 16. The number of protecting 

layers for GRU and LSTM is 16. This will ensure better 

gradient flow going through the network and will help feature 

learning be better in the later layers. 
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Table 1. The summary of hyper parameters setting 

 
Name Value 

Learning rate 10-3 

No. of epoch 50 

Batch size 32 

No. of layers 25 

Kernel size 3 

Optimizer Adam 

Activation function  LeakyReLU 

No. of Graph Convolutional Network (GCN) 

layers 2 

No. of Convolutional Neural Network (CNN) 

filter 8, 16, 32, 64 

Gated Recurrent Unit (GRU) units 16 

Long Short-Term Memory (LSTM) units 16 

 

Table 2 provide comparing the proposed Adaptive GCN 

model with the results of a previous work [24] that used the 

same ArSL dataset is provided. 

 

Table 2. Comparison accuracy of the proposed model for 

Arabic Sign Language (ArSL) with other research 

 
Researches Dataset Accuracy 

Adaptive Graph Convolutional 

Networks (GCNs) model 

ArSL 97 

[24] ArSL 96.05 

 

The proposed method reached an accuracy rate equal to 

97% better than the reference model by 96.05%. Numerically, 

the gain is not high, but in sign language recognition tasks 

where there exist subtle changes in hand configurations and 

complex gesture patterns, even small improvements are quite 

significant. This improvement explicitly highlights the ability 

of Adaptive GCN to extract spatial relationship and structural 

dependency information from hand keypoints which is 

essential in distinguishing visually similar signs. This also 

elaborates that the model generalizes very well across different 

signers and recording conditions so as to be robust enough for 

real-world applications. The persistence advantage over all 

existing methods offers empirical evidence for adaptive 

mechanisms' inclusion into GCN architectures toward 

improved ArSL recognition in Table 3. 

Figure 6 shows both the training loss and validation loss of 

ArSL dataset. 

 

 
 

Figure 6. Loss of Arabic Sign Language (ArSL) dataset 

 

Figure 7 shows that both the training loss and validation loss 

decrease over 50 epochs of model training on the ArSL 

dataset. Losses drop steeply for the first few epochs, starting 

with a validation loss of about 8.4 and a training loss of about 

2.9, meaning that the model is able to pick up significant trends 

from the data very quickly. The next several epochs see 

continued decrease, though now at a reduced pace as the model 

makes adjustments to its parameters. Once e15 is passed, both 

curves go flat and head toward zero - an indication that 

convergence has been achieved by the model itself. The small 

but steady gap between those two lines suggests the model is 

likely to generalize well and thus work fine on new data - no 

overt sign of overfitting. 

 

 
 

Figure 7. Accuracy of Arabic Sign Language (ArSL) dataset 

 

Table 3. Evaluation metrics of the adaptive GCNs model for 

Arabic Sign Language (ArSL) dataset 

 
Class Precision Recall F1-Score Support 

0 1.00 1.00 1.00 634 

1 1.00 1.00 1.00 502 

2 1.00 1.00 1.00 537 

3 1.00 1.00 1.00 490 

4 1.00 1.00 1.00 517 

5 1.00 1.00 1.00 501 

6 1.00 1.00 1.00 587 

7 1.00 1.00 1.00 511 

8 1.00 1.00 1.00 586 

9 1.00 1.00 1.00 478 

10 1.00 1.00 1.00 458 

11 1.00 1.00 1.00 466 

12 1.00 1.00 1.00 532 

13 1.00 1.00 1.00 482 

14 1.00 1.00 1.00 550 

15 1.00 1.00 1.00 529 

16 1.00 1.00 1.00 546 

17 1.00 1.00 1.00 498 

18 1.00 1.00 1.00 568 

19 1.00 1.00 1.00 491 

20 1.00 1.00 1.00 452 

21 1.00 1.00 1.00 545 

22 1.00 1.00 1.00 551 

23 1.00 1.00 1.00 539 

24 1.00 1.00 1.00 475 

25 1.00 1.00 1.00 412 

26 0.48 1.00 0.65 388 

27 0.00 0.00 0.00 412 

Accuracy   0.97 14228 

Macro avg 0.95 0.96 0.95 14228 

Weighted avg 0.96 0.97 0.96 14228 

 

Notice that both of training accuracy and validation 

accuracy are decreased gradually over 50 epochs for the ArSL 

dataset. In the first e1–e5 periods, a sharp rise in both training 

and validation accuracy is observed, indicating that learning 

for essential patterns within the data was quick. From about e5 
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to e15, growth is slow as the model makes minor adjustments 

toward better comprehension. After approximately e15, both 

curves settle near 1.0 indicating that indeed an extremely high 

level of accuracy has been attained by this particular model; 

there is close overlap between training and validation 

accuracies to indicate good generalization to unseen data with 

absolutely no sign of overfitting. 

In the classification report proves that this model is strong 

and solid by getting an overall accuracy of 97% on the ArSL 

dataset with a total number of test samples equal to 14,228. 

For most categories from 0 to 25 it gets perfect precision, recall, 

and F1-score (1.00) meaning not only very precise in guessing 

the right class (high precision) but also quite exhaustive in 

finding all relevant samples (high recall). Such performance 

consistency gives an indication about how robust the model is 

towards minute nuances of hand gesture and at the same time 

keeps capability towards differentiating visually close signs. 

But results for the last two classes are low. Class 26 gets 48 

percent precision and 100 percent recall, which means that 

though all true instances of this class have been detected, there 

is a tendency to misclassify other samples from different 

classes as class 26 (higher false positives). No correct 

predictions for class 27 (precision = recall = F1-score = 0.00), 

has fully failed to recognize this particular sign. This can be 

due to class imbalance or inadequate training samples or more 

intra-class variability for that sign. 

Precision at 0.95, recall at 0.96, and F1-score at 0.95 macro-

averaged over all classes indicate the healthy treatment of all 

classes equally; weighted averages of precision at 0.96, recall 

at 0.97, and F1-score at 0.96 denote excellent overall accuracy 

when more heavily populated classes are taken into 

consideration. 

The model shows state-of-the-art performance on most of 

the classes, except those classes which are underperforming. 

In specific reference to Classes 26 and 27, thereby suggesting 

targeted improvements towards these particular classes 

through data collection, class balancing, or improved feature 

extraction. 

Table 4 provide comparing the proposed Adaptive GCN 

model with the results of previous works that used the same 

ASL dataset. 

 

Table 4. Comparison accuracy of the proposed model for 

American Sign Language (ASL) with other research 

 
Researches Dataset Accuracy 

Adaptive GCNs  ASL 1.0 

[2] 

[25] 

[26] 

ASL 

ASL 

ASL 

96.68 

99.51 

96.96 

 

Table 4 compares the proposed adaptive generative neural 

network model with previous studies evaluated on the same 

ASL dataset [2, 25, 26]. The proposed approach achieves 

100% test accuracy, surpassing previously reported results 

(96.68%, 99.51%, and 96.96%). While these baseline criteria 

are already robust in the field of ASL recognition, the 

exceptional accuracy observed in our experiments can be 

attributed to the training dynamics and evaluation protocol. 

Specifically, the learning curves exhibit a gradual and 

consistent decrease in loss across training sessions, coinciding 

with a rise in validation accuracy during training, without the 

abrupt drops or instability that might typically indicate 

abnormal training behavior or memory-induced distortions. 

This pattern is consistent with steady convergence rather than 

sudden spikes in performance. Furthermore, the test set was 

completely isolated from the training set, and the model was 

rigorously evaluated on samples it had never encountered 

during the optimization process. This minimizes the risk of 

interference between training and test data and supports the 

accuracy of the reported test performance under the adopted 

partitioning. However, we acknowledge that achieving 100% 

accuracy is uncommon and should be interpreted within the 

context of the dataset and protocol used. 

Both of training loss and validation loss of ASL dataset shown 

in Figure 8. 

 

 
 

Figure 8. Loss of American Sign Language (ASL) dataset 

 

Figure 8 which actually presents the loss curves and shows 

how the training and validation loss change over 50 epochs for 

the ASL dataset. Loss drops sharply at first epochs (e1-e5) for 

both, which means that the main patterns in the data are being 

picked up very fast by the model. The drop becomes slower 

between e5 and e15 as the model fine-tunes its learning further. 

After about e15, both curves flatten near zero meaning that the 

model has converged. The close match between training and 

validation loss all through training will always speak of strong 

generalization whereby a model will perform well on unseen 

data without overfitting. 

Figure 9 illustrates the training and validation accuracy 

trends over 50 epochs for the ASL dataset. 

 

 
 

Figure 9. Accuracy of American Sign Language (ASL) 

dataset 

 

In the first few epochs (e1–e5), there is a quick rise in 

accuracy as the model easily picks up major patterns from the 

data in Figure 9. By about e7, both training and validation 

accuracy are above 0.9 and after e10 they move toward 1.0. 

After about e15, the curves flatten showing that the model has 

settled down and is making correct predictions most of the 

time. The very close tracking between training and validation 
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accuracy all through indicates very good generalization and 

hence no overfitting that would show itself by performance 

differences on training versus unseen data. 

Figure 10. Confusion matrix for American Sign Language (ASL) dataset 

Table 5. Evaluation metrics of the adaptive Graph 

Convolutional Networks (GCNs) model for American Sign 

Language (ASL) dataset 

Class Precision Recall F1-Score Support 

0 1.00 1.00 1.00 900 

1 1.00 1.00 1.00 900 

2 1.00 1.00 1.00 900 

3 1.00 1.00 1.00 900 

4 1.00 1.00 1.00 900 

5 1.00 1.00 1.00 900 

6 1.00 1.00 1.00 900 

7 1.00 1.00 1.00 900 

8 1.00 1.00 1.00 893 

9 1.00 1.00 1.00 900 

10 1.00 1.00 1.00 900 

11 1.00 1.00 1.00 900 

12 1.00 1.00 1.00 900 

13 1.00 1.00 1.00 900 

14 1.00 1.00 1.00 900 

15 1.00 1.00 1.00 900 

16 1.00 1.00 1.00 900 

17 1.00 1.00 1.00 900 

18 1.00 1.00 1.00 900 

19 1.00 1.00 1.00 900 

20 1.00 1.00 1.00 900 

21 1.00 1.00 1.00 900 

22 1.00 1.00 1.00 900 

23 1.00 1.00 1.00 900 

24 1.00 1.00 1.00 900 

25 1.00 1.00 1.00 900 

26 1.00 1.00 1.00 900 

27 1.00 1.00 1.00 900 

28 1.00 1.00 1.00 900 

Accuracy 1.00 26093 

Macro avg 1.00 1.00 1.00 26093 

Weighted avg 1.00 1.00 1.00 26093 

In Figure 10 the confusion matrix for all classes of the ASL 

dataset have been shown. 

The confusion matrix of the ASL dataset shows that the 

proposed model achieved very high classification ability, with 

values almost entirely concentrated on the main diagonal. This 

means that most samples were correctly classified with 

minimal transitions to other categories. This pattern reflects 

predictive consistency and stability in distinguishing between 

signal features, indicating that the learned representations 

were sufficient to clearly separate the categories and minimize 

overlap. The number of correctly classified samples in most 

categories was also relatively similar, with some categories 

showing a decrease compared to others. This is generally 

understood to be due to a slight variation in the sample size 

available for that category within the test data, rather than 

classification ambiguity. Overall, these results support the 

conclusion that the model efficiently generalizes signal-

associated patterns within the experimental setup, and that its 

performance was unaffected by the presence of similar 

categories in terms of visual structure or extracted features. 

This is directly reflected in the rarity of errors outside the 

matrix diagonal. Table 5 Shows the evaluation metrics of the 

adaptive GCNs model for ArSL dataset with its details. 

6. CONCLUSION

This paper has presented a multilingual sign language 

recognition pipeline that incorporates advanced preprocessing, 

complementary feature extraction, and adaptive graph-based 

learning with the help of sequential deep neural modules. The 

framework comprises PCA, FFT, and Tamura texture 

descriptors in an adjustable architecture of GCN enriched 
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further by CNNs, GRUs, and LSTM layers to spatial textures 

at a very detailed level; patterns within the frequency domain; 

temporal dependencies. Empirical results reported herewith 

significantly outperform any current state-of-the-art efforts 

recording 97% accuracy on the ArSL dataset under both 

macro- and weighted-average scores as well as 100% accuracy 

on ASL where every single class achieves perfect precision, 

recall, and F1-score. 

While the ASL results underscore extraordinary recognition 

capability, perfect scores must be guarded about in terms of 

possible due influences by specific factors pertaining to the 

dataset or overfitting. Performance disparity noticed in certain 

classes of ArSL are indicative and prescriptive towards 

improvements that may include balancing data, synthetic 

augmentation, or more optimized class-specific-features that 

can improve robustness even further. Meanwhile, these 

findings have convincingly validated that handcrafted 

descriptors conjoined with learned deep features within a 

graph-based schema adaptively maximize the accuracy for 

cross linguistic sign recognition tasks. Immediate future 

directions will involve extending this very framework to 

continuous sign language besides making it resilient under 

real-world variability in addition to speeding up computations 

on resource-constrained platforms. 
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