
Adaptive Graph Convolution Deep Learning Model for Multilingual Hand Sign Recognition

with Texture and Frequency-Based Features

Ishraq Abdul Alameer1* , Nidaa A. Abbas2 , Mehdi Ebady Manaa3,4

1 Department of Computer Science, Faculty of Women Science, University of Babylon, Babylon 51002, Iraq
2 Department of Software, Faculty of Information Technology, University of Babylon, Babylon 51002, Iraq
3 Department of Information Networks, College of Information Technology, University of Babylon, Hilla 51002, Iraq
4 Intelligent Medical Systems Department, College of Sciences, Al-Mustaqbal University, Hilla 51001, Iraq

Corresponding Author Email: ishraq.abdalmer@uobabylon.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301221 ABSTRACT

Received: 22 August 2025

Revised: 5 November 2025

Accepted: 25 November 2025

Available online: 31 December 2025

Sign language recognition facilitates direct communication between a deaf or hard-of-

hearing person and individuals who are not familiar with sign language. This paper proposes

a multilingual recognition framework based on an integration of Graph Convolutional

Networks (GCNs), standard Convolutional Neural Networks (CNNs), and recurrent models

(Gated Recurrent Units (GRU) & Long Short-Term Memory (LSTM)) to capture structural,

spatial as well as temporal information. During preprocessing the images are converted into

grayscale; enhanced using histogram equalization and Gaussian filtering; resized-and

normalized so as to improve visual consistency across them. The system then extracts

complementary descriptors by Principal Component Analysis (PCA), Fast Fourier

Transform (FFT) and Tamura texture features, providing statistical cue, frequency domain

cue and perceptual texture cue respectively. These feature vectors build up a K-Nearest

Neighbors (k-NN) graph where each node connects its most similar neighbors in terms of

Euclidean distance forming adjacency matrix encoding local similarity patterns. The

resultant graph structure allows efficient propagation and aggregation of information inside

Graph Convolutional Network (GCN) layers strengthening discriminative representation

towards classification. The proposed approach is evaluated on Arabic Sign Language

(ArSL) and American Sign Language (ASL) benchmark datasets, where it achieves 97%

and 100% accuracies, respectively. Results show that a combination of graph-based

learning with CNN and recurrent modeling makes recognition more robust while the

modular design gives a scalable base to extend the framework for other sign languages.

Keywords:

hand sign recognition, K-Nearest

Neighbors, Graph Convolutional Network,

multimodal feature fusion, texture features,

American Sign Language, frequency-domain

analysis, Arabic Sign Language

1. INTRODUCTION

Sign language is a fully developed natural human language

using hand shapes, movements and orientations together with

facial expressions and body postures. It has its own grammar

and vocabulary, independent of spoken languages, but is used

for the same general communicative purposes [1].

Each sign language arises from its cultural-linguistic

community embodying particular historical social influences.

Sign languages have two big parts: manual and non-manual

signs. The manual sign has different components such as the

position, orientation, shape, and movement of the hand or

hands while the non-manual sign is about body movement

most especially facial expression. Non-manual signs are

important in specifying and emphasizing meanings carried by

manual gestures but since they provide core information

content of a message, most studies focus on manuals [2].

Sign Language Recognition (SLR) is a branch of research

aimed at the accurate interpretation of visual signing and its

translation into spoken or written language. This technology

helps reduce communication barriers for people who are deaf

or hard of hearing, between them and those who do not know

sign language [3].

Most current SLR methods fall into one of two broad

camps: image-based or sensor-based. Image-based solutions

have lately become more popular for their ease of access,

friendly use, and low hardware requisites. Applying computer

vision algorithms to recognize and track hand gestures, such

systems do not need any wearable apparatus; they can simply

be implemented on any platform with a built-in camera. The

proliferation of high-quality cameras in smartphones, tablets,

and laptops has made it easier to bring image-based SLR into

every day on-demand communication applications [4].

The basic motivation of sign language is in its function as

the natural medium of human interaction allowing a deaf

person to communicate self-expression involving

communication with other people and community

participation. Sign language, therefore, as the tool for social

inclusion, enables actual communication at educational, work,

or social situations. Its recognition as a complete linguistic

system develops steadily along with international movements

widening its visibility and usage [1].

The main objective of this paper is to propose a generalized

lightweight deep learning model that can be tuned to recognize

Ingénierie des Systèmes d’Information
Vol. 30, No. 12, December, 2025, pp. 3287-3300

Journal homepage: http://iieta.org/journals/isi

3287

https://orcid.org/0009-0009-8929-1134
http://orcid.org/0000-0003-0172-7925
https://orcid.org/0000-0001-6498-8562
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301221&domain=pdf

any static sign language dataset. The rest of the paper is

organized as follows: Section 2 provides related works.

Section 3 describes the main theoretical concepts of this study.

The proposed model for this study is presented in Section 4.

Implementation details and experimental results are discussed

in Section 5. Finally, all the conclusions from this study are

explained in Section 6.

2. RELATED WORK

Many works have been carried out in the area of sign

language recognition due to this perpetual quest for an

effective and efficient method of recognizing hand gestures.

However, opportunities still abound in delivering results more

accurate and robust than the existing approaches can muster.

Recent research proposals attempt new techniques to clearly

detect and analyze complex hand movements so that a two-

way communication system involving somebody who is hard-

of-hearing or deaf on one end but does not know sign language

on the other can understand them. The related works are

classified into three main categories for systematic review:

2.1 Studies related to the preprocessing stage

These works focus on the initial stages of developing

grayscale and normalized images to enhance quality and

maintain consistency. Common techniques include converting

the image into grayscale, applying histogram equalization,

Gaussian Blur, resizing the image as per requirement, and

Normalization.

The main objective of preprocessing is to normalize

abnormal input conditions and eliminate irrelevant variations

that may badly affect learning stages later on. Several related

papers to this stage have been analyzed for this purpose.

Ahmed et al. [2] developed an American Sign Language

static image recognizer of 29 classes in the year 2025. The pre-

processing steps on each frame are grayscale conversion,

resizing to 224 × 224 pixels, normalization of the range 0–255

to [0,1], and noise removal by Gaussian/median filters. Three

Tamura texture (descriptors- coarseness, contrast,

directionality) are fused with raw image data at input level and

fed into a pruned ResNet-50 backbone. Sequential Feature

Selection further refines these features while tuning

Generalized Additive Model (GAM) classifier using tenfold

cross validation scheme. Average accuracy over all letters is

about 96.7%.

Authors emphasize that this shallow Tamura–ResNet50–

GAM hybrid comes close to YOLOv3-like deep detectors yet

low resource hungry, however real time deployment plus

generalization outside ASL dataset remain open issues.

In 2024, Abd Al-Latief et al. [3] first converted the RGB

frames into grayscale, enhances the local contrast through

histogram equalization, reduces noise, and then applies a

contour-based segmentation method to crop out the hand

region; finally resizes the cropped region to 50×50 for

classification.

It thereafter applies WAR-Strategy meta-heuristic that

prunes features and fine-tunes six classical ML classifiers-in

achieving accuracies of 93.11–100% on American, Arabic,

and Malaysian static-image datasets with training times

reduced to 0.038–10 s across these dataset languages-with sub

second inference on some models as clear strengths but is still

limited to isolated frames with conventional ML pipeline

scalability ceiling inherited.

2.2 Studies related to the feature extraction stage

Research in this category aims to identify and extract the

most discriminative features from hand gestures, either

through handcrafted descriptors or learned representations.

There are many previous studies within this stage, the feature

extraction stage.

In 2023, Park et al. [4] employed a combination of 2D-

FFTand convolutional neural networks (CNNs) to address

complex hand gesture input and noise caused by the external

environment. 2D FFT have been used to convert time data

(image) into frequency domain then applied normalization and

resizing. The method’s reliance on specialized radar hardware

is an additional cost and a five-word vocabulary limits broader

sign-language applicability.

In 2023, Ahmed [5] introduces a hybrid Tamura–SIFT

pipeline for texture features. The Tamura descriptors provide

perceptual global cues (coarseness, contrast, directionality),

and SIFT injects scale- and rotation-invariant key-points that

represent fine local structure. Feature-level concatenation

forms a composite vector that carries global statistics united

with local gradients. It beats every single descriptor under

changing illumination, scale, and view by a good margin in

standard benchmarks. The richer signature improves retrieval,

segmentation, and object-recognition accuracy across multiple

datasets. The major limitation of the method is its high

computational cost which restrains real-time deployment.

2.3 Studies related to the classification stage

This group covers studies that design and evaluate models

for mapping gesture inputs to particular sign language classes.

Models run the gamut from baseline SVMs and k-NNs up to

state-of-the-art deep learning models, including CNNs and

even Graph Neural Networks (GCNs). A couple of papers also

venture hybrid models toward accuracy and generalization

enhancement.

In 2024, Miah et al. [6] proposed a two-stream GCAR

model in which an effective combination of spatial and

temporal information is achieved through GCN, sep-TCN, and

channel attention. The architecture produces very high

accuracies on big largescale datasets such as WLASL and PSL

because it represents full-body dynamics and was designed to

effectively manage joint discontinuity drawbacks. However,

results remain modest for ASLLVD and this cannot be applied

in real-time due to the complexity of the model.

In that year, a three-layer GCN with successive residual

connections applied to 21-landmark hand graphs attains 99.1%

accuracy on the ASL-Alphabet dataset. The model is

lightweight, enjoys stable gradients, and resists over-fitting,

but it speaks only to static letters, ignores temporal dynamics,

and generalizes poorly outside of America where the landmark

detector typically does not work [7].

In 2023, Vasudevan et al. [8] introduced WaveMesh

superpixels and WavePool pooling as inputs to SplineCNNs

that outperform SLIC on MNIST, Fashion-MNIST, and

CIFAR-10. The method has strengths in adaptive multiscale

graph construction but suffers from computationally

expensive wavelet preprocessing per image, requires tuning

for each image, and has not been tested on skeleton-based

sign-language data.

In 2022, Han et al. [9] proposed Vision GNN (ViG) as an

3288

image backbone representing each patch as a graph node and

by alternating Grapher and FeedForward blocks to overcome

the over-smoothing problem. ViG-S achieves 82.1 % Top-1

on ImageNet. Its strength lies in scalable patch-level graph

reasoning that flexibly models spatial context. However, the

use of fixed k-NN graph construction and the computational

overhead of graph building, along with larger model variants,

may limit its suitability for real-time sign-language

recognition, which requires fine-grained hand-joint modeling

and temporal information.

3. THE MAIN THEORETICAL CONCEPT

Much of what follows is a definition of the key terms that

will enable the avoidance of ambiguity in describing the

research methodology and thus establish the level of

robustness that can be attained, besides helping others repeat

the work. By specifying how each abstract concept is

measured, fair comparison with other research becomes

possible. This upfront clarity helps to lay a solid groundwork

for later stages—for example, data preparation, model design,

and performance evaluation—so that every step can be

transparently examined, critiqued, and improved upon in

further investigations.

3.1 Datasets

Two global datasets, American Sign Language and the

Arabic Sign Language (ArSL) downloaded from Kaggle and

used in the experimental. Each dataset is divided into training

and testing.

Figure 1. Random sample of American Sign Language (ASL) dataset

Figure 2. Random sample of the Arabic Sign Language (ArSL) dataset

3289

3.1.1 American Sign Language dataset

The ASL dataset which has been used in the study has been

taken from the Kaggle repository and is available at

https://www.kaggle.com/datasets/asl-

alphabet/asl_alphabet_train. The dataset has been divided into

training and testing subsets. Particularly, the data for training

contains 29 different classes or labels corresponding to 26

alphabetical letters from A through Z plus three extra

categories labeled as "Space," "Delete," and "Nothing." Figure

1 provides an example of this data that clearly shows what kind

of images there are and how diverse they can be.

3.1.2 Arabic Sign Language

The ArSL has been sourced from Kaggle at

https://www.kaggle.com/datasets/cherryshad0/arasl-database-

54k-final and then further divided into the training and testing

sets. It contains 54,049 images that belong to 28 different

classes, where every class signifies a letter of the Arabic

alphabet. Because generalization requires variation in hand

shape as well as orientation, images have been taken from 40

signers. An example excerpted in Figure 2 demonstrates both

manifoldness and features of the dataset.

3.2 Preprocessing concepts

3.2.1 Grayscale conversion

Grayscale takes away color information and keeps the

strength of light at every pixel. It makes it efficient and less

complex so as to allow analysis based on texture and intensity.

𝐼𝑔𝑟𝑎𝑦(𝑥, 𝑦) = 0.299 ∗ 𝑅(𝑥, 𝑦) + 0.587 ∗ 𝐺(𝑥, 𝑦) +

0.114 ∗ 𝐵(𝑥, 𝑦)
(1)

This formula reflects the way brightness is perceived by the

human eye. In grayscale, data is reduced to a fair amount and

content structure of the image comes out which is usually more

important for pattern recognition than color [3].

3.2.2 Histogram equalization

Histogram equalization is a method of readjusting pixel

intensities such that contrast can be improved. It helps in the

visibility of features by ensuring that pixel intensities are well

spread within the available intensity range. It helps to a great

extent in improving the clarity of the image, thus facilitating

better feature extraction and classification accuracy.

𝑠𝑘 = (𝐿 − 1) = ∑ 𝑝𝑟(𝑟𝑗)𝑘
𝑗=0 (2)

where,

• 𝑠𝑘: The newly equalized intensity value.

• 𝐿: The number of total intensity levels.

• 𝑝𝑟(𝑟𝑗): Probability of intensity level 𝑟𝑗 occurring.

This becomes particularly handy when the image is too pale

or lacks enough brightness. It redistributes the values of

intensity, hence more details on texture and edges which

become visible to the model [10].

3.2.3 Gaussian blur

Gaussian blur helps smooth out image noise using a

weighted average around each pixel.

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2) (3)

where,

• 𝐺(𝑥, 𝑦) : The value of the Gaussian kernel at point
(𝑥, 𝑦).

• 𝜎: Standard deviation of the Gaussian distribution.

By softening edges and reducing small pixel variations, it

allows the model to focus on significant patterns instead of

reacting to random noise. It provides smoother, cleaner

images, aiding in accurate detection of meaningful features

[11].

3.2.4 Image resizing

Images were equally adjusted to one size by interpolation.

It keeps all the images at one standard, fulfilling the size

requirement of analytical methods and neural networks as

input. It assures consistency, making direct comparison

between images possible and feature extraction steady [3].

3.3 Features extraction methods

3.3.1 Principal Component Analysis

PCA is a statistical technique increasingly popular for

applications such as dimensionality reduction, visualization,

noise filtering, and decorrelation. Therefore, in the context of

this study, PCA has been used as a feature extraction method

that will output DE correlated, energy ordered coefficients

(scores) carrying the most discriminative variance. These

coefficients will now be considered extracted features to be

used in classification rather than reducing dimensions [12].

𝑌 = 𝑊𝑇 ∗ 𝑋 (4)

where,

• 𝑋: represents the original high-dimensional image data.

• 𝑊 : is the matrix of principal components

(eigenvectors).

• 𝑌 : represents the transformed, lower-dimensional

features.

PCA finds the principal directions in the data where

variance is high. It does not emphasize dimensionality

reduction but rather feature extraction, such that the most

significant variance is preserved. By choosing these top

components, a small feature set is obtained which has high

representation and hence improves both efficiency and

accuracy in the classification process.

3.3.2 Fast Fourier Transform

FFT takes an image from the spatial domain to the

frequency domain.

𝐹(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑒−2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0
𝑀−1
𝑥=0 (5)

where,

• 𝑓(𝑥, 𝑦): Intensity at pixel (𝑥, 𝑦).

• 𝐹(𝑢, 𝑣) : Frequency domain representation at (𝑢, 𝑣).

• 𝑀, 𝑁 : Width and height of the image.

This change exposes recurring patterns and structural

regularities that were not visible in the original pixel

arrangement. A lot of textures have special frequency marks,

and FFT does a great job picking up those differences, giving

the model extra ways to spot texture-based differences. It gets

frequency-based features, offering views into structural and

textural qualities not clear in spatial areas. It boosts feature

discrimination abilities, helping in getting classification right

3290

[4].

3.3.3 Tamura features

Tamura features are conceived as classical, manual texture

descriptors, from perceptual principles of human vision. They

were designed to approximate the psychological dimensions

by which humans perceive differences in texture and thus

encompass both low-level statistical variation and high-level

structural properties of images. Tamura features go beyond

purely statistical measures in the sense that they emphasize

textural perception dimensions—granularity, regularity, and

orientation—for image analysis applications such as content-

based image retrieval, classification, and recognition.

Standard six Tamura features are Coarseness, Contrast,

Directionality, and Line-likeness Regularity [13].

a. Coarseness (Granularity Measure)

Coarseness reflects the size of texture primitives (granules).

An image can be said to contain fine-grained or large-grained

patterns. Mathematically, coarseness is obtained as a multi-

scale average of intensities for the image. For each pixel(x,y)

give the final coarseness measure as an average over the entire

image:

𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 =
1

𝑁
∑ 2𝑘(𝑥,𝑦)

𝑥,𝑦 (6)

where, 𝑁 is the number of pixels. A higher value indicates

coarser textures.

b. Variation in Pixel Intensities

Contrast measures the distribution of gray-level differences,

reflecting the degree of visual intensity variation. It combines

both standard deviation and kurtosis of the intensity histogram.

Tamura defined contrast as:

𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
σ

𝛼4
1

4⁄
 (7)

where, σ is the standard deviation of gray levels, and 𝛼4 be the

fourth central moment (kurtosis). This ensures that both the

spread and the peakedness of intensity variations are

considered. Textures with high brightness variation will

produce higher contrast values.

c. Directionality (Orientation Distribution)

Directionality evaluates the degree to which texture exhibits

strong orientation patterns. It is based on the gradient field of

the image. Directionality is defined as the sharpness of peaks

in this histogram:

𝐹directionality = ∑ (𝜃𝑖 −𝑖 𝜃𝑝𝑒𝑎𝑘)2(𝜃𝑖) (8)

Lower values indicate strong directional alignment, while

higher values indicate random or isotropic textures [5].

d. Line-Likeness

Line-likeness quantifies the degree to which neighboring

pixels share similar orientations, effectively capturing linear

structures in the texture. It is based on co-occurrence of

gradient orientations.

𝐹line−likeness = ∑ 𝑝(𝑖, 𝑗)cos(2(𝑖,𝑗 𝜃𝑖 − 𝜃𝑗)) (9)

where, 𝑝(𝑖, 𝑗) is the probability of two adjacent pixels having

orientations 𝜃𝑖 and 𝜃𝑗 . High values indicate textures

dominated by aligned linear structures.

e. Regularity

Regularity measures how uniform or repetitive the texture

patterns are. It is defined as the inverse of the variance across

the other features:

𝐹𝑟egularity =
1

1+𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (10)

where, 𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the variance among the set {𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 ,

𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 , 𝐹directionality, 𝐹line−likeness }. Regular textures such

as grids or stripes have higher regularity values.

f. Roughness

Roughness is a composite measure that integrates both

coarseness and contrast, reflecting the overall complexity of

the texture:

𝐹𝑟oughness = 𝐹𝑐𝑟𝑜𝑎𝑠𝑒𝑛𝑒𝑠𝑠 + 𝐹𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (11)

This measure is essential for distinguishing textures that are

visually complex from those that are smooth [2].

3.4 Graph construction theory (K-Nearest Neighbors

algorithm)

K-Nearest Neighbors is a simple powerful algorithm used

for classification, regression, and clustering. In graph-based

models (like fingerprint or image matching papers), k-NN can

also be used for clustering or neighborhood graph

construction. Each node (feature or point) connects to its K

nearest nodes based on Euclidean or similarity distance. This

builds a k-NN graph, where edges represent neighborhood

relationships. This helps in organizing data and reducing

computational complexity before classification or matching

[14].

3.5 Classification deep learning networks

3.5.1 Graph Convolution Neural Network

GCN is the most cited paper in the GNN literature and the

most commonly used architecture in real-life applications.

GCNs extend the traditional convolution operation to graph

structures by defining convolutions on nodes and their

neighborhoods. GCNs include both spatial-based and spectral-

based approaches. Spatial-based GCNs directly perform

convolutions on each node’s local neighborhood, while

spectral-based GCNs use graph Laplacians to define

convolution in the frequency domain [15].

It relies on spectral convolutions that capture global graph

properties, GCNs are widely used in semi-supervised learning

tasks like node classification, community detection, and other

graph-based tasks where localized information is crucial.

Mathematically, each layer is characterized by the propagation

rule defined by Kipf and Welling [16]:

𝐻(𝑙+1) = 𝜎 (D̃−1
2 Α̃ D̃−1

2 𝐻(𝑙) 𝑊(𝑙)) (12)

where,

• Α̃ = 𝐴 + 𝐼: is the adjacency matrix with added self-

loop.

• D: ̃is the degree matrix of Α̃.

• 𝐻(𝑙): is the feature matrix at layer l.

• 𝑊(𝑙): is the weight matrix.

• 𝜎: is an activation function.

3291

Figure 3. Convolution Neural Network (CNN)

3.5.2 Convolutional Neural Network

CNNs are a form of deep learning specifically created for

the analysis of visual data and thus can images and videos.

They have achieved greater accuracy than traditional machine

learning techniques. CNN architectures normally comprise a

few sequential layers, including convolutional layers that

extract features with the help of filters, pooling layers that

lower the dimensionality and complexity of computation by

reducing the size of data, flattening layers that transform

extracted features into linear vectors, dense layers generating

output through activation functions like ReLU, etc. To prevent

overfitting some neurons are randomly dropped during

training using dropout layers. Figure 3 shows an example of

convolution neural network.

CNNs find extensive applications across image processing,

robotics, medical imaging, data analysis, and business

intelligence [17].

3.5.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is particularly known as

that type of RNN among the family of recurrent neural

networks which can efficiently model sequential data. It has

two major control gates: a reset gate that, if not very correctly

tuned will allow some irrelevant past information, and an

update gate that makes new input balanced with historical

context. The rules control the flow of information in such a

way that long-range dependencies can be effectively captured

and at the same time address the problem of vanishing

gradients encountered by RNNs. The GRUs are

computationally less complex than Long Short-Term Memory

networks (LSTMs), hence providing better efficiency as well

as faster training. The temporal patterns sign language

recognition tasks can be identified by these layers and further

utilized for improving identification concerning gesture

sequences and transitions [18].

3.5.4 Long Short-Term Memory

LSTM networks extend and improve the traditional

architecture of Recurrent Neural Networks in learning long-

range dependencies within sequential data. Where basic RNNs

mostly fail due to vanishing or exploding gradients, LSTMs

avoid such limitations with specific gating architecture. There

are an input gate controlling what new information is added to

the cell state, a forget gate that continuously removes less

important information, and an output gate controlling what

part of the information should be outputted at each time step.

All these features enable the LSTM model to keep relevant

context information for very long sequences and hence make

it extremely useful in tasks such as speech recognition,

language modeling, or time-series prediction [19].

They control what information comes in and goes out of the

network, allowing it to keep important context for long

sequences while getting rid of less important information.

Because they can model time so well, LSTMs are used in all

applications that need sequence processing, including speech

recognition and language modeling; and in particular sign

language recognition where the correct understanding of rather

complicated gesture sequences is crucial [20].

4. PROPOSED METHODOLOGY

Figure 4 presents the research framework of the proposed

system. It summarizes the complete pipeline, starting from

image preprocessing and feature extraction, followed by k-NN

graph construction and data splitting, then adaptive GCN

training and testing. Finally, the model is evaluated using

standard performance metrics, including accuracy, precision,

recall, and F1-score.

This study hereby develops an adaptive GCN deep learning

model which uses the skeleton keypoints extracted for one

particular word as input. The model makes a GCN network

and inserts layers of CNN, GRU, and LSTM within the

internal structure of the network utilizing their properties to

come up with a generalized powerful model that could be used

for sign language recognition. To validate this proposed

model, two comprehensive datasets covering both American

Sign Language (ASL) and ArSL were used to test how

versatile and broadly applicable it is. This framework presents

the system under five stages: preprocessing stage, features

extraction stage, training stage, testing stage, and evaluation

stage shown in Figure 4.

4.1 Preprocessing

Preprocessing of the hand sign image dataset involves steps

3292

meant to improve visual quality, reduce computational

requirements, and provide favorable conditions for extracting

features. It starts with grayscale conversion whereby RGB

images are transformed into single channel presentations. This

reduces data dimensionality and the cost of computation while

maintaining shape and texture clues that are very relevant

towards achieving recognition accuracy. Next, histogram

equalization is applied to enhance contrast through better

utilization of the full range by setting pixel intensities to be

more evenly spread out; detail is increased on an image surface

and minute variations supporting pattern recognition become

apparent. Images are normalized whereby pixel values get

scaled within a standard range (most commonly between 0-1)

so as to keep consistency across the entire dataset thus

enabling steady model training.

The pictures are then run with a Gaussian blur, which takes

away high sounds and smooths out unwanted looks, making it

less likely that noise will cause mistakes when getting features.

A step that comes right after normalizing keeps the same level

of data spread after this smoothing. Changing the size of the

image helps to make all examples the same size, allowing for

consistent input handling and quick calculation during both

training and testing. Another round of normalization makes

sure data is steady before going into the feature-getting and

deep learning steps, thus making the whole finding system

better accurate strong and general.

Figure 4. Research framework

3293

4.2 Features extraction

The feature extraction becomes the core of a proposed

framework for sign language recognition because it describes

how the most salient and informative features are drawn out

from preprocessed images of hand signs. Three

complementary extraction techniques-PCA, Fast Fourier

Transform (FFT), and Tamura texture descriptors-are used in

this work to provide varied viewpoints on data. As the first

step, PCA is applied as a feature-extraction transform to

generate uncorrelated, energy-ordered scores that serve to

enrich representation. Only the first ten principal components

have been retained in this study as they contain most of the

discriminative information and thus represent the strongest

relevant features necessary for classification. Next, FFT will

be applied such that image information will be converted from

the spatial domain into its frequency domain. Periodic

structures and subtle variations are well captured in their

frequency domains which can never be seen from a spatial

perspective. This step helps much when periodic textures need

recognition and minute details regarding gestures are required.

Tamura features encode those texture characteristics in terms

of a human perceptual attribute with dimensions such as

coarseness, contrast, and directionality. Such subjective intake

makes the model more sensitive to fine changes in shape and

texture. Normalization ensures equal participation for all

features at this and subsequent stages, particularly when a

feature set does not overly dominate results due to scale

differentials. After normalization has been completed, these

features from the PCA, FFT, and Tamura methods are

appended together and stored within CSV files combining

such miscellaneous features into a single representation will

guarantee very wide and strong coverage over all possible

visual and structural characteristics that exist within the

dataset. Once the properties of each image have been saved as

a vector, the KNN algorithm runs between every two vectors

to find the edges among the nodes- hence, images features

vectors in this chunk by measuring their degree of closeness

so that they can be inputted into GCNs layers which require

data structured as a graph of nodes and edges. The

consolidated feature dataset is split into 70% training data and

30% testing data to comprehensively assess and validate how

well the model generalizes, i.e., on unseen scenarios and

datasets how reliable and effective recognition systems might

turn out to be.

4.3 Graph construction procedure (K-Nearest Neighbors

graph per mini-batch)

A separate graph is constructed for each mini-batch (chunk)

of the dataset in order to provide a graph structure for

subsequent graph convolution operations. The mini-batch size

is 32 and each image features vector represnts anode in the

graph. The resulting graph for each batch contains exactly 32

node. The graph is constructed using a k-nearest neighbor rule

with 𝐾=2 under the Euclidean distance, meaning that each

node is connected to its two closest neighbors in the feature

space. Because the neighborhood relation is computed

independently for each node, the resulting k-NN adjacency is

generally asymmetric and the graph is directed. The outgoing

degree of every node is fixed at 3 outgoing edges (two edges

to the nearest neighbors plus one self-loop), whereas the

incoming degree is not fixed and varies depending on how

frequently a node is selected as a nearest neighbor by other

nodes.

4.4 Classification stage

All important features are extracted in previse stage to use

in the current stage. Where the classification stage is central to

the effectiveness of the proposed methodology, transforming

refined, high-dimensional feature vectors into accurate and

interpretable class predictions. To this end, we designed a

structured yet adaptable framework integrating graph-

theoretic insights with advanced deep neural network

architectures. This careful integration allows the model to

capitalize on both spatial and temporal complexities present in

multilingual hand gesture datasets, thus enhancing

generalizability and accuracy across different languages,

particularly Arabic and English.

4.4.1 Training stage: Adaptive Graph Convolutional

representation

A more elaborate graph-based recognition pipeline where a

k-nearest-neighbor (k-NN) graph injects relational structure

into otherwise independent handcrafted descriptors. In this

setup, feature vectors become nodes and edges represent

proximity under some distance metric, typically the Euclidean

distance as a special case of Minkowski. Then, information for

one node embedding can be propagated by stacking Graph

Convolutional Network (GCN) layers such that each

embedding will have not only its own attributes but also those

of the immediate local neighborhood.

Each GCN layer works by building a k-nearest neighbor (k-

NN) graph. The single feature vectors shown as nodes in the

graph, while edges show the closeness-based similarity among

these vectors. Flexible behavior is done through changing

graph updates, where joining links change during training to

best show natural data structures across Arabic and English

datasets. Figure 5 shows an adaptive GCNs model layers. The

Adaptive GCNs layers are penetrated sequentially, meaning

that the extracted features forms from each layer serve as an

entry point to the next layer.

The Adaptive GCNs model architecture that progressively

transforms hand-sign feature vectors into a robust

representation suitable for accurate multi-class recognition

across heterogeneous datasets. First, an adaptive

neighborhood structure is introduced by constructing a k-

nearest-neighbor graph, where each feature vector is treated as

a node and edges encode proximity-based similarity. Two

consecutive GCN layers then perform neighborhood

aggregation using the normalized adjacency matrix. This stage

injects relational context into otherwise independent

descriptors and enables the model to learn similarity-

consistent patterns by propagating information across nearby

nodes, thereby improving robustness to intra-class variation

and reducing sensitivity to dataset-specific capture conditions.

Next, a stack of convolution–activation–pooling blocks

refines the graph-enriched embedding's by learning higher-

level, locally compositional patterns while max-pooling

compresses the feature maps and increases invariance to minor

perturbations. A recurrent stage, implemented as a GRU

followed by an LSTM, is subsequently applied to model

sequential dependencies within the learned representations

and to capture both short- and long-range correlations, which

further stabilizes recognition under variability and improves

generalization. Finally, the resulting representation is flattened

and passed through fully connected layers to produce class

3294

probabilities. Overall, by combining relational learning (GCN),

hierarchical pattern abstraction (CNN), and dependency

modeling (GRU/LSTM), the proposed architecture enhances

feature robustness and is explicitly designed to generalize

effectively across multiple sign-language datasets rather than

overfitting to a single dataset distribution.

4.4.2 Testing stage

In this stage, the trained adaptive GCN model undergoes

evaluation using the test subset (30% of the dataset, as per the

provided document).

4.5 Evaluation stage

Precision, recall, and F1-score measures are also calculated

in Figure 4 explain the results of these measures for the

proposed model. It had the highest values over all these

measures.

Accuracy measures the overall correctness of the model's

predictions and is calculated as the proportion of correctly

classified instances (both true positives and true negatives)

relative to the total number of predictions. It is formally

defined in Eq. (13), utilizing the standard classification

components: True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN) [20].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(13)

The ratio of True Positives to All Positives is known as

precision. It is formally defined in Eq. (14) [21].

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(14)

The Recall (R) is the measure of the model correctly

identifying True Positives. It is formally defined in Eq. (15)

[22].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(15)

The weighted average of Precision and Recall is known as

F1-score. It is calculated through Eq. (16) [23].

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
(16)

Figure 5. Adaptive Graph Convolutional Networks (GCNs) model

5. EXPERIMENTAL RESULTS

Windows 10 Professional has been utilized as an operating

system. The proposed model code and other baseline models

have been written in Python 3.6.5 and are implemented using

sklearn and Keras library. All experiments have been

conducted on processor Core i7 and 8GB RAM. Two datasets,

ASL and ArSL have been used to train and test our proposed

model.

Table 1 presents the summary of the hyper parameter

settings employed during the training phase of the proposed

model.

These settings were based on empirical evaluation and best

general practices in deep learning for an optimum tradeoff

between training efficiency and generalization performance. A

learning rate of 10-3 was used so as to keep stable convergence

during optimization. The model will be trained over 50 epochs

using a batch size of 32, which gives an efficient and consistent

update of model parameters. An adaptive GCNs architecture

consists of 24 sequential layers wherein convolutional

operations use a kernel size of 3 to extract fine-grained local

patterns from the input images. Such a relatively small kernel

size allows the network to conserve spatial detail while

progressively learning hierarchical representations. Adam

algorithm is used for optimization due to its adaptive learning

rate mechanism by which speed of convergence and stability

in training are balanced, hence improving the overall accuracy.

LeakyReLU is used to solve the problem of gradients not

flowing properly in deeper networks by allowing a small

gradient, when the input is negative. This proposed model uses

two GCN layers and seven CNN layers distributed among

different layers of this model. The number of filters varies

from 8 to 64 then goes down to 16. The number of protecting

layers for GRU and LSTM is 16. This will ensure better

gradient flow going through the network and will help feature

learning be better in the later layers.

3295

Table 1. The summary of hyper parameters setting

Name Value

Learning rate 10-3

No. of epoch 50

Batch size 32

No. of layers 25

Kernel size 3

Optimizer Adam

Activation function LeakyReLU

No. of Graph Convolutional Network (GCN)

layers 2

No. of Convolutional Neural Network (CNN)

filter 8, 16, 32, 64

Gated Recurrent Unit (GRU) units 16

Long Short-Term Memory (LSTM) units 16

Table 2 provide comparing the proposed Adaptive GCN

model with the results of a previous work [24] that used the

same ArSL dataset is provided.

Table 2. Comparison accuracy of the proposed model for

Arabic Sign Language (ArSL) with other research

Researches Dataset Accuracy

Adaptive Graph Convolutional

Networks (GCNs) model

ArSL 97

[24] ArSL 96.05

The proposed method reached an accuracy rate equal to

97% better than the reference model by 96.05%. Numerically,

the gain is not high, but in sign language recognition tasks

where there exist subtle changes in hand configurations and

complex gesture patterns, even small improvements are quite

significant. This improvement explicitly highlights the ability

of Adaptive GCN to extract spatial relationship and structural

dependency information from hand keypoints which is

essential in distinguishing visually similar signs. This also

elaborates that the model generalizes very well across different

signers and recording conditions so as to be robust enough for

real-world applications. The persistence advantage over all

existing methods offers empirical evidence for adaptive

mechanisms' inclusion into GCN architectures toward

improved ArSL recognition in Table 3.

Figure 6 shows both the training loss and validation loss of

ArSL dataset.

Figure 6. Loss of Arabic Sign Language (ArSL) dataset

Figure 7 shows that both the training loss and validation loss

decrease over 50 epochs of model training on the ArSL

dataset. Losses drop steeply for the first few epochs, starting

with a validation loss of about 8.4 and a training loss of about

2.9, meaning that the model is able to pick up significant trends

from the data very quickly. The next several epochs see

continued decrease, though now at a reduced pace as the model

makes adjustments to its parameters. Once e15 is passed, both

curves go flat and head toward zero - an indication that

convergence has been achieved by the model itself. The small

but steady gap between those two lines suggests the model is

likely to generalize well and thus work fine on new data - no

overt sign of overfitting.

Figure 7. Accuracy of Arabic Sign Language (ArSL) dataset

Table 3. Evaluation metrics of the adaptive GCNs model for

Arabic Sign Language (ArSL) dataset

Class Precision Recall F1-Score Support

0 1.00 1.00 1.00 634

1 1.00 1.00 1.00 502

2 1.00 1.00 1.00 537

3 1.00 1.00 1.00 490

4 1.00 1.00 1.00 517

5 1.00 1.00 1.00 501

6 1.00 1.00 1.00 587

7 1.00 1.00 1.00 511

8 1.00 1.00 1.00 586

9 1.00 1.00 1.00 478

10 1.00 1.00 1.00 458

11 1.00 1.00 1.00 466

12 1.00 1.00 1.00 532

13 1.00 1.00 1.00 482

14 1.00 1.00 1.00 550

15 1.00 1.00 1.00 529

16 1.00 1.00 1.00 546

17 1.00 1.00 1.00 498

18 1.00 1.00 1.00 568

19 1.00 1.00 1.00 491

20 1.00 1.00 1.00 452

21 1.00 1.00 1.00 545

22 1.00 1.00 1.00 551

23 1.00 1.00 1.00 539

24 1.00 1.00 1.00 475

25 1.00 1.00 1.00 412

26 0.48 1.00 0.65 388

27 0.00 0.00 0.00 412

Accuracy 0.97 14228

Macro avg 0.95 0.96 0.95 14228

Weighted avg 0.96 0.97 0.96 14228

Notice that both of training accuracy and validation

accuracy are decreased gradually over 50 epochs for the ArSL

dataset. In the first e1–e5 periods, a sharp rise in both training

and validation accuracy is observed, indicating that learning

for essential patterns within the data was quick. From about e5

0

5

10

e1 e4 e7

e1
0

e1
3

e1
6

e1
9

e2
2

e2
5

e2
8

e3
1

e3
4

e3
7

e4
0

e4
3

e4
6

e4
9

ArSL_Loss

loss val_loss

0

0.5

1

1.5

e1 e4 e7

e1
0

e1
3

e1
6

e1
9

e2
2

e2
5

e2
8

e3
1

e3
4

e3
7

e4
0

e4
3

e4
6

e4
9

ArSL accuracy

acc val_acc

3296

to e15, growth is slow as the model makes minor adjustments

toward better comprehension. After approximately e15, both

curves settle near 1.0 indicating that indeed an extremely high

level of accuracy has been attained by this particular model;

there is close overlap between training and validation

accuracies to indicate good generalization to unseen data with

absolutely no sign of overfitting.

In the classification report proves that this model is strong

and solid by getting an overall accuracy of 97% on the ArSL

dataset with a total number of test samples equal to 14,228.

For most categories from 0 to 25 it gets perfect precision, recall,

and F1-score (1.00) meaning not only very precise in guessing

the right class (high precision) but also quite exhaustive in

finding all relevant samples (high recall). Such performance

consistency gives an indication about how robust the model is

towards minute nuances of hand gesture and at the same time

keeps capability towards differentiating visually close signs.

But results for the last two classes are low. Class 26 gets 48

percent precision and 100 percent recall, which means that

though all true instances of this class have been detected, there

is a tendency to misclassify other samples from different

classes as class 26 (higher false positives). No correct

predictions for class 27 (precision = recall = F1-score = 0.00),

has fully failed to recognize this particular sign. This can be

due to class imbalance or inadequate training samples or more

intra-class variability for that sign.

Precision at 0.95, recall at 0.96, and F1-score at 0.95 macro-

averaged over all classes indicate the healthy treatment of all

classes equally; weighted averages of precision at 0.96, recall

at 0.97, and F1-score at 0.96 denote excellent overall accuracy

when more heavily populated classes are taken into

consideration.

The model shows state-of-the-art performance on most of

the classes, except those classes which are underperforming.

In specific reference to Classes 26 and 27, thereby suggesting

targeted improvements towards these particular classes

through data collection, class balancing, or improved feature

extraction.

Table 4 provide comparing the proposed Adaptive GCN

model with the results of previous works that used the same

ASL dataset.

Table 4. Comparison accuracy of the proposed model for

American Sign Language (ASL) with other research

Researches Dataset Accuracy

Adaptive GCNs ASL 1.0

[2]

[25]

[26]

ASL

ASL

ASL

96.68

99.51

96.96

Table 4 compares the proposed adaptive generative neural

network model with previous studies evaluated on the same

ASL dataset [2, 25, 26]. The proposed approach achieves

100% test accuracy, surpassing previously reported results

(96.68%, 99.51%, and 96.96%). While these baseline criteria

are already robust in the field of ASL recognition, the

exceptional accuracy observed in our experiments can be

attributed to the training dynamics and evaluation protocol.

Specifically, the learning curves exhibit a gradual and

consistent decrease in loss across training sessions, coinciding

with a rise in validation accuracy during training, without the

abrupt drops or instability that might typically indicate

abnormal training behavior or memory-induced distortions.

This pattern is consistent with steady convergence rather than

sudden spikes in performance. Furthermore, the test set was

completely isolated from the training set, and the model was

rigorously evaluated on samples it had never encountered

during the optimization process. This minimizes the risk of

interference between training and test data and supports the

accuracy of the reported test performance under the adopted

partitioning. However, we acknowledge that achieving 100%

accuracy is uncommon and should be interpreted within the

context of the dataset and protocol used.

Both of training loss and validation loss of ASL dataset shown

in Figure 8.

Figure 8. Loss of American Sign Language (ASL) dataset

Figure 8 which actually presents the loss curves and shows

how the training and validation loss change over 50 epochs for

the ASL dataset. Loss drops sharply at first epochs (e1-e5) for

both, which means that the main patterns in the data are being

picked up very fast by the model. The drop becomes slower

between e5 and e15 as the model fine-tunes its learning further.

After about e15, both curves flatten near zero meaning that the

model has converged. The close match between training and

validation loss all through training will always speak of strong

generalization whereby a model will perform well on unseen

data without overfitting.

Figure 9 illustrates the training and validation accuracy

trends over 50 epochs for the ASL dataset.

Figure 9. Accuracy of American Sign Language (ASL)

dataset

In the first few epochs (e1–e5), there is a quick rise in

accuracy as the model easily picks up major patterns from the

data in Figure 9. By about e7, both training and validation

accuracy are above 0.9 and after e10 they move toward 1.0.

After about e15, the curves flatten showing that the model has

settled down and is making correct predictions most of the

time. The very close tracking between training and validation

0

2

4

6

e1 e4 e7

e1
0

e1
3

e1
6

e1
9

e2
2

e2
5

e2
8

e3
1

e3
4

e3
7

e4
0

e4
3

e4
6

e4
9

ASL_Loss

loss val_loss

0

0.5

1

1.5

e1 e4 e7

e1
0

e1
3

e1
6

e1
9

e2
2

e2
5

e2
8

e3
1

e3
4

e3
7

e4
0

e4
3

e4
6

e4
9

ASL_accuracy

acc val_acc

3297

accuracy all through indicates very good generalization and

hence no overfitting that would show itself by performance

differences on training versus unseen data.

Figure 10. Confusion matrix for American Sign Language (ASL) dataset

Table 5. Evaluation metrics of the adaptive Graph

Convolutional Networks (GCNs) model for American Sign

Language (ASL) dataset

Class Precision Recall F1-Score Support

0 1.00 1.00 1.00 900

1 1.00 1.00 1.00 900

2 1.00 1.00 1.00 900

3 1.00 1.00 1.00 900

4 1.00 1.00 1.00 900

5 1.00 1.00 1.00 900

6 1.00 1.00 1.00 900

7 1.00 1.00 1.00 900

8 1.00 1.00 1.00 893

9 1.00 1.00 1.00 900

10 1.00 1.00 1.00 900

11 1.00 1.00 1.00 900

12 1.00 1.00 1.00 900

13 1.00 1.00 1.00 900

14 1.00 1.00 1.00 900

15 1.00 1.00 1.00 900

16 1.00 1.00 1.00 900

17 1.00 1.00 1.00 900

18 1.00 1.00 1.00 900

19 1.00 1.00 1.00 900

20 1.00 1.00 1.00 900

21 1.00 1.00 1.00 900

22 1.00 1.00 1.00 900

23 1.00 1.00 1.00 900

24 1.00 1.00 1.00 900

25 1.00 1.00 1.00 900

26 1.00 1.00 1.00 900

27 1.00 1.00 1.00 900

28 1.00 1.00 1.00 900

Accuracy 1.00 26093

Macro avg 1.00 1.00 1.00 26093

Weighted avg 1.00 1.00 1.00 26093

In Figure 10 the confusion matrix for all classes of the ASL

dataset have been shown.

The confusion matrix of the ASL dataset shows that the

proposed model achieved very high classification ability, with

values almost entirely concentrated on the main diagonal. This

means that most samples were correctly classified with

minimal transitions to other categories. This pattern reflects

predictive consistency and stability in distinguishing between

signal features, indicating that the learned representations

were sufficient to clearly separate the categories and minimize

overlap. The number of correctly classified samples in most

categories was also relatively similar, with some categories

showing a decrease compared to others. This is generally

understood to be due to a slight variation in the sample size

available for that category within the test data, rather than

classification ambiguity. Overall, these results support the

conclusion that the model efficiently generalizes signal-

associated patterns within the experimental setup, and that its

performance was unaffected by the presence of similar

categories in terms of visual structure or extracted features.

This is directly reflected in the rarity of errors outside the

matrix diagonal. Table 5 Shows the evaluation metrics of the

adaptive GCNs model for ArSL dataset with its details.

6. CONCLUSION

This paper has presented a multilingual sign language

recognition pipeline that incorporates advanced preprocessing,

complementary feature extraction, and adaptive graph-based

learning with the help of sequential deep neural modules. The

framework comprises PCA, FFT, and Tamura texture

descriptors in an adjustable architecture of GCN enriched

3298

further by CNNs, GRUs, and LSTM layers to spatial textures

at a very detailed level; patterns within the frequency domain;

temporal dependencies. Empirical results reported herewith

significantly outperform any current state-of-the-art efforts

recording 97% accuracy on the ArSL dataset under both

macro- and weighted-average scores as well as 100% accuracy

on ASL where every single class achieves perfect precision,

recall, and F1-score.

While the ASL results underscore extraordinary recognition

capability, perfect scores must be guarded about in terms of

possible due influences by specific factors pertaining to the

dataset or overfitting. Performance disparity noticed in certain

classes of ArSL are indicative and prescriptive towards

improvements that may include balancing data, synthetic

augmentation, or more optimized class-specific-features that

can improve robustness even further. Meanwhile, these

findings have convincingly validated that handcrafted

descriptors conjoined with learned deep features within a

graph-based schema adaptively maximize the accuracy for

cross linguistic sign recognition tasks. Immediate future

directions will involve extending this very framework to

continuous sign language besides making it resilient under

real-world variability in addition to speeding up computations

on resource-constrained platforms.

REFERENCES

[1] Bhadra, R., Kar, S. (2021). Sign language detection from

hand gesture images using deep multi-layered

convolution neural network. In 2021 IEEE Second

International Conference on Control, Measurement and

Instrumentation (CMI), Kolkata, India, pp. 196-200.

https://doi.org/10.1109/CMI50323.2021.9362897

[2] Ahmed, I.T., Gwad, W.H., Hammad, B.T., Alkayal, E.

(2025). Enhancing hand gesture image recognition by

integrating various feature groups. Technologies, 13(4):

164. https://doi.org/10.3390/technologies13040164

[3] Abd Al-Latief, S.T., Yussof, S., Ahmad, A., Khadim,

S.M., Abdulhasan, R.A. (2024). Instant sign language

recognition by WAR strategy algorithm based tuned

machine learning. International Journal of Networked

and Distributed Computing, 12(2): 344-361.

https://doi.org/10.1007/s44227-024-00039-8

[4] Park, G., Chandrasegar, V.K., Koh, J. (2023). Accuracy

enhancement of hand gesture recognition using CNN.

IEEE Access, 11: 26496-26501.

https://doi.org/10.1109/ACCESS.2023.3254537

[5] Ahmed, H.M. (2023). Texture feature extraction using

tamura descriptors and scale-invariant feature transform.

Journal of Education & Science, 32(4): 91-103.

https://doi.org/10.33899/edusj.2023.143728.1394

[6] Miah, A.S.M., Hasan, M.A.M., Nishimura, S., Shin, J.

(2024). Sign language recognition using graph and

general deep neural network based on large scale dataset.

IEEE Access, 12: 34553-34569.

https://doi.org/10.1109/ACCESS.2024.3372425

[7] Sarkar, U., Chakraborti, A., Samanta, T., Pal, S., Das, A.

(2024). Enhancing ASL recognition with GCNs and

successive residual connections. arXiv preprint

arXiv:2408.09567.

https://doi.org/10.48550/arXiv.2408.09567

[8] Vasudevan, V., Bassenne, M., Islam, M.T., Xing, L.

(2023). Image classification using graph neural network

and multiscale wavelet superpixels. Pattern Recognition

Letters, 166: 89-96.

https://doi.org/10.1016/j.patrec.2023.01.003

[9] Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E. (2022).

Vision GNN: An image is worth graph of nodes.

Advances in Neural Information Processing Systems, 35:

8291-8303.

[10] Syaputra, H., Nurmaini, S., Partan, R.U., Roseno, M.T.

(2025). Enhancing medical image instance segmentation

using histogram equalization and blind deblurring: A

preliminary study. Ingénierie des Systèmes

d’Information, 30(5): 1363-1372.

https://doi.org/10.18280/isi.300521

[11] Hummel, R.A., Kimia, B., Zucker, S.W. (1987).

Deblurring gaussian blur. Computer Vision, Graphics,

and Image Processing, 38(1): 66-80.

https://doi.org/10.1016/S0734-189X(87)80153-6

[12] Al Hammami, D.J., Hassan, R.F. (2025). A hybrid 1D

CNN-LSTM model for face recognition using PCA

features. Ingénierie des Systèmes d’Information, 30(8):

2067-2076. https://doi.org/10.18280/isi.300812

[13] Kamath, R.C., Vijay, G.S., Prasad, G., Rao, P.K., Shetty,

U.K., Parameshwaran, G., Shenoy, A., Shetty, P. (2023).

Feasibility analysis of Tamura features in the

identification of machined surface images using machine

learning and image processing techniques. Engineering

Proceedings, 59(1): 92.

https://doi.org/10.3390/engproc2023059092

[14] Alshammari, M., Stavrakakis, J., Ahmed, A.F.,

Takatsuka, M. (2023). Random projection forest

initialization for graph convolutional networks.

MethodsX, 11: 102315.

https://doi.org/10.1016/j.mex.2023.102315

[15] Hayder, N.M.M.A., Seno, S.A. H., Noori, H.,

Zabihzadeh, D., Manaa, M.E. (2025). Improved DDoS

attack detection-based feature selection by using graph

convolutional network-transformer model. Operational

Research in Engineering Sciences: Theory and

Applications, 8(2): 22-46.

https://doi.org/10.5281/zenodo.17160174

[16] Kipf, T.N., Welling, M. (2017). Semi-supervised

classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907.

https://doi.org/10.48550/arXiv.1609.02907

[17] Al-Hammadi, M., Muhammad, G., Abdul, W.,

Alsulaiman, M., Bencherif, M.A., Mekhtiche, M.A.

(2020). Hand gesture recognition for sign language using

3DCNN. IEEE Access, 8: 79491-79509.

https://doi.org/10.1109/ACCESS.2020.2990434

[18] Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-

González, A.B., Corchado, J.M. (2022). Deepsign: Sign

language detection and recognition using deep learning.

Electronics, 11(11): 1780.

https://doi.org/10.3390/electronics11111780

[19] López, L.I.B., Ferri, F.M., Zea, J., Caraguay, Á.L.V.,

Benalcázar, M.E. (2024). CNN-LSTM and post-

processing for EMG-based hand gesture recognition.

Intelligent Systems with Applications, 22: 200352.

https://doi.org/10.1016/j.iswa.2024.200352

[20] Hussain, A., Ul Amin, S., Fayaz, M. (2023). An efficient

and robust hand gesture recognition system of sign

language employing finetuned Inception-V3 and

Efficientnet-B0 network. Computer Systems Science &

Engineering, 46(3): 3509-3525.

3299

https://doi.org/10.1016/j.patrec.2023.01.003

https://doi.org/10.32604/csse.2023.037258

[21] Shhatha, A.M., Alsaif, O.I. (2025). Enhancing

cybersecurity through malware detection based on

machine learning technique. Kufa Journal of Engineering,

16(3): 82-100.

https://doi.org/10.30572/2018/KJE/160306

[22] Sundar, B., Bagyammal, T. (2022). American sign

language recognition for alphabets using MediaPipe and

LSTM. Procedia Computer Science, 215: 642-651.

https://doi.org/10.1016/j.procs.2022.12.066

[23] Allahem, H., El-Ghany, S.A., Abd El-Aziz, A.A.,

Aldughayfiq, B., Alshammeri, M., Alamri, M. (2025). A

hybrid model of feature extraction and dimensionality

reduction using ViT, PCA, and random forest for multi-

classification of brain cancer. Diagnostics, 15(11): 1392.

https://doi.org/10.3390/diagnostics15111392

[24] Elshaer, A.M., Ambioh, Y., Soliman, Z., Ahmed, O.,

Elnakib, M., Safwat, M., Elsayed, S.M., Khalid, M.

(2024). Enhancing Arabic alphabet sign language

recognition with VGG16 deep learning investigation. In

2024 14th International Conference on Electrical

Engineering (ICEENG), Cairo, Egypt, pp. 184-186.

https://doi.org/10.1109/ICEENG58856.2024.10566400

[25] Alsolai, H., Alsolai, L., Al-Wesabi, F.N., Othman, M.,

Rizwanullah, M., Abdelmageed, A.A. (2024).

Automated sign language detection and classification

using reptile search algorithm with hybrid deep learning.

Heliyon, 10(1): e23252.

https://doi.org/10.3390/electronics11111780

[26] Sharma, A., Mittal, A., Singh, S., Awatramani, V. (2020).

Hand gesture recognition using image processing and

feature extraction techniques. Procedia Computer

Science, 173: 181-190.

https://doi.org/10.1016/j.procs.2020.06.022

3300

