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One of the most prevalent cancers that affects women is breast cancer. It ranks as the second 

most important factor in cancer-related deaths. The mortality rate can be decreased and 

survival rates raised with early detection and individualized risk assessment. The results of 

traditional risk prediction models, which are based on traditional risk factors, vary 

depending on the population. To solve these issues, this proposed system is designed. The 

dataset used for this analysis is the Mammogram Image Dataset. The Mammographic Image 

Analysis Society (MIAS) Digital Mammogram Database, which is publicly available, was 

used in this study. The study utilizes the MIAS in conjunction with Mini-Mammographic 

imaging datasets (Malignant, Benign, and Normal). The MIAS provided the 322 

mammography images representing 161 individuals in the MIAS dataset. These images 

were taken at a resolution of 50 microns and included two mediolateral oblique (MLO) 

views. The system collects the digitized mammographic images as input. Then the raw data 

is pre-processed to remove unwanted data and noise. By using median filtering, important 

structural data is stored and maintains the mammogram image edges. The Fuzzy Clustering 

with Chicken Swarm Optimization (FC-CSO) technique will be classified into segments, 

and it separates suspicious regions like masses or calcifications from normal tissue. Based 

on labelling and annotation, the MIAS dataset determines whether the tissue is benign, 

malignant, or normal. The data from the labelling and annotation is given to feature 

extraction. The features of texture are essential for identifying the characteristics of tissue 

during this feature extraction process, which makes use of the Gray-Level Co-occurrence 

Matrix (GLCM). These characteristics are used to further classify the data. The data is then 

separated into testing sets and training sets. Seventy percent goes toward training, and thirty 

percent goes toward testing. The model is classified using Radial Basis Function Neural 

Networks (RBFNNs). By using radial basis functions as the activation functions in the 

hidden layer, this method enables the representation of complex patterns within the 

extracted feature space. RBFNN classifiers are then used to train the data into Normal, 

Benign, or Malignant categories. As a result, this system is used to accurately and early 

detect breast cancer. Therefore, An efficient automated mammogram breast cancer 

detection using Optimized Radial Basis Neural Network minimizes human error and 

processing time by combining FC-CSO for image segmentation, using a Gray-Level Co-

occurrence Matrix for feature extraction, and using a RBFNN for data classification. Hence, 

this system shows better results in terms of accuracy, precision, specificity and processing 

time. The suggested FC-CSO–RBFNN technique outperforms current classifiers like SVM 

and XGBoost in terms of accuracy, precision, specificity, and computational time across 

mammography classification tasks. 
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1. INTRODUCTION

Breast cancer is the most common cancer and the leading 

cause of cancer-related deaths among women globally, with 

over 2.3 million cases reported annually [1]. In countries with 

lower and middle incomes, breast and cervical cancer account 

for approximately 80% of deaths. As the most common cancer 

in the world today, breast cancer accounts for 12.5% of all new 
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cases diagnosed annually and causes the longest duration of 

disability when compared to other cancer types [2]. The World 

Health Organization (WHO) unveiled a new global initiative 

framework for breast cancer intending to prevent 2.5 million 

deaths from the disease by 2040. The three main areas of 

health promotion that are the focus of this initiative are early 

detection, prompt diagnosis, and comprehensive management 

of breast cancer. 

Effective methods of detection are essential because breast 

cancer is the most prevalent type of cancer and the second 

leading cause of cancer-related deaths in women. The majority 

of current screening or detection methods depend on imaging 

methods, particularly mammography [3]. Mammography 

screenings can lead to overdiagnosis and a significant number 

of false positives, even though they have been demonstrated to 

lower the death rates from breast cancer. As a result, a recent 

agreement statement regarding breast cancer prevention has 

identified the integration of molecular biomarkers with current 

screening and early detection techniques as a crucial area of 

focus [4]. 

The disease known as breast cancer is characterized by 

abnormal breast cell growth. Life chances and effective 

therapy differ depending on the stage [5]. Breast cancer 

survival rates are raised and treatment options are improved 

with early detection. Regular screening is still an extremely 

effective public health strategy for lowering the mortality and 

health effects of breast cancer. Heat patterns linked to breast 

tumors that are less likely to be obscured by thick breast tissue 

can be detected by breast thermography. This imaging method 

can accurately reveal temperature variations linked to 

abnormalities in breast tissue without requiring any invasive 

procedures. The chances of survival and a successful course of 

treatment are significantly increased when breast cancer is 

detected early [6]. Thermographic imaging is a radiation-free 

and non-invasive screening method that is especially useful for 

routine monitoring. Our research’s objective is to use deep 

learning techniques to improve the accuracy and efficacy of 

thermographic imaging in identifying breast cancer. 

In the majority of these, proteins, carcinoma antigens 

(CAs), and circulating cell-free tumor nucleic acids (DNA or 

RNA) or their modifications (like DNA methylation) are 

assessed [7]. Emphasizing blood for cancer biomarkers is 

probably influenced by a number of factors, including 

convenience (blood samples are frequently obtained and 

stored in biobanks, which facilitates the development of 

biomarkers) and it is possible to identify the material that 

tumors release into the bloodstream through "liquid biopsies." 

However, additional biological samples may also present 

special benefits and offer additional insights into the systemic 

effects of cancer [8]. In earlier research, for example, we found 

that determining the likelihood of a breast cancer diagnosis 

could be helped by examining DNA methylation in cervical 

specimens, which are frequently obtained for cervical cancer 

screening. In a validation set made up of cervical samples from 

either healthy age-matched controls or women with breast 

cancer, the cervical methylation classification system known 

as Women’s Cancer Risk Identifier—Breast Cancer (WID-

BC) obtained an area under the curve (AUC) of 0.81 [9].  

DNAme is a comparatively stable epigenetic modification 

that is subject to external exposures and has a significant 

impact on the control of gene and protein activity without 

changing the DNA sequence itself. Consequently, it is 

hypothesized that the epigenome is a crucial link between 

genes and environmental factors, reflecting changes in the 

environment [10]. According to our earlier research, the 

DNAme changes could be a sign of a lifetime systemic 

exposure that could cause cancer in one tissue (breast), but 

could also be detected in a non-invasive "surrogate" sample 

(cervix). This makes it appropriate for identification and 

screening when the anatomically distant cervical samples do 

not contain cancerous tissue [11]. 

Mammography, Magnetic Resonance Imaging (MRI), and 

ultrasound imaging are additional diagnostic techniques for 

identifying breast cancer. An X-ray mammogram usually 

serves as the first screening, and ultrasound imaging will be 

performed if additional testing is required [12]. Lastly, since 

MRI is thought to provide a diagnosis that is more accurate 

than X-ray imaging, it is the method that is recommended for 

women who are at least 30 years old and have been diagnosed 

with breast cancer. MRIs are a useful modality for identifying 

breast cancer because they don't use radiation, as other 

imaging tests do. Additionally, they are noninvasive, cost-

effective, and appropriate for screening and diagnosis in 

environments with limited resources. 

The research gap observed in existing systems is low 

accuracy, recall, F1-Score and processing time.  

The objectives of this proposed system are high accuracy by 

using the FC-CSO algorithm for segmentation. The precision 

and specificity are high as Gray-Level Co-occurrence Matrix 

(GLCM) is used for feature extraction. The processing time is 

reduced because of reducing error in predictions. When it 

comes to breast cancer, this Radial Basis Function Neural 

Network (RBFNN) can make accurate predictions. 

This is how the remainder of the paper is organized. The 

literature review was summarized in Section 2. An efficient 

automated mammogram breast cancer detection using 

Optimized Radial Basis Neural Network is presented in 

Section 3. Section 4 discusses the result analysis of the 

proposed model. Finally, the paper concluded in Section 5. 

 

 

2. LITERATURE SURVEY 

 

Shao et al. [13] examined a newly gathered dataset of 40 

individuals to demonstrate a novel pipeline for classifying 

breast cancer using features taken from shear wave absolute 

vibro-elastography (S-WAVE) data. New bi-spectral and 

Wigner spectrum characteristics are calculated directly from 

the RF time series, along with textural and spectral elements 

derived from B-mode and elasticity images. By employing the 

Quadratic Mutual Information method and the Random Forest 

permutation importance ranking method, we lower the feature 

count from 377 to 20. We use Monte Carlo cross-validation 

and leave-one-patient-out methods on Random Forest and 

Support Vector Machine classifiers. Displayed are the 

classification outcomes for various feature sets. Our top 

outcomes (95% confidence interval, Area Under Curve = 

95%±1.45%, sensitivity = 95%, and specificity = 93%) 

outperform the state-of-the-art performance of S-WAVE in 

identifying breast cancer. 

Darabi et al. [14] suggested a Boolean system that uses logic 

gates based on microRNA to detect breast cancer. This paper 

introduces a Boolean system that utilises miRNA data as 

inputs to identify a logical function involving seven miRNAs 

linked to breast cancer. The accuracy of the suggested Boolean 

function in diagnosing breast cancer is 97.03%. These findings 

can be incorporated into R software for bioinformatics 

analysis and adapted for diagnosing other diseases by 
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adjusting the input miRNAs. This approach shows potential 

for advancements in DNA computing, biomedical research, 

and clinical diagnostics. 

Elsheakh et al. [15] developed a wearable system for breast 

cancer detection by embedding a flexible sensor in a bra. The 

flexible PCB Roger substrate used to make this suggested 

sensor, which has an antenna, is 0.17 mm thick. It features a 

compact CPW monopole antenna measuring 24 x 45 mm2. 

The suggested sensors have a reflection coefficient of -6 dB, a 

conformal structure for biological structures, and 

biocompatibility. They also have enough bandwidth from 1.5 

to 8 GHz. To verify safety requirements, the suggested sensor's 

Specific Absorption Rate (SAR) was calculated and measured. 

The results showed a value of 0.75 W/kg at 0 dBm. Medical 

school students' realistic rubber phantoms allow the breast and 

tumor to dynamically combine to create test scenarios for 

breast cancer detection. The breast phantom is surrounded by 

sensor components with 2x2 antennas to gather information on 

scattering properties for tumor identification. To validate 

detection, the optimum number of sensors to use, and training 

data for developed detection algorithms, a number of 

simulation and measurement scenarios are presented. 

Sinibaldi et al. [16] created a new technique that combines 

biochips based on a 1-D photonic crystal and a direct 

competitive ERBB2 assay. These biochips function in a dual 

mode that combines label-free/fluorescence methods, making 

it possible to identify ERBB2 in cell lysates from particular 

breast cancer lines that are either ERBB2-negative (T47D) or 

ERBB2-positive (SK-BR 3, BT474). Furthermore, ERBB2 in 

the three model cell lines can be detected with high specificity 

due to the enhanced fluorescence spectra that our biochips can 

produce. The assay's single-step detection technique, which 

reduces the overall time needed to less than 20 minutes, is a 

main advantage. This latter feature highlights the method's 

enormous potential for rapidly identifying ERBB2 in complex 

biological samples. 

Jamil et al. [17] found that the best Wiener Linear Time 

Invariant Filter method with Tophat Transformation (LFWT) 

can identify microcalcification in the breast with an accuracy 

rate of 99.5%. In this work, we focused on the identification 

of microcalcifications in images, an essential initial step 

towards precisely identifying all the indicators in a 

mammography-based early breast cancer diagnosis. To make 

the cancer region visible and prominent, the Wiener and 

CLAHE filters are used. Tophat morphological operators were 

applied to mask detection, and edges were extracted. The 

analytical performance of the proposed model for 

microcalcification identification in mammograms was 

evaluated and compared with other approaches using 

Mammographic Image Analysis Society (MIAS) and Mini-

Mammographic imaging datasets. Additionally, three 

techniques- The Local Contrast Method (LCM), the Local 

Relative Contrast Measure Method (LRCMM), and the High-

Boost-Based Multiscale Local Contrast Measure 

(HBBMLCM) are used to identify microcalcification linked to 

cancer on mammography images. 

Naseem et al. [18] suggest a system that uses an ensemble 

of classifiers to automatically detect BC diagnosis and 

prognosis. Our first step is to review an ensemble of machine 

learning (ML) algorithms and a number of ML algorithms. We 

give an overview of machine learning techniques, like 

artificial neural network (ANN) and an ensemble of different 

classifiers, for automated BC diagnosis and prognosis 

identification. Furthermore, we use two benchmark datasets to 

present and compare different ensemble approaches and other 

variations of tested machine learning-based methods with and 

without an up-sampling technique. We also looked at how 

applying balanced class weight affected the prognosis dataset 

and compared its outcomes with those of other approaches. 

The results demonstrated that the ensemble approach achieved 

98.83% accuracy, outperforming other state-of-the-art 

techniques. Due to its high performance, the suggested system 

is extremely important to the medical field and the relevant 

research community. According to the comparison, the 

suggested approach performed better than other state-of-the-

art methods. 

Kaushal and Khanna [19] electrical performance 

characteristics for breast cancer cell line detection by 

developing the Si-doped molybdenum disulfide thickness-

engineered tunnel field effect transistor biosensor. Surface 

potential, electric field, trans conductance (gm), threshold 

voltage (Vth), on current (ION), and subthreshold swing are 

all included in the comprehensive analysis of the electrostatic 

field. The sensitivity is analysed in terms of drain current 

(Ids), gm, Vth, ION, ION/IOFF ratio, and gm. Further, this 

study investigates the impact of device geometry variations, 

specifically cavity thickness and length on the sensitivity of 

drain current (SIds), trans conductance (Sgm), threshold 

voltage (SVth), and on current (SION). In addition, the impact 

of immobilized cell line occupancy on device performance has 

been examined. The presented biosensor is highly sensitive 

with increased cavity occupancy resulting in enhanced 

performance. This allows for the use of array methods for 

breast cancer cell screening and diagnosis while reducing costs 

and simplifying the fabrication process. 

Khater et al. [20] created a machine learning model to 

differentiate between breast cancer and explain the results the 

model generates. Finding the essential characteristics of breast 

cancer tumors and how they impact the classification process 

may improve our knowledge of breast cancer diagnosis and 

treatment. With the Wisconsin breast cancer dataset, the best 

machine learning model obtained 98.2% precision and 97.7% 

accuracy using k-nearest Neighbors. 98.6% accuracy and 

94.4% precision were attained by an artificial neural network 

on the Wisconsin diagnostic breast cancer dataset. This 

demonstrates the significance and efficacy of the suggested 

strategy. The worst area feature and the bare nuclei feature in 

the Wisconsin diagnostic breast cancer dataset are the main 

factors in determining the malignancy of breast cancer, 

according to the current study, which uses model-agnostic 

techniques to explain the model's function. 

Rahman et al. [21] suggested using the Wisconsin Breast 

Cancer (Diagnostic) (WDBC) dataset to improve machine 

learning techniques for breast cancer detection. Feature 

engineering, scaling, feature selection, and hypothesis testing 

were among the various data pre-processing techniques we 

employed. Using a gradient boosting regressor with 

Bonferroni correction, we chose the 13 most important 

features to train 14 classifiers. Our suggested eXtreme 

Gradient Boosting model performed exceptionally well, 

attaining an F1-score of 0.9882, 1.0 recall, 0.9861 specificity, 

0.9767 precision, and 99.12% accuracy. The model has the 

potential to accurately and quickly diagnose breast cancer, as 

these findings outperform those of earlier research. 

Additionally, evaluations based on the Kappa score and 

training time show that our eXtreme Gradient Boosting model 

is more reliable and faster. 

Ahmad et al. [22] developed a unique technique, BreastNet-
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SVM, to automatically detect and classify breast cancer from 

mammograms. Two fully connected layers make up the nine-

layer architecture used in this study to extract data features. 

For the classification task, we also used Support Vector 

Machines (SVM). The Digital Database for Screening 

Mammography (DDSM), a well-known benchmark dataset, 

was utilized in this investigation. The results indicated that the 

accuracy, specificity, and sensitivity of the proposed model 

were 99.16%, 99.30%, and 97.13%, respectively. The 

proposed BreastNet-SVM model was evaluated against the 

best methods for identifying breast cancer. Experimental 

results on a DDSM dataset showed that the suggested 

BreastNet-SVM model performed better than the others in 

terms of accuracy. 

Saha et al. [23] proposed Breast-NET, a deep convolutional 

neural network framework for identifying and grading breast 

cancer using histological images. By using the BreakHis 

dataset, we assess our model's effectiveness and display its 

capability to appropriately adjust to the grading of the IDC 

(Invasive Ductal Carcinoma) and IDC datasets. The 

effectiveness of our suggested model is confirmed by an 

ablation study as well as extensive experimental and statistical 

analyses. In addition, we employ seven existing convolutional 

neural networks that have already been trained to show the 

effectiveness of transfer learning in identifying and grading 

breast cancer. Based on our experimental results, our approach 

performs better than the state-of-the-art techniques for the 

BreakHis, IDC grading, and IDC datasets in terms of space, 

accuracy, and computational complexity. 

Nedjmeddine et al. [24] demonstrated how to create a 

coplanar biosensor that is capable of accurately identifying 

breast cancer by making use of Split Ring Resonators (SRRs) 

and Complementary Split Ring Resonators (CSRRs). Using 

electromagnetic interaction between SRRs, this biosensor, 

which is only 40 × 22 × 1.6 mm3 in size and operates at 2 GHz, 

produces a large frequency change of 135 MHz, increasing its 

sensitivity to changes in tissue. A return loss (S11) of ͨ − 98 dB 

signifies low signal reflection and excellent impedance 

matching, while its optimal Voltage Standing Wave Ratio 

(VSWR) of 1.0005 allows for effective power transfer. The 

results validate the biosensor's potential as a non-invasive, 

highly sensitive and reliable diagnostic tool, particularly for 

identifying breast cancer. 

Veerlapalli and Dutta [25] suggests BCDGAN, a novel deep 

learning model aimed at detecting breast cancer in 

thermographic images, which combines a Generative 

Adversarial Network (GAN) and a Hybrid Deep Learning 

(HDL) method. By synthesizing significant regions of interest 

(ROIs) and utilizing deep feature extraction to improve 

classification performance, the goal is to increase diagnostic 

accuracy [26]. To enhance model generalization and augment 

the dataset, the suggested GAN-HDL-BCD method begins by 

extracting features from thermogram images using a hybrid 

deep learning model. Next, synthetic ROIs are produced using 

a GAN-based method [27]. The suggested system outperforms 

traditional deep learning models with an accuracy of 98.56%, 

according to experimental evaluations on the DMR-IR 

benchmark dataset [28]. 

Limitations: The literature now in publication shows a 

variety of ways for detecting breast cancer, such as wearable 

technology, biosensors, machine learning models based on 

imaging, and bioinformatics-driven strategies. Even while 

many studies show great accuracy, a comprehensive 

examination of these works reveals a number of common 

drawbacks.  

First, there are a lot of limits linked to datasets. Numerous 

methods rely on tiny or extremely particular datasets, such as 

controlled laboratory conditions, single-modality data, or 

small patient cohorts. This limits the generalizability of the 

concept and raises questions about its practical application in 

clinical settings. Additionally, a number of research 

concentrate on benchmark datasets without addressing inter-

patient variability or data imbalance. The second major 

drawback is modality reliance. Shear wave electrography, 

thermography, histology, and biosensor-based techniques may 

call for sophisticated acquisition protocols, invasive 

procedures, or specialized hardware. Compared to traditional 

mammography-based systems, these limitations restrict 

scalability, raise costs, and decrease viability in low-resource 

clinical settings.  

Third, problems with model complexity and feature 

engineering are noted. Numerous techniques rely on intricate 

feature selection pipelines or manually created features, which 

may be susceptible to noise and parameter adjustment. Despite 

their accuracy, deep learning-based models are frequently 

unsuitable for real-time or large-scale screening due to their 

high computational complexity, lengthy training cycles, and 

lack of interpretability. Fourth, another flaw is the lack of 

comparative analysis. Strong performance metrics are 

reported in a number of studies, although they either use 

inconsistent evaluation methodologies or only compare 

outcomes with a small number of classifiers. It is challenging 

to evaluate actual performance improvements over current 

methods since cross-dataset validation and robustness studies 

are frequently lacking.  

Lastly, there is still a lack of research on clinical 

interpretability and integration. While some studies make an 

effort to explainability, the majority prioritize accuracy over 

workflow integration, clinician trust, or decision-support 

relevance. All things considered, despite tremendous 

advancements, current research frequently compromises 

performance for generalizability, efficiency, or usefulness. 

These gaps emphasize the need for scalable, reliable, and 

computationally effective mammography-based systems that 

strike a balance between clinical usefulness and accuracy. 

Research Gaps: Even while machine learning, deep 

learning, biosensors, and imaging technologies have made 

significant strides in the detection of breast cancer, the 

literature now in publication still reveals a number of 

important research gaps. Generalizability and dataset variety 

represent a significant gap. Numerous research relies on 

modality-specific, single-source, or limited datasets that are 

frequently gathered under controlled circumstances. The 

capacity of suggested models to generalize to actual clinical 

settings is hampered by a lack of multi-center data, inadequate 

cross-dataset validation, and limited patient diversity. 

Additionally, inter-patient variability and class imbalance are 

not consistently handled, which might skew model 

performance. 

The over reliance on invasive or specialized techniques is 

another important gap. Advanced biosensors, thermography, 

electrography, or histopathology data are used in a number of 

high-performing methods that call for expensive equipment, 

skilled handling, or invasive procedures. This restricts 

scalability and usability, especially in healthcare areas with 

limited resources where mammography is still the major 

screening method. Additionally, real-time applicability and 

computational efficiency are yet understudied. High accuracy 
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is frequently attained via deep learning models and ensemble 

systems at the trade-off of higher memory needs, longer 

training durations, and higher computing costs. Few research 

specifically concentrates on energy economy, processing time 

optimization, or lightweight designs appropriate for clinical 

deployment and real-time screening. 

The absence of standardized evaluation and systematic 

comparison is another gap. Direct comparison is challenging 

because several works assess performance using various 

metrics, validation techniques, and datasets. Claims of 

superiority are sometimes undermined by the lack of 

comparative study against a wide range of baseline classifiers 

(such as SVM, KNN, eXtreme Gradient Boosting (XGBoost), 

and ANN) under uniform settings. Furthermore, there is 

insufficient attention paid to segmentation and feature 

interpretability. Precise localization of worrisome regions and 

clinically interpretable feature extraction are not routinely 

integrated, despite the emphasis on correct classification. In 

the majority of investigations, explainability and physician 

trust continue to be secondary issues. Lastly, there is very little 

end-to-end clinical integration. Few solutions take into 

account decision assistance, workflow integration, or 

flexibility in response to risk profiles unique to a certain 

population. Mammography-based frameworks that are 

scalable, interpretable, optimized, and verified across a variety 

of populations are needed to close these gaps. 

 

 

3. FRAMEWORK OF AN EFFICIENT AUTOMATED 

MAMMOGRAM BREAST CANCER DETECTION 

USING OPTIMIZED RADIAL BASIS NEURAL 

NETWORK 

 

The framework for an efficient automated mammogram 

breast cancer detection using an Optimized Radial Basis 

Neural Network is shown in Figure 1 of this section. The 

MIAS dataset is the first source of data used by this suggested 

system. The Mammographic Image Analysis Society Digital 

Mammogram Database (MIAS), which is accessible to the 

general public, makes use of the 322 mammogram images that 

come from 161 individuals in the dataset. The raw data is then 

pre-processed to eliminate blurred images, noise, and 

unnecessary data. By using median filtering, the data is 

structured by removing noise from images and mammogram 

image edges are maintained. After median filtering, using an 

Optimized Region Growing approach enhanced with Fuzzy 

Clustering with Chicken Swarm Optimization (FC-CSO), the 

images are segmented. This segmentation separates normal 

tissue from affected areas like masses or calcifications. To 

identify whether the tissue is benign, malignant, or normal, 

each segment of the image will be labelled and annotated after 

segmentation. The features are then extracted using the. Tissue 

properties are determined by extracting texture features like 

contrast, homogeneity, entropy, and energy. To differentiate 

between malignant and benign tumors, the classifier model 

uses the feature extraction procedure. The data is separated 

into training and testing sets after the features have been 

extracted. Seventy percent of the data is used for training, and 

the remaining portion is reserved for model testing. As a result, 

data classification is done using the RBFNN. The RBFNN 

uses radial basis functions in the hidden layer as activation 

functions to identify complex patterns within the extracted 

feature space. Using the RBFNN model, data can be 

effectively classified as normal, benign, or malignant. 

 

 
 

Figure 1. Framework for an efficient automated 

mammogram breast cancer detection using Optimized Radial 

Basis Neural Network 

 

Our research made use of a dataset from the MIAS Digital 

Mammogram Database that was made available to the general 

public. The study combines the MIAS and the Mini-

Mammographic imaging datasets (Malignant, Benign, 

Normal). Each image was processed to a size of 1024 x 1024 

pixels by digitizing these datasets at a pixel edge of 50 

microns, which was then reduced to a 200-micron pixel edge, 

followed by clipping/padding. 322 mediolateral oblique 

(MLO) views of 161 people's mammograms taken at a 

resolution of 50 microns make up the MIAS dataset, which 

was made available by the Mammographic Image Analysis 

Society. Information like class normal, benign, malignant, 

severity, abnormality location, and radius is all labelled on 

these images. 

This stage aims to accurate the evaluation process by 

decreasing the number of participants and detected areas in the 

mammography by deleting breast portions from the sample 

that aren’t needed. Labels and edges are suppressed once 

unwanted elements from the mammography picture have been 

removed. First, objects unrelated to the mammography image 

are eliminated. The shape of the breast is recognized as the 

object with the key region after labels and edges are 

suppressed, and the physical region of all points in the binary 

picture is computed.  

Median filtering is used to detect breast cancer. By lowering 

noise and improving image quality, it is especially used in the 

processing of mammogram images to improve diagnosis and 

analysis. Impulse noise (salt and pepper noise) and other 

noises that could obscure subtle features in mammograms can 
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be effectively eliminated using this method. For the best 

region growth segmentation that separates the tumor from the 

image, the FC-CSO is utilized. Following tumor segmentation, 

this feature extraction process aims to extract features such as 

GRLM and GLCM. 

Mammogram textures can be analysed using the GLCM, a 

powerful technique for identifying breast cancer. To 

differentiate between normal and abnormal tissue, this GLCM 

will help in the extraction of textural features from images. As 

a result, accurate diagnosis and early tumor detection are 

achievable. A data set is split when it is separated into training 

and testing categories. The split approach is used in this study 

for both training and evaluation. Human input is necessary for 

the analysis or processing of training data sets. After the 

machine learning algorithm has been built (using the provided 

training data), unknown data must be required to assess it. 

Seventy percent of the dataset is used as training input for the 

machine learning algorithms and model fit, while thirty 

percent is used for testing. 

An artificial neural network that utilizes radial basis 

functions in the activation of its hidden layer is known as a 

Radial Basis Function (RBF) neural network. This network is 

especially well-known for its capacity to manage non-linear 

issues, which qualifies it for tasks such as pattern recognition, 

classification, and function approximation. Three layers make 

up an RBF network: an output layer, a hidden layer with RBFs, 

and an input layer. 

 

Pseudocode for the Proposed Breast Cancer Detection 

Framework 

Input: Mammogram images from the MIAS dataset 

Output: Classified label (Normal / Benign / Malignant) 

 

Begin 

1. Load MIAS mammogram images 

2. For each image: 

      a. Resize and normalize the image 

      b. Apply median filtering to remove noise 

      c. Remove non-breast regions and suppress labels/edges 

 

3. Initialize FC-CSO parameters 

4. Apply fuzzy clustering to image pixels 

5. Optimize cluster centers using Chicken Swarm 

Optimization 

6. Perform region growing to segment tumor regions 

 

7. Label segmented regions using MIAS annotations 

 

8. Extract texture features using GLCM: 

      a. Compute contrast, energy, homogeneity, entropy 

 

9. Split dataset into training (70%) and testing (30%) 

10. Initialize RBFNN parameters (centers, widths, weights) 

11. Train RBFNN using training features 

 

12. Test RBFNN with testing data 

13. Classify each sample as Normal, Benign, or Malignant 

 

14. Evaluate performance metrics (accuracy, precision, 

specificity) 

 

End 

The novelty of this proposed system is to produce better 

results in terms of Accuracy, Precision, Specificity, and 

Processing Time. The MIAS dataset is the one used in this 

analysis. This suggested system uses a median filter to 

eliminate noise in the images after the data has been cleaned. 

For image segmentation FC-CSO is used for segmenting 

images accurately. Features are extracted using the GLCM. To 

accurately identify breast cancer, the data is then classified 

using the RBFNN classification model. 

 

 

4. RESULT ANALYSIS 

 

The experimental findings of the suggested effective 

automated mammography-based breast cancer detection 

system employing an Optimized Radial Basis Neural Network 

(RBNN) are shown in this part. The MIAS dataset, which 

comprises 322 mammography pictures from 161 people, was 

used for the studies. To efficiently train and assess the 

suggested model, the dataset was split into training and testing 

subsets. 

Statistical significance analysis should be used in 

conjunction with numerical performance indicators to improve 

the validity and dependability of the experimental results. 

Using methods like paired t-tests or Wilcoxon signed-rank 

tests, the suggested FC-CSO–RBFNN model can be 

statistically compared with baseline classifiers. Additionally, 

95% confidence intervals for important performance metrics, 

including as accuracy, precision, sensitivity, and specificity, 

can be calculated using cross-validation-based evaluation. 

Area Under the Curve (AUC) confidence bounds and Receiver 

Operating Characteristic (ROC) analysis can be used to further 

assess the robustness of the model. These statistical 

evaluations guarantee that the noted gains in performance are 

statistically significant and not the result of chance. 

 

Table 1. Comparison performance analysis 

 

Parameters 

eXtreme 

Gradient 

Boosting 

Model 

[21] 

SVM [22] CNN 

Optimized 

RBNN 

(Proposed) 

Accuracy 99.1 99.16 99.17 99.6 

Precision 97 97.5 97.6 98.2 

Specificity 98 99 99.2 99.6 

Processing 

Time (ms) 
8654 8042 8000 7124 

 

 
 

Figure 2. Comparison accuracy analysis 
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The suggested Optimized RBNN is compared to current 

machine learning and deep learning models, such as the 

XGBoost model [21], SVM [22], and Convolutional Neural 

Networks (CNN), across some evaluation parameters, in Table 

1. 

The accuracy of breast cancer identification using the 

suggested Optimized RBNN and current models like XGBoost 

and SVM is graphically represented in Figure 2. The Y-axis 

shows accuracy as a percentage, and the X-axis shows the 

categorization models. It is clear that the suggested Optimized 

RBNN outperforms all baseline models in terms of 

classification abilities. 

The precision comparison between XGBoost, SVM, CNN, 

and the suggested Optimized RBNN is displayed in Figure 3. 

The model's precision indicates how well it can detect 

cancerous instances while reducing false positives. As can be 

seen, the Optimized RBNN achieves the greatest accuracy 

value (98.2%), demonstrating increased positive prediction 

reliability. 

 

 
 

Figure 3. Precision comparison graph 

 

 
 

Figure 4. Comparison specificity analysis 

 

This is seen in Figure 4, where the Y-axis shows specificity 

in percentage and the X-axis shows several models. In 

comparison to current methods, the suggested Optimized 

RBNN has greater specificity (99.6%), demonstrating its 

efficacy in accurately identifying non-cancerous patients and 

lowering false alarms. 

The processing times of the suggested Optimized RBNN, 

XGBoost, SVM, and CNN models are contrasted in Figure 5. 

The models are shown on the X-axis, while processing time in 

milliseconds is shown on the Y-axis. The Optimized RBNN 

attains the lowest processing time (7124 ms), demonstrating 

its computational effectiveness and appropriateness for large-

scale or real-time clinical applications. 

The suggested Optimized Radial Basis Neural Network 

(RBNN) consistently outperforms current models across all 

assessed performance measures, according to the testing 

results. The suggested method is accurate and computationally 

efficient, achieving 99.6% accuracy, 98.2% precision, 99.6% 

specificity, and a substantial reduction in processing time. 

 

 
 

Figure 5. Processing time comparison graph 

 

In particular, paired t-tests and Wilcoxon signed-rank tests 

will be used to statistically evaluate the proposed Optimized 

RBNN with baseline models. The resulting p-values will be 

presented to show whether the observed improvements are 

statistically significant (p < 0.05). Additionally, using cross-

validation data, 95% confidence intervals for accuracy, 

precision, sensitivity, and specificity will be calculated and 

added to the performance table or as supplemental material. 

 

 

5. CONCLUSIONS 

 

An efficient automated mammogram breast cancer 

detection using Optimized Radial Basis Neural Network is 

concluded in this section. The dataset from the MIAS is used 

in this study. The dataset, which includes 322 mammography 

pictures from 161 individuals, is part of the publicly accessible 

Mammographic Image Analysis Society Digital Mammogram 

Database (MIAS). It removes noise, unnecessary data and 

blurred images in data pre-processing. By eliminating noise 

from images and maintaining the edges of mammogram 

images, the median filter organizes the data. To separate 

normal tissue from affected areas such as masses or 

calcifications, the images are segmented using an Optimized 

Region Growing approach enhanced with FC-CSO. The 

GLCM is then utilized to extract the features. Tissue 

characteristics are extracted from the texture features, which 

include entropy, contrast, energy and homogeneity. The data 

is separated into training and testing sets after the features have 

been extracted. As a result, data classification is done using a 

RBFNN. When classifying data as normal, benign, or 

malignant, this RBFNN model performs well. Therefore, this 

model achieves Accuracy as 99.9%, Precision as 98.2%, 

Specificity as.99.6%, and processing time as 7124 ms. The 

limitation of this model is biopsy confirmation. In future, 3D 

imaging is extended for further enhancement. 

While the suggested FC-CSO–RBFNN framework shows 
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encouraging results in automated mammography-based breast 

cancer screening, it is important to recognize several 

limitations. First, the algorithm only uses mammograms from 

publicly accessible datasets, which might not accurately 

reflect variations in imaging quality, acquisition methods, and 

patient demographics in the actual world. Clinical 

dependability is specifically limited by the lack of biopsy-

confirmed ground truth validation since imaging-based labels 

might not always match histopathology results. In order to 

evaluate robustness and diagnostic consistency, future 

research should concentrate on clinical validation using 

biopsy-proven datasets acquired from multi-centre hospitals. 

By offering complementing structural and functional 

information, integrating multi-modal data—such as 

ultrasound, MRI, thermography, or histopathological 

images—could greatly improve diagnosis accuracy. 

Individualized risk assessment may also be enhanced by 

adding clinical criteria (age, family history, hormonal 

variables, and genetic markers. The use of explainable AI 

(XAI) approaches, which emphasize discriminative areas and 

feature contributions to increase model transparency and 

clinician trust, is another promising avenue. It is also advised 

to further optimize the framework for real-time deployment, 

incorporating hardware acceleration and lightweight designs. 

Lastly, the translation of this research into standard procedures 

for breast cancer screening and diagnosis would be made 

easier by prospective studies and incorporation into clinical 

decision-support systems. 
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