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One of the most prevalent cancers that affects women is breast cancer. It ranks as the second
most important factor in cancer-related deaths. The mortality rate can be decreased and
survival rates raised with early detection and individualized risk assessment. The results of
traditional risk prediction models, which are based on traditional risk factors, vary
depending on the population. To solve these issues, this proposed system is designed. The
dataset used for this analysis is the Mammogram Image Dataset. The Mammographic Image
Analysis Society (MIAS) Digital Mammogram Database, which is publicly available, was
used in this study. The study utilizes the MIAS in conjunction with Mini-Mammaographic
imaging datasets (Malignant, Benign, and Normal). The MIAS provided the 322
mammography images representing 161 individuals in the MIAS dataset. These images
were taken at a resolution of 50 microns and included two mediolateral oblique (MLO)
views. The system collects the digitized mammographic images as input. Then the raw data
is pre-processed to remove unwanted data and noise. By using median filtering, important
structural data is stored and maintains the mammogram image edges. The Fuzzy Clustering
with Chicken Swarm Optimization (FC-CSO) technique will be classified into segments,
and it separates suspicious regions like masses or calcifications from normal tissue. Based
on labelling and annotation, the MIAS dataset determines whether the tissue is benign,
malignant, or normal. The data from the labelling and annotation is given to feature
extraction. The features of texture are essential for identifying the characteristics of tissue
during this feature extraction process, which makes use of the Gray-Level Co-occurrence
Matrix (GLCM). These characteristics are used to further classify the data. The data is then
separated into testing sets and training sets. Seventy percent goes toward training, and thirty
percent goes toward testing. The model is classified using Radial Basis Function Neural
Networks (RBFNNSs). By using radial basis functions as the activation functions in the
hidden layer, this method enables the representation of complex patterns within the
extracted feature space. RBFNN classifiers are then used to train the data into Normal,
Benign, or Malignant categories. As a result, this system is used to accurately and early
detect breast cancer. Therefore, An efficient automated mammogram breast cancer
detection using Optimized Radial Basis Neural Network minimizes human error and
processing time by combining FC-CSO for image segmentation, using a Gray-Level Co-
occurrence Matrix for feature extraction, and using a RBFNN for data classification. Hence,
this system shows better results in terms of accuracy, precision, specificity and processing
time. The suggested FC-CSO-RBFNN technique outperforms current classifiers like SVM
and XGBoost in terms of accuracy, precision, specificity, and computational time across
mammography classification tasks.

1. INTRODUCTION

over 2.3 million cases reported annually [1]. In countries with
lower and middle incomes, breast and cervical cancer account

Breast cancer is the most common cancer and the leading for approximately 80% of deaths. As the most common cancer
cause of cancer-related deaths among women globally, with in the world today, breast cancer accounts for 12.5% of all new

3243


https://orcid.org/0000-0002-8079-9849
https://orcid.org/0000-0002-6247-1575
https://orcid.org/0000-0002-9115-3613
https://orcid.org/0000-0003-4378-9315
https://orcid.org/0000-0001-9426-205X
https://orcid.org/0009-0002-2879-815X
https://orcid.org/0000-0002-4092-2486
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301217&domain=pdf

cases diagnosed annually and causes the longest duration of
disability when compared to other cancer types [2]. The World
Health Organization (WHO) unveiled a new global initiative
framework for breast cancer intending to prevent 2.5 million
deaths from the disease by 2040. The three main areas of
health promotion that are the focus of this initiative are early
detection, prompt diagnosis, and comprehensive management
of breast cancer.

Effective methods of detection are essential because breast
cancer is the most prevalent type of cancer and the second
leading cause of cancer-related deaths in women. The majority
of current screening or detection methods depend on imaging
methods, particularly mammography [3]. Mammography
screenings can lead to overdiagnosis and a significant number
of false positives, even though they have been demonstrated to
lower the death rates from breast cancer. As a result, a recent
agreement statement regarding breast cancer prevention has
identified the integration of molecular biomarkers with current
screening and early detection techniques as a crucial area of
focus [4].

The disease known as breast cancer is characterized by
abnormal breast cell growth. Life chances and effective
therapy differ depending on the stage [5]. Breast cancer
survival rates are raised and treatment options are improved
with early detection. Regular screening is still an extremely
effective public health strategy for lowering the mortality and
health effects of breast cancer. Heat patterns linked to breast
tumors that are less likely to be obscured by thick breast tissue
can be detected by breast thermography. This imaging method
can accurately reveal temperature variations linked to
abnormalities in breast tissue without requiring any invasive
procedures. The chances of survival and a successful course of
treatment are significantly increased when breast cancer is
detected early [6]. Thermographic imaging is a radiation-free
and non-invasive screening method that is especially useful for
routine monitoring. Our research’s objective is to use deep
learning techniques to improve the accuracy and efficacy of
thermographic imaging in identifying breast cancer.

In the majority of these, proteins, carcinoma antigens
(CAs), and circulating cell-free tumor nucleic acids (DNA or
RNA) or their modifications (like DNA methylation) are
assessed [7]. Emphasizing blood for cancer biomarkers is
probably influenced by a number of factors, including
convenience (blood samples are frequently obtained and
stored in biobanks, which facilitates the development of
biomarkers) and it is possible to identify the material that
tumors release into the bloodstream through "liquid biopsies."
However, additional biological samples may also present
special benefits and offer additional insights into the systemic
effects of cancer [8]. In earlier research, for example, we found
that determining the likelihood of a breast cancer diagnosis
could be helped by examining DNA methylation in cervical
specimens, which are frequently obtained for cervical cancer
screening. In a validation set made up of cervical samples from
either healthy age-matched controls or women with breast
cancer, the cervical methylation classification system known
as Women’s Cancer Risk Identifier—Breast Cancer (WID-
BC) obtained an area under the curve (AUC) of 0.81 [9].

DNAme is a comparatively stable epigenetic modification
that is subject to external exposures and has a significant
impact on the control of gene and protein activity without
changing the DNA sequence itself. Consequently, it is
hypothesized that the epigenome is a crucial link between
genes and environmental factors, reflecting changes in the
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environment [10]. According to our earlier research, the
DNAme changes could be a sign of a lifetime systemic
exposure that could cause cancer in one tissue (breast), but
could also be detected in a non-invasive "surrogate” sample
(cervix). This makes it appropriate for identification and
screening when the anatomically distant cervical samples do
not contain cancerous tissue [11].

Mammography, Magnetic Resonance Imaging (MRI), and
ultrasound imaging are additional diagnostic techniques for
identifying breast cancer. An X-ray mammogram usually
serves as the first screening, and ultrasound imaging will be
performed if additional testing is required [12]. Lastly, since
MRI is thought to provide a diagnosis that is more accurate
than X-ray imaging, it is the method that is recommended for
women who are at least 30 years old and have been diagnosed
with breast cancer. MRIs are a useful modality for identifying
breast cancer because they don't use radiation, as other
imaging tests do. Additionally, they are noninvasive, cost-
effective, and appropriate for screening and diagnosis in
environments with limited resources.

The research gap observed in existing systems is low
accuracy, recall, F1-score and processing time.

The objectives of this proposed system are high accuracy by
using the FC-CSO algorithm for segmentation. The precision
and specificity are high as Gray-Level Co-occurrence Matrix
(GLCM) is used for feature extraction. The processing time is
reduced because of reducing error in predictions. When it
comes to breast cancer, this Radial Basis Function Neural
Network (RBFNN) can make accurate predictions.

This is how the remainder of the paper is organized. The
literature review was summarized in Section 2. An efficient
automated mammogram breast cancer detection using
Optimized Radial Basis Neural Network is presented in
Section 3. Section 4 discusses the result analysis of the
proposed model. Finally, the paper concluded in Section 5.

2. LITERATURE SURVEY

Shao et al. [13] examined a newly gathered dataset of 40
individuals to demonstrate a novel pipeline for classifying
breast cancer using features taken from shear wave absolute
vibro-elastography (S-WAVE) data. New bi-spectral and
Wigner spectrum characteristics are calculated directly from
the RF time series, along with textural and spectral elements
derived from B-mode and elasticity images. By employing the
Quadratic Mutual Information method and the Random Forest
permutation importance ranking method, we lower the feature
count from 377 to 20. We use Monte Carlo cross-validation
and leave-one-patient-out methods on Random Forest and
Support Vector Machine classifiers. Displayed are the
classification outcomes for various feature sets. Our top
outcomes (95% confidence interval, Area Under Curve =
95%+1.45%, sensitivity = 95%, and specificity = 93%)
outperform the state-of-the-art performance of S-WAVE in
identifying breast cancer.

Darabi et al. [14] suggested a Boolean system that uses logic
gates based on microRNA to detect breast cancer. This paper
introduces a Boolean system that utilises miRNA data as
inputs to identify a logical function involving seven miRNAs
linked to breast cancer. The accuracy of the suggested Boolean
function in diagnosing breast cancer is 97.03%. These findings
can be incorporated into R software for bioinformatics
analysis and adapted for diagnosing other diseases by



adjusting the input miRNAs. This approach shows potential
for advancements in DNA computing, biomedical research,
and clinical diagnostics.

Elsheakh et al. [15] developed a wearable system for breast
cancer detection by embedding a flexible sensor in a bra. The
flexible PCB Roger substrate used to make this suggested
sensor, which has an antenna, is 0.17 mm thick. It features a
compact CPW monopole antenna measuring 24 x< 45 mm?.
The suggested sensors have a reflection coefficient of -6 dB, a
conformal structure for biological structures, and
biocompatibility. They also have enough bandwidth from 1.5
to 8 GHz. To verify safety requirements, the suggested sensor's
Specific Absorption Rate (SAR) was calculated and measured.
The results showed a value of 0.75 W/kg at 0 dBm. Medical
school students' realistic rubber phantoms allow the breast and
tumor to dynamically combine to create test scenarios for
breast cancer detection. The breast phantom is surrounded by
sensor components with 2x2 antennas to gather information on
scattering properties for tumor identification. To validate
detection, the optimum number of sensors to use, and training
data for developed detection algorithms, a number of
simulation and measurement scenarios are presented.

Sinibaldi et al. [16] created a new technique that combines
biochips based on a 1-D photonic crystal and a direct
competitive ERBB2 assay. These biochips function in a dual
mode that combines label-free/fluorescence methods, making
it possible to identify ERBB2 in cell lysates from particular
breast cancer lines that are either ERBB2-negative (T47D) or
ERBB2-positive (SK-BR 3, BT474). Furthermore, ERBB2 in
the three model cell lines can be detected with high specificity
due to the enhanced fluorescence spectra that our biochips can
produce. The assay's single-step detection technique, which
reduces the overall time needed to less than 20 minutes, is a
main advantage. This latter feature highlights the method's
enormous potential for rapidly identifying ERBB2 in complex
biological samples.

Jamil et al. [17] found that the best Wiener Linear Time
Invariant Filter method with Tophat Transformation (LFWT)
can identify microcalcification in the breast with an accuracy
rate of 99.5%. In this work, we focused on the identification
of microcalcifications in images, an essential initial step
towards precisely identifying all the indicators in a
mammography-based early breast cancer diagnosis. To make
the cancer region visible and prominent, the Wiener and
CLAHE filters are used. Tophat morphological operators were
applied to mask detection, and edges were extracted. The
analytical performance of the proposed model for
microcalcification identification in mammograms was
evaluated and compared with other approaches using
Mammographic Image Analysis Society (MIAS) and Mini-
Mammographic imaging datasets. Additionally, three
techniques- The Local Contrast Method (LCM), the Local
Relative Contrast Measure Method (LRCMM), and the High-
Boost-Based  Multiscale  Local  Contrast  Measure
(HBBMLCM) are used to identify microcalcification linked to
cancer on mammography images.

Naseem et al. [18] suggest a system that uses an ensemble
of classifiers to automatically detect BC diagnosis and
prognosis. Our first step is to review an ensemble of machine
learning (ML) algorithms and a number of ML algorithms. We
give an overview of machine learning techniques, like
artificial neural network (ANN) and an ensemble of different
classifiers, for automated BC diagnosis and prognosis
identification. Furthermore, we use two benchmark datasets to

3245

present and compare different ensemble approaches and other
variations of tested machine learning-based methods with and
without an up-sampling technique. We also looked at how
applying balanced class weight affected the prognosis dataset
and compared its outcomes with those of other approaches.
The results demonstrated that the ensemble approach achieved
98.83% accuracy, outperforming other state-of-the-art
techniques. Due to its high performance, the suggested system
is extremely important to the medical field and the relevant
research community. According to the comparison, the
suggested approach performed better than other state-of-the-
art methods.

Kaushal and Khanna [19] electrical performance
characteristics for breast cancer cell line detection by
developing the Si-doped molybdenum disulfide thickness-
engineered tunnel field effect transistor biosensor. Surface
potential, electric field, trans conductance (gm), threshold
voltage (Vth), on current (ION), and subthreshold swing are
all included in the comprehensive analysis of the electrostatic
field. The sensitivity is analysed in terms of drain current
(Ids), gm, Vth, ION, ION/IOFF ratio, and gm. Further, this
study investigates the impact of device geometry variations,
specifically cavity thickness and length on the sensitivity of
drain current (Slds), trans conductance (Sgm), threshold
voltage (SVth), and on current (SION). In addition, the impact
of immobilized cell line occupancy on device performance has
been examined. The presented biosensor is highly sensitive
with increased cavity occupancy resulting in enhanced
performance. This allows for the use of array methods for
breast cancer cell screening and diagnosis while reducing costs
and simplifying the fabrication process.

Khater et al. [20] created a machine learning model to
differentiate between breast cancer and explain the results the
model generates. Finding the essential characteristics of breast
cancer tumors and how they impact the classification process
may improve our knowledge of breast cancer diagnosis and
treatment. With the Wisconsin breast cancer dataset, the best
machine learning model obtained 98.2% precision and 97.7%
accuracy using k-nearest Neighbors. 98.6% accuracy and
94.4% precision were attained by an artificial neural network
on the Wisconsin diagnostic breast cancer dataset. This
demonstrates the significance and efficacy of the suggested
strategy. The worst area feature and the bare nuclei feature in
the Wisconsin diagnostic breast cancer dataset are the main
factors in determining the malignancy of breast cancer,
according to the current study, which uses model-agnostic
techniques to explain the model's function.

Rahman et al. [21] suggested using the Wisconsin Breast
Cancer (Diagnostic) (WDBC) dataset to improve machine
learning techniques for breast cancer detection. Feature
engineering, scaling, feature selection, and hypothesis testing
were among the various data pre-processing techniques we
employed. Using a gradient boosting regressor with
Bonferroni correction, we chose the 13 most important
features to train 14 classifiers. Our suggested eXtreme
Gradient Boosting model performed exceptionally well,
attaining an F1-score of 0.9882, 1.0 recall, 0.9861 specificity,
0.9767 precision, and 99.12% accuracy. The model has the
potential to accurately and quickly diagnose breast cancer, as
these findings outperform those of earlier research.
Additionally, evaluations based on the Kappa score and
training time show that our eXtreme Gradient Boosting model
is more reliable and faster.

Ahmad et al. [22] developed a unique technique, BreastNet-



SVM, to automatically detect and classify breast cancer from
mammograms. Two fully connected layers make up the nine-
layer architecture used in this study to extract data features.
For the classification task, we also used Support Vector
Machines (SVM). The Digital Database for Screening
Mammography (DDSM), a well-known benchmark dataset,
was utilized in this investigation. The results indicated that the
accuracy, specificity, and sensitivity of the proposed model
were 99.16%, 99.30%, and 97.13%, respectively. The
proposed BreastNet-SVM model was evaluated against the
best methods for identifying breast cancer. Experimental
results on a DDSM dataset showed that the suggested
BreastNet-SVM model performed better than the others in
terms of accuracy.

Saha et al. [23] proposed Breast-NET, a deep convolutional
neural network framework for identifying and grading breast
cancer using histological images. By using the BreakHis
dataset, we assess our model's effectiveness and display its
capability to appropriately adjust to the grading of the IDC
(Invasive Ductal Carcinoma) and IDC datasets. The
effectiveness of our suggested model is confirmed by an
ablation study as well as extensive experimental and statistical
analyses. In addition, we employ seven existing convolutional
neural networks that have already been trained to show the
effectiveness of transfer learning in identifying and grading
breast cancer. Based on our experimental results, our approach
performs better than the state-of-the-art techniques for the
BreakHis, IDC grading, and IDC datasets in terms of space,
accuracy, and computational complexity.

Nedjmeddine et al. [24] demonstrated how to create a
coplanar biosensor that is capable of accurately identifying
breast cancer by making use of Split Ring Resonators (SRRs)
and Complementary Split Ring Resonators (CSRRs). Using
electromagnetic interaction between SRRs, this biosensor,
which is only 40 <22 x1.6 mm? in size and operates at 2 GHz,
produces a large frequency change of 135 MHz, increasing its
sensitivity to changes in tissue. A return loss (S11) of<—98 dB
signifies low signal reflection and excellent impedance
matching, while its optimal Voltage Standing Wave Ratio
(VSWR) of 1.0005 allows for effective power transfer. The
results validate the biosensor's potential as a non-invasive,
highly sensitive and reliable diagnostic tool, particularly for
identifying breast cancer.

Veerlapalli and Dutta [25] suggests BCDGAN, a novel deep
learning model aimed at detecting breast cancer in
thermographic images, which combines a Generative
Adversarial Network (GAN) and a Hybrid Deep Learning
(HDL) method. By synthesizing significant regions of interest
(ROIs) and utilizing deep feature extraction to improve
classification performance, the goal is to increase diagnostic
accuracy [26]. To enhance model generalization and augment
the dataset, the suggested GAN-HDL-BCD method begins by
extracting features from thermogram images using a hybrid
deep learning model. Next, synthetic ROIs are produced using
a GAN-based method [27]. The suggested system outperforms
traditional deep learning models with an accuracy of 98.56%,
according to experimental evaluations on the DMR-IR
benchmark dataset [28].

Limitations: The literature now in publication shows a
variety of ways for detecting breast cancer, such as wearable
technology, biosensors, machine learning models based on
imaging, and bioinformatics-driven strategies. Even while
many studies show great accuracy, a comprehensive
examination of these works reveals a number of common
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drawbacks.

First, there are a lot of limits linked to datasets. Numerous
methods rely on tiny or extremely particular datasets, such as
controlled laboratory conditions, single-modality data, or
small patient cohorts. This limits the generalizability of the
concept and raises questions about its practical application in
clinical settings. Additionally, a number of research
concentrate on benchmark datasets without addressing inter-
patient variability or data imbalance. The second major
drawback is modality reliance. Shear wave electrography,
thermography, histology, and biosensor-based techniques may
call for sophisticated acquisition protocols, invasive
procedures, or specialized hardware. Compared to traditional
mammography-based systems, these limitations restrict
scalability, raise costs, and decrease viability in low-resource
clinical settings.

Third, problems with model complexity and feature
engineering are noted. Numerous techniques rely on intricate
feature selection pipelines or manually created features, which
may be susceptible to noise and parameter adjustment. Despite
their accuracy, deep learning-based models are frequently
unsuitable for real-time or large-scale screening due to their
high computational complexity, lengthy training cycles, and
lack of interpretability. Fourth, another flaw is the lack of
comparative analysis. Strong performance metrics are
reported in a number of studies, although they either use
inconsistent evaluation methodologies or only compare
outcomes with a small number of classifiers. It is challenging
to evaluate actual performance improvements over current
methods since cross-dataset validation and robustness studies
are frequently lacking.

Lastly, there is still a lack of research on clinical
interpretability and integration. While some studies make an
effort to explainability, the majority prioritize accuracy over
workflow integration, clinician trust, or decision-support
relevance. All things considered, despite tremendous
advancements, current research frequently compromises
performance for generalizability, efficiency, or usefulness.
These gaps emphasize the need for scalable, reliable, and
computationally effective mammography-based systems that
strike a balance between clinical usefulness and accuracy.

Research Gaps: Even while machine learning, deep
learning, biosensors, and imaging technologies have made
significant strides in the detection of breast cancer, the
literature now in publication still reveals a number of
important research gaps. Generalizability and dataset variety
represent a significant gap. Numerous research relies on
modality-specific, single-source, or limited datasets that are
frequently gathered under controlled circumstances. The
capacity of suggested models to generalize to actual clinical
settings is hampered by a lack of multi-center data, inadequate
cross-dataset validation, and limited patient diversity.
Additionally, inter-patient variability and class imbalance are
not consistently handled, which might skew model
performance.

The over reliance on invasive or specialized techniques is
another important gap. Advanced biosensors, thermography,
electrography, or histopathology data are used in a number of
high-performing methods that call for expensive equipment,
skilled handling, or invasive procedures. This restricts
scalability and usability, especially in healthcare areas with
limited resources where mammography is still the major
screening method. Additionally, real-time applicability and
computational efficiency are yet understudied. High accuracy



is frequently attained via deep learning models and ensemble
systems at the trade-off of higher memory needs, longer
training durations, and higher computing costs. Few research
specifically concentrates on energy economy, processing time
optimization, or lightweight designs appropriate for clinical
deployment and real-time screening.

The absence of standardized evaluation and systematic
comparison is another gap. Direct comparison is challenging
because several works assess performance using various
metrics, validation techniques, and datasets. Claims of
superiority are sometimes undermined by the lack of
comparative study against a wide range of baseline classifiers
(such as SVM, KNN, eXtreme Gradient Boosting (XGBoost),
and ANN) under uniform settings. Furthermore, there is
insufficient attention paid to segmentation and feature
interpretability. Precise localization of worrisome regions and
clinically interpretable feature extraction are not routinely
integrated, despite the emphasis on correct classification. In
the majority of investigations, explainability and physician
trust continue to be secondary issues. Lastly, there is very little
end-to-end clinical integration. Few solutions take into
account decision assistance, workflow integration, or
flexibility in response to risk profiles unique to a certain
population. Mammography-based frameworks that are
scalable, interpretable, optimized, and verified across a variety
of populations are needed to close these gaps.

3. FRAMEWORK OF AN EFFICIENT AUTOMATED
MAMMOGRAM BREAST CANCER DETECTION
USING OPTIMIZED RADIAL BASIS NEURAL
NETWORK

The framework for an efficient automated mammogram
breast cancer detection using an Optimized Radial Basis
Neural Network is shown in Figure 1 of this section. The
MIAS dataset is the first source of data used by this suggested
system. The Mammographic Image Analysis Society Digital
Mammogram Database (MIAS), which is accessible to the
general public, makes use of the 322 mammogram images that
come from 161 individuals in the dataset. The raw data is then
pre-processed to eliminate blurred images, noise, and
unnecessary data. By using median filtering, the data is
structured by removing noise from images and mammogram
image edges are maintained. After median filtering, using an
Optimized Region Growing approach enhanced with Fuzzy
Clustering with Chicken Swarm Optimization (FC-CSO), the
images are segmented. This segmentation separates normal
tissue from affected areas like masses or calcifications. To
identify whether the tissue is benign, malignant, or normal,
each segment of the image will be labelled and annotated after
segmentation. The features are then extracted using the. Tissue
properties are determined by extracting texture features like
contrast, homogeneity, entropy, and energy. To differentiate
between malignant and benign tumors, the classifier model
uses the feature extraction procedure. The data is separated
into training and testing sets after the features have been
extracted. Seventy percent of the data is used for training, and
the remaining portion is reserved for model testing. As a result,
data classification is done using the RBFNN. The RBFNN
uses radial basis functions in the hidden layer as activation
functions to identify complex patterns within the extracted
feature space. Using the RBFNN model, data can be
effectively classified as normal, benign, or malignant.
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Figure 1. Framework for an efficient automated
mammogram breast cancer detection using Optimized Radial
Basis Neural Network (RBNN)

Our research made use of a dataset from the MIAS Digital
Mammogram Database that was made available to the general
public. The study combines the MIAS and the Mini-
Mammographic imaging datasets (Malignant, Benign,
Normal). Each image was processed to a size of 1024 x 1024
pixels by digitizing these datasets at a pixel edge of 50
microns, which was then reduced to a 200-micron pixel edge,
followed by clipping/padding. 322 mediolateral oblique
(MLO) views of 161 people's mammograms taken at a
resolution of 50 microns make up the MIAS dataset, which
was made available by the Mammographic Image Analysis
Society. Information like class normal, benign, malignant,
severity, abnormality location, and radius is all labelled on
these images.

This stage aims to accurate the evaluation process by
decreasing the number of participants and detected areas in the
mammography by deleting breast portions from the sample
that aren’t needed. Labels and edges are suppressed once
unwanted elements from the mammaography picture have been
removed. First, objects unrelated to the mammography image
are eliminated. The shape of the breast is recognized as the
object with the key region after labels and edges are
suppressed, and the physical region of all points in the binary
picture is computed.

Median filtering is used to detect breast cancer. By lowering
noise and improving image quality, it is especially used in the
processing of mammogram images to improve diagnosis and
analysis. Impulse noise (salt and pepper noise) and other
noises that could obscure subtle features in mammograms can



be effectively eliminated using this method. For the best
region growth segmentation that separates the tumor from the
image, the FC-CSO is utilized. Following tumor segmentation,
this feature extraction process aims to extract features such as
GRLM and GLCM.

Mammogram textures can be analysed using the GLCM, a
powerful technique for identifying breast cancer. To
differentiate between normal and abnormal tissue, this GLCM
will help in the extraction of textural features from images. As
a result, accurate diagnosis and early tumor detection are
achievable. A data set is split when it is separated into training
and testing categories. The split approach is used in this study
for both training and evaluation. Human input is necessary for
the analysis or processing of training data sets. After the
machine learning algorithm has been built (using the provided
training data), unknown data must be required to assess it.
Seventy percent of the dataset is used as training input for the
machine learning algorithms and model fit, while thirty
percent is used for testing.

An artificial neural network that utilizes radial basis
functions in the activation of its hidden layer is known as a
Radial Basis Function (RBF) neural network. This network is
especially well-known for its capacity to manage non-linear
issues, which qualifies it for tasks such as pattern recognition,
classification, and function approximation. Three layers make
up an RBF network: an output layer, a hidden layer with RBFs,
and an input layer.

Pseudocode for the Proposed Breast Cancer Detection
Framework

Input: Mammogram images from the MIAS dataset

Output: Classified label (Normal / Benign / Malignant)

Begin
1. Load MIAS mammogram images
2. For each image:
a. Resize and normalize the image
b. Apply median filtering to remove noise
c. Remove non-breast regions and suppress labels/edges

3. Initialize FC-CSO parameters

4. Apply fuzzy clustering to image pixels

5. Optimize cluster centers wusing Chicken
Optimization

6. Perform region growing to segment tumor regions

Swarm

7. Label segmented regions using MIAS annotations

8. Extract texture features using GLCM:
a. Compute contrast, energy, homogeneity, entropy

9. Split dataset into training (70%) and testing (30%)
10. Initialize RBFNN parameters (centers, widths, weights)
11. Train RBFNN using training features

12. Test RBFNN with testing data
13. Classify each sample as Normal, Benign, or Malignant

14. Evaluate performance metrics (accuracy, precision,
specificity)
End

The novelty of this proposed system is to produce better
results in terms of Accuracy, Precision, Specificity, and

Processing Time. The MIAS dataset is the one used in this
analysis. This suggested system uses a median filter to
eliminate noise in the images after the data has been cleaned.
For image segmentation FC-CSO is used for segmenting
images accurately. Features are extracted using the GLCM. To
accurately identify breast cancer, the data is then classified
using the RBFNN classification model.

4. RESULT ANALYSIS

The experimental findings of the suggested effective
automated mammography-based breast cancer detection
system employing an Optimized Radial Basis Neural Network
(RBNN) are shown in this part. The MIAS dataset, which
comprises 322 mammography pictures from 161 people, was
used for the studies. To efficiently train and assess the
suggested model, the dataset was split into training and testing
subsets.

Statistical significance analysis should be used in
conjunction with numerical performance indicators to improve
the validity and dependability of the experimental results.
Using methods like paired t-tests or Wilcoxon signed-rank
tests, the suggested FC-CSO-RBFNN model can be
statistically compared with baseline classifiers. Additionally,
95% confidence intervals for important performance metrics,
including as accuracy, precision, sensitivity, and specificity,
can be calculated using cross-validation-based evaluation.
Area Under the Curve (AUC) confidence bounds and Receiver
Operating Characteristic (ROC) analysis can be used to further
assess the robustness of the model. These statistical
evaluations guarantee that the noted gains in performance are
statistically significant and not the result of chance.

Table 1. Comparison performance analysis

eXtreme
Gradient Optimized
Parameters Boosting SVM[22] CNN RBNN
Model (Proposed)
[21]
Accuracy 99.1 99.16 99.17 99.6
Precision 97 97.5 97.6 98.2
Specificity 98 99 99.2 99.6
Processing 8654 8042 8000 7124
Time (ms)
—— Madel Accuracy Comparison
oaB
é 9.6 1
.‘;’ 58,4
99.2 1
W.J-. -
g ot i J’ apnt
f_,cnd‘ﬂﬂ “ {W"‘mﬂe

i

Figure 2. Comparison accuracy analysis
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The suggested Optimized RBNN is compared to current
machine learning and deep learning models, such as the
XGBoost model [21], SVM [22], and Convolutional Neural
Networks (CNN), across some evaluation parameters, in Table
1.

The accuracy of breast cancer identification using the
suggested Optimized RBNN and current models like XGBoost
and SVM is graphically represented in Figure 2. The Y-axis
shows accuracy as a percentage, and the X-axis shows the
categorization models. It is clear that the suggested Optimized
RBNN outperforms all baseline models in terms of
classification abilities.

The precision comparison between XGBoost, SVM, CNN,
and the suggested Optimized RBNN is displayed in Figure 3.
The model's precision indicates how well it can detect
cancerous instances while reducing false positives. As can be
seen, the Optimized RBNN achieves the greatest accuracy
value (98.2%), demonstrating increased positive prediction
reliability.
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Figure 3. Precision comparison graph
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Figure 4. Comparison specificity analysis

This is seen in Figure 4, where the Y -axis shows specificity
in percentage and the X-axis shows several models. In
comparison to current methods, the suggested Optimized
RBNN has greater specificity (99.6%), demonstrating its
efficacy in accurately identifying non-cancerous patients and
lowering false alarms.
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The processing times of the suggested Optimized RBNN,
XGBoost, SVM, and CNN models are contrasted in Figure 5.
The models are shown on the X-axis, while processing time in
milliseconds is shown on the Y-axis. The Optimized RBNN
attains the lowest processing time (7124 ms), demonstrating
its computational effectiveness and appropriateness for large-
scale or real-time clinical applications.

The suggested Optimized Radial Basis Neural Network
(RBNN) consistently outperforms current models across all
assessed performance measures, according to the testing
results. The suggested method is accurate and computationally
efficient, achieving 99.6% accuracy, 98.2% precision, 99.6%
specificity, and a substantial reduction in processing time.

CNN

Optimized RBNN
Figure 5. Processing time comparison graph
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In particular, paired t-tests and Wilcoxon signed-rank tests
will be used to statistically evaluate the proposed Optimized
RBNN with baseline models. The resulting p-values will be
presented to show whether the observed improvements are
statistically significant (p < 0.05). Additionally, using cross-
validation data, 95% confidence intervals for accuracy,
precision, sensitivity, and specificity will be calculated and
added to the performance table or as supplemental material.

5. CONCLUSIONS

An efficient automated mammogram breast cancer
detection using Optimized Radial Basis Neural Network is
concluded in this section. The dataset from the MIAS is used
in this study. The dataset, which includes 322 mammography
pictures from 161 individuals, is part of the publicly accessible
Mammographic Image Analysis Society Digital Mammogram
Database (MIAS). It removes noise, unnecessary data and
blurred images in data pre-processing. By eliminating noise
from images and maintaining the edges of mammogram
images, the median filter organizes the data. To separate
normal tissue from affected areas such as masses or
calcifications, the images are segmented using an Optimized
Region Growing approach enhanced with FC-CSO. The
GLCM is then utilized to extract the features. Tissue
characteristics are extracted from the texture features, which
include entropy, contrast, energy and homogeneity. The data
is separated into training and testing sets after the features have
been extracted. As a result, data classification is done using a
RBFNN. When classifying data as normal, benign, or
malignant, this RBFNN model performs well. Therefore, this
model achieves Accuracy as 99.9%, Precision as 98.2%,
Specificity as.99.6%, and processing time as 7124 ms. The
limitation of this model is biopsy confirmation. In future, 3D
imaging is extended for further enhancement.

While the suggested FC-CSO-RBFNN framework shows



encouraging results in automated mammography-based breast
cancer screening, it is important to recognize several
limitations. First, the algorithm only uses mammograms from
publicly accessible datasets, which might not accurately
reflect variations in imaging quality, acquisition methods, and
patient demographics in the actual world. Clinical
dependability is specifically limited by the lack of biopsy-
confirmed ground truth validation since imaging-based labels
might not always match histopathology results. In order to
evaluate robustness and diagnostic consistency, future
research should concentrate on clinical validation using
biopsy-proven datasets acquired from multi-centre hospitals.
By offering complementing structural and functional

information, integrating multi-modal data—such as
ultrasound, MRI, thermography, or histopathological
images—could greatly improve diagnosis accuracy.

Individualized risk assessment may also be enhanced by
adding clinical criteria (age, family history, hormonal
variables, and genetic markers. The use of explainable Al
(XAIl) approaches, which emphasize discriminative areas and
feature contributions to increase model transparency and
clinician trust, is another promising avenue. It is also advised
to further optimize the framework for real-time deployment,
incorporating hardware acceleration and lightweight designs.
Lastly, the translation of this research into standard procedures
for breast cancer screening and diagnosis would be made
easier by prospective studies and incorporation into clinical
decision-support systems.
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