
Multi-Face Detection and Recognition in Video Streams Using Tracker-Assisted, Color-

Filtered Haar Cascade and Lightweight Convolutional Neural Network Training

Yasser H. Alwan1,2* , Muayad S. Croock3 , Ahmed A. Oglah1

1 College of Control and Systems Engineering, University of Technology, Baghdad 10066, Iraq
2 ITRDC, University of Kufa, Najaf 54003, Iraq
3 College of Electrical Engineering, University of Technology, Baghdad 10066, Iraq

Corresponding Author Email: yasser.alwan@uokufa.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301219 ABSTRACT

Received: 28 October 2025

Revised: 18 December 2025

Accepted: 26 December 2025

Available online: 31 December 2025

This study presents a fast multi-face detection and recognition system suitable for

surveillance applications using a self-supervised dataset generation approach. The face

detection subsystem employs pretrained frontal and profile Haar cascade classifier (HCC)

that are preprocessed for light normalization and postprocessed for eliminating duplicate

detections. The detector is assisted by skin-tone postprocessing and a Kernelized

Correlation Filter (KCF) tracker. To achieve a significant speed gain, HCC runs sparsely

while KCF maintains face tracking-detection in the skipped frames. This hybrid HCC

achieves F1-score improvements of 0.029 to 0.245 over baseline HCC and approximately

12× speed gain. Although Multi-Task Convolutional Neural Network (MTCNN) and

YOLOv8 achieve higher F1 scores, hybrid HCC maintains superior frame rates, operating

approximately 2-9× faster than these advanced models. Detected faces are extracted,

augmented, and organized into a dataset (66.6% training, 33.3% testing split), enabling a

custom lightweight Convolutional Neural Network (CNN) to successfully handle face

recognition and achieve a perfect F1-score in a prediction test. The complete system

demonstrates an effective solution for real-time surveillance applications in resource-

constrained environments.

Keywords:

tracker-assisted face detection, face

recognition, Haar cascade classifier,

Kernelized Correlation Filter,

Convolutional Neural Network, skin-tone

filter, self-supervised dataset creation

1. INTRODUCTION

The past few years have witnessed intensive research efforts

to develop highly efficient and cost-effective people

identification systems for quickly and accurately identifying

individuals in various fields, including security and attendance

tracking, to name a few. Face identification is a vital

technology within this field, because the face is the most

prominent personal identity [1, 2]. This process typically

consists of two main phases: face detection and face

recognition. It begins with face detection, which identifies and

localizes human faces within images or video frames, followed

by face recognition, where the detected face is classified by

comparing and matching it against a database to confirm the

individual's identity [3, 4]. For a face recognition system to be

successful, it must first be able to reliably detect faces. One of

the classical and key techniques for face detection is Haar

cascade classifier (HCC), which was developed by Viola and

Jones [5] more than two decades ago. HCC is a pioneering and

simple technique that still provides a highly effective solution

for real-time face and object detection. The Viola-Jones

method is based on four key pillars: calculating Haar features,

generating integrated images to accelerate calculations,

training using a simple neural network (AdaBoost), and using

sequential classifiers to reduce processing time [6]. This

combination gives it a significant speed advantage, making it

an ideal starting point for time-constrained systems. On the

other hand, Convolutional Neural Networks (CNNs), which is

one of the simplest deep learning techniques that has been used

in enormous applications, offer a more robust and adaptable

solution for image classification and pattern recognition tasks

than traditional techniques. CNNs utilize advanced

mathematical concepts to detect complex patterns in an image.

Its emergence has revolutionized face recognition, enabling a

more authentic representation of original facial features.

Through its ability to self-extract features and utilize deep

learning, face recognition accuracy has seen significant

improvements [7, 8].

Research in face detection and recognition in streaming

videos is an active research area. The published work in this

area has employed a variety of techniques that balance

accuracy and speed. Mamieva et al. [9] built a face detector

that enhanced the RetinaNet architecture, combining a region-

offering network for spotting possible faces with a detection

network for fine-tuning the boxes around each face. They

trained it on the WIDER FACE dataset. Their model scored

41.0 Average Precision (AP) at 11.8 Frames per Second (FPS)

with single-scale input, and 44.2 AP with multi-scale, which

makes it competitive against other models. In PyTorch, it

achieved a 95% face detection accuracy, which is excellent

given that the model is lightweight. Despite that, they

acknowledged that their model has challenges with poor

Ingénierie des Systèmes d’Information
Vol. 30, No. 12, December, 2025, pp. 3263-3272

Journal homepage: http://iieta.org/journals/isi

3263

https://orcid.org/0000-0002-4026-3994
https://orcid.org/0000-0001-5269-0697
https://orcid.org/0000-0002-7692-7908
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301219&domain=pdf

lighting and blurry frames. Gupta et al. [10] compared classic

and modern face detection and recognition methods. They

stacked up Histogram of Gradient (HOG), HCC, CNN, Local

Binary Pattern Histogram (LBPH), and ResNet-34 against

each other. According to them, HOG + Support Vector

Machine (SVM) for detection paired with ResNet for

recognition gives the most reliable results. They stressed the

value of building recognition datasets straight from the

detection phase, though they did not provide performance

metrics that support the effectiveness of this strategy. Focusing

on real-time performance, Majeed et al. [11] developed a

system that used an HCC for face detection, a lightweight

CNN for face recognition, plus feature extraction with Linear

Discriminant Analysis (LDA) and HOG. They showed that

these compact CNNs can hit 100% accuracy even with poor

lighting and face pose changes. They ran their experiments on

both standard and video-derived datasets (extracted from

videos). That being said, they did not provide any metrics to

evaluate the detection phase. Furthermore, the videos they

used are of a single class and were set in a controlled

environment. Similarly, Wong et al. [12] developed a multi-

camera system for face detection, recognition, and tracking

that was built for real-world conditions. They used You Only

Look Once (YOLOv5n) for detection (with a mean AP of

0.495, precision at 0.868, and recall at 0.781), SphereFace for

recognition (scoring 82.05% accuracy), and DeepSORT to

keep track of identities across different cameras. They

mentioned that using OpenVINO for optimization could push

performance even more on edge devices. However, not all

hybrid approaches proved suitable for real-time use.

Abbattista et al. [13] combined HOG and SVM for detection

with a ResNet-34 model for recognition. On the CORDOBA

dataset, their setup hit 98% accuracy for detection and 100%

for recognition. The turning point was that their system was

very slow (recognition cycle took about a second), so it could

not handle real-time demands. Finally, Haq et al. [14] built a

mobile application that recognizes cricket players in real time.

It uses AdaBoost for detection and LDA for recognition, and

they tested it on datasets like YTF, LFW, and actual sports

videos. They claimed that their application responded instantly

in real-world use, though they did not report any performance

metrics.

Previous research has already shown that cutting-edge

methods boost recognition performance by using standardized

datasets. Yet, most of these methods just analyze the whole

image, which includes processing unnecessary background

information. Normally, that extra clutter downgrades model

efficiency. Furthermore, many studies have focused on

achieving the highest accuracy at the cost of practicality of

using these models for real-time applications. That can be

justified by knowing that computers have gotten much faster;

thus, worrying about computational efficiency is not an urgent

issue most of the time. Conversely, few researchers have built

datasets from live video streams or tried to lock recognition to

just the face area without the background. The work in study

[10], for example, overlaps with this study, but as mentioned

above, those efforts have not included performance metrics

that show the efficiency of this method.

This research gap of the absence of a simple method to build

real-time datasets focused just on facial data is considered in

this work, which would sharpen both accuracy and efficiency.

A self-supervised approach that extracts facial regions directly

from video streams during face detection results in a

recognition model that runs faster and performs better in real-

time applications. Face detection phase really matters here. If

face detection is slow or unreliable, the whole system suffers,

no matter how good the recognition model is. Concisely, the

aim of this work is to realize a fast, reliable, compact and data

efficient face detection and recognition system.

This work introduces a system that can detect and recognize

different people across multiple video streams. For face

detection, a hybrid HCC approach is used. This approach

combines detection and tracking into one process.

Furthermore, it uses both frontal and profile HCC models to

detect faces in different angles, and it is combined with

preprocessing and postprocessing. Preprocessing includes

downsizing the frames, converting them to grayscale, and

correcting them for lighting. Postprocessing includes filtering

for skin tone and eliminating any duplicate faces that can result

from using frontal and profile HCCs. Since this is a heavy load

computationally, it is done sparsely. Kernelized Correlation

Filter (KCF) tracker completes the task and continues to track

faces that are detected. This hybrid method speeds up the

detection and pushes performance to the real-time demands.

Once faces have been detected, they are gathered,

processed, and sorted into a dataset for training and testing the

recognition phase. When it comes to recognition, a lightweight

CNN is utilized and trained on the extracted and augmented

dataset. The final step is testing the whole system on a new

video of the same target individuals to validate performance.

This approach is a real transition from the usual methods

that depend on previously made datasets. Instead, datasets are

built straight from live video feeds. This model works

especially well in closed environments, such as a private

surveillance system, where public datasets are often unsuitable

or unavailable. Focusing training solely on isolated faces

instead of whole bodies or background excludes a lot of

background noise and environmental clutter, which really

escalates recognition accuracy. Figure 1 shows the whole

system block diagram.

Figure 1. The general structure of the face detection and

recognition system

The following sections of this article are organized as

follows: a short theory of the techniques that are utilized,

system design theory, followed by the results and discussions,

and finally, conclusions and references.

3264

2. RESEARCH METHODOLOGY

This work utilizes the HCC algorithm for face detection,

supported by a KCF tracker, with a CNN used as a next step

for face recognition. While these techniques have become

widespread over the past decade, this research aims to

demonstrate that even traditional methods, with minor

processing modifications, can form the efficient core of an

intelligent face detection and recognition system without

requiring general standard datasets. By showing that these

basic methods can meet the system's fundamental

requirements, this work lays a foundation upon which to build

for future advancements in more complex techniques. The

following section provides the necessary theoretical

groundwork of HCC, KCF, and CNN before discussing

system design and experimental results.

2.1 Haar cascade classifier

HCC, based on an algorithm introduced by Viola and Jones

[5], uses a rectangular feature known as a Haar feature as a key

input for the cascaded classifier. Viola and Jones drew

inspiration from Haar wavelets to develop what are now

known as Haar features. By analyzing adjacent rectangular

regions in a detection window, summing pixel intensities

within these regions, and computing the difference between

these sums, these features enable the categorization of image

subsections. One of the most employed Haar features for face

detection is formed of two rectangles positioned above the eye

and cheek regions, considering the difference in light intensity

between these areas. The positions of these rectangles are

determined with respect to a detection window, which is a

bounding box for the face of interest. During detection, a

window with a size corresponding to the target object is moved

across the input image. For a given sub-region of an image, a

Haar feature is computed and compared with a learned

threshold for distinguishing objects and non-objects. Because

a Haar feature is only a weak learner, a set of features is needed

for obtaining a precise definition of an object. These features

are arranged as a classifier cascade for developing a strong

classifier. The most prominent benefit of using Haar features

compared with other approaches is related to the computation

speed provided by integral images, allowing for a constant

time computation of features of arbitrary sizes. Figure 2 shows

different detectors using a Haar feature.

Figure 2. Types of detectors based on Haar features [15]

These detectors employ different filters on specific regions

of an image, where the pixel sums from the white areas are

subtracted from those in the black areas. The weights for the

white and black regions are treated as values of “1” and “−1,”

respectively. Haar features inspect adjacent rectangular areas

within a detection window, sum the pixel intensities of each

area, and calculate the difference. The difference is then used

to classify sections of the image. The key components of the

Haar cascade include integral images, the Adaboost algorithm,

and the cascaded classifier [15].

The first step of the Viola-Jones algorithm is to convert the

input image into an integral image. HCC, then, compares how

closely the actual scenario matches the ideal case, where the

value of the Haar feature is ideally one. Then the Adaboost

Algorithm, a machine learning algorithm, is used to develop a

classifier through weights [5].

The cascaded classifier is used for quickly rejecting error

windows and enhancing processing speed. In every node of the

trees, there is a non-object branch, indicating that the image

will not be the desired object, as shown in Figure 3. This

technique minimizes the false negative rate [16].

Figure 3. Schematic depiction of the detection cascade [5]

2.2 Kernelized Correlation Filter

KCF is a fast target-tracking algorithm that works through

three main stages: feature extraction, online learning, and

template updating, as shown in the block diagram in Figure 4.

First, the tracker extracts HOG features from the selected

target region and converts them into the frequency domain

using the Fourier transformation. It then computes the

correlation in the frequency domain to estimate the new target

position. After locating the target, the classifier is trained by

generating multiple cyclic shifted versions of the target patch

and learning their weights using a ridge-regression-based

classifier. The process of cyclic shifting converts a single

patch into a huge training dataset, allowing the tracker to

depend on very limited data to produce efficient discriminative

tracking. The tracker continues to follow the object by

repeatedly updating its model and filtering weights based on

the most recent target location, allowing real-time and

continuous tracking [17, 18].

Figure 4. General framework of KCF [19]

3265

2.3 Convolutional Neural Networks

Neural networks are a contemporary technology that

provides high precision in tasks related to classification and

prediction. Their high speed and compatibility with various

scientific fields make them one of the most used techniques.

There are different types of neural networks, that vary in

different aspects such as structure, level of hybridization with

other computational algorithms, and complexity. These

networks share common elements such as neurons, input and

output layers, and one or more hidden layers, but they differ in

the tasks performed by these layers.

CNN performs classification tasks, either supervised or

unsupervised. Supervised training involves providing a set of

corresponding inputs and outputs, and the system learns to

associate them and predict the output. Initially, input images

are entered, and several of their properties, such as edges and

gradients, are calculated in the primary layer. In the middle

stage, several features are extracted from the previous stage,

and then in the final stage, the features are extracted, which

can then be passed to the classifier [20, 21].

Figure 5. Basic CNN architecture [22]

A CNN is typically structured with multiple layers (as

shown in Figure 5), including [23-25]:

• Convolutional Layer: This is a key layer in a standard

neural network. It contains a variety of filters, often

referred to as convolutional kernels (Figure 6). These

filters interact with the intended input to generate an

output that has the strongest correlation with the input

features. During training, the weights of the filter are

adjusted. This task is also known as subsampling

because it decreases the size of the samples in the

image. To ensure that the filter moves over the edges

as well, we need to add zero pixels (padding) to the

edges of the image.

• Pooling Layer: This layer selects a pixel from each

mask, which could be the average or the maximum

pixel.

• Activation Function: These functions determine the

threshold at which the neuron triggers the output.

• Fully Connected Layer: This is the final stage of

CNN. It functions as the classifier by connecting each

neuron to all neurons in the preceding layer.

Essentially, it adopts the feed-forward approach of

traditional multi-layer perceptron neural networks.

The FC layer receives input as a vector, which comes

from the last pooling or convolutional layer, after

flattening the feature maps. The final output of the

CNN is derived from this layer.

• Loss Functions: these are applied in the output layer

to compute the prediction error across training

samples, reflecting the difference between the actual

and predicted outputs. This error is then minimized

during the CNN learning process to enhance

accuracy.

Figure 6. Convolution operation [26]

In CNN models, the primary challenge is achieving good

generalization without overfitting. Overfitting occurs when

the model fulfills the task on training data but fails on test data.

On the other hand, an under-fitted model lacks sufficient

learning from the training data, leading to poor performance

on training and consequently on test data also. A well-fitted

model, however, performs well on both training and test data.

Various intuitive concepts are employed to aid in

regularization and avoid overfitting, as further explained in the

subsequent sections [24, 27]:

• Dropout: During each training epoch, certain neurons

are randomly omitted. This distribution of feature

selection power ensures the model learns different

independent features. In training, the dropped

neurons are excluded from back-propagation and

forward-propagation. However, in the testing phase,

the entire network is used for prediction.

• Drop-Weights: This technique is similar to dropout;

this method involves omitting the connections

between neurons (weights) during each training

epoch, rather than the neurons themselves.

• Data Augmentation: Expanding the training dataset

with artificial techniques helps prevent overfitting.

With more examples to learn from, the model handles

data better and generalizes instead of just

memorizing.

• Batch Normalization: This technique normalizes the

activations of the output at each layer, aligning the

values with a unit Gaussian distribution. Basically,

the mean is subtracted from each output, and the

result is divided by the standard deviation.

3. SYSTEM DESIGN

Although face detection and recognition systems have

achieved remarkable advancements recently, the main

challenge remains keeping accuracy high without draining

resources, especially on devices that do not have much

computational power. Deep learning models like Multi-Task

Convolutional Neural Network (MTCNN) and YOLO almost

nail detection accuracy, but their computational load is high.

That represents a problem for cheaper devices or real-time

scenarios, where boosting speed counts even if it means losing

some of the accuracy. In those cases, it is more important to

reduce False Positives (FP) rates than to catch every possible

False Negative (FN).

In this context, Classic techniques like HCC are still

relevant because they are simple, fast, and accurate enough for

most real-time needs. But they are not perfect and are known

for producing a lot of FPs and struggling with faces that are

not in a frontal pose or have poor lighting [15, 28]. Rather than

changing the internal structure of HCC, combining it with

3266

other methods can target these specific problems.

This work takes that route. It introduces a hybrid system that

builds on HCC, aiming to boost detection performance while

keeping things lightweight. The system brings together three

strategies: widening the detection range, filtering by skin tone,

and adding KCF tracking.

The first step expands the capabilities of pretrained HCC

models found in OpenCV libraries. Combining HCC models

that are specifically trained for frontal and profile faces is

expected to drop FN rates because faces at different angles are

detected. The tradeoff of this step is more FPs, more repeated

detections of the same face, and heavier computation.

To tackle these side effects, the second step uses skin-tone

filtering after detection. By checking how much of the

detected area matches human skin tones, the system can

remove many FPs. An additional filter is used to cancel

duplicates from the frontal and profile detectors. These tweaks

lower the FP rate and are expected to have a mild effect on FN

rates. Yet, they do increase computational demand even more.

Finally, to keep resource use in check, the third step inserts

a KCF tracker. The idea is to run the enhanced HCC from the

past two steps on a key frame, then use KCF to track each face

across the following frames. This way, the system does not

have to run heavy detection every single time, so it can process

frames much faster. The risk here is missing new faces or

losing track during quick movement. The system can manage

this by adjusting the number of skipped frames to match the

speed of movement of individuals across the frames. The

result is a careful balance between speed and accuracy. Figure

7 shows the steps of this process.

Figure 7. Face detection process using a hybrid Haar cascade

classifier (HCC)

Figure 8. Face recognition process using CNN

The face recognition phase utilizes the power and

capabilities of CNN. It is trained on a dataset extracted straight

from video clips during the face detection phase. This dataset

contains only face information, which gives CNN a big boost

during the process of training and recognition. Despite the

neatness of this approach, there is a hitch. Faces from the same

video usually look similar with the same angle, same lighting,

same expressions. That is the typical recipe for overfitting. To

tackle this, the system selects images from frames spaced apart

in time, which brings in more variety. It also uses extensive

data augmentation during training, helping the model

generalize better and making overfitting less likely. The

training set draws from several video clips, while a separate

video builds the validation set, ensuring a more objective

evaluation of the model's performance. The block diagram of

the face recognition phase using CNN is shown in Figure 8.

4. RESULTS AND DISCUSSIONS

The developed methodology consists of two main parts:

first, a hybrid face detection method (HCC-KCF), and then a

CNN-driven recognition phase. The system was implemented

on Python 3.11, with the help of OpenCV and Keras

(TensorFlow as backend and Adam as the optimizer). All the

experiments took place on a Windows 10 laptop with an Intel

Xeon CPU, 4GB NVIDIA Quadro GPU, and 32GB RAM.

Python makes sense here. It is flexible, efficient, and

supports object-oriented programming, which accelerates

prototyping and development. The simple yet powerful syntax

of Python, along with direct interpreting, makes it a perfect

choice for computer vision and machine learning work [29].

OpenCV handled the main computer vision tasks, offering

a deep toolkit for face detection, object recognition, and real-

time video analysis. TensorFlow, Google’s open-source deep

learning library, supports the efficient building and training of

complex neural networks [30].

For face detection, pretrained HCC models in the OpenCV

libraries did the main task. OpenCV offers four frontal face

detection models, though there is no documentation explaining

how they differ from each other. They are listed below with

names used throughout this paper for convenience:

• HCC-default (haarcascade_frontalface_default.xml).

• HCC-alt (haarcascade_frontalface_alt.xml).

• HCC-alt2 (haarcascade_frontalface_alt2.xml).

• HCC-alt-tree(haarcascade_frontalface_alt_tree.xml).

Determining the best HCC frontal face model required

comparing the performance of these models. To this end, all

models were tested on three diverse video samples of three

individuals that vary in gender and skin complexion, to

provide diversity in the samples. Figure 9 gives a glance at the

content of these videos: Video-A (Figure 9(a)) has a rich

background, Video-B (Figure 9(b)) has relatively poor

lighting, and Video-C (Figure 9(c)) has a well-lit condition.

These videos are available online and free to use and

reproduce the results. To enhance testing efficiency, the

resolution of each video was reduced to 50% of its original

size. Before the detection process, the frames underwent

standard preprocessing, including grayscale conversion and

lighting enhancement using histogram balancing. To ensure

fair comparison, all models used standardized settings: (scale

factor = 1.1, minimum proximity = 5, minimum size = (60,

60)). Reference positions for faces were manually determined

to serve as the basis for evaluation.

Table 1 shows the test results. It can be noticed that some

models perform better than others in some metric criteria, but

there is no model that is superior in all the metrics. Further

analysis revealed that HCC-alt2 is the most balanced choice,

as it strikes the best practical compromise between speed and

detection reliability. While HCC-alt achieved slightly higher

precision, it did so at a high cost to recall. Conversely, HCC-

default suffered from low precision, and HCC-alt-tree, despite

its high speed, was unusable due to catastrophically low recall.

HCC-alt2 consistently delivered strong F1 scores across all

test scenarios, offering robust performance with high speed,

making it the most suitable and balanced candidate for our

3267

hybrid HCC detector.

(a) Video-A (from: pexels.com/video/video-of-people-

talking-while-walking-4625331)

(b) Video-B (from: pexels.com/video/video-of-people-

talking-while-walking-4625293)

(c) Video-C (from: pexels.com/video/ people-having-conversation-while-walking-on-sidewalk-4625296)

Figure 9. Three videos of three class faces

Table 1. Performance evaluation of several pretrained front

face HCC models found in the OpenCV library

Model Type Eval. Metrics Vid-A Vid-B Vid-C

Haar cascade

classifier

(HCC)-

default

FPS 12.09 5.85 5.96

Precision 0.7648 0.5570 0.4881

Recall 0.8144 0.6052 0.7609

F1-score 0.7888 0.5801 0.5947

HCC-alt

FPS 14.37 6.97 6.09

Precision 0.9728 0.9627 0.7802

Recall 0.7556 0.5187 0.7131

F1-score 0.8505 0.6742 0.7451

HCC-alt2

FPS 15.26 7.13 6.79

Precision 0.9360 0.882 0.7704

Recall 0.7285 0.5526 0.7062

F1-score 0.8193 0.6795 0.7369

HCC-alt-tree

FPS 22.26 10.68 10.69

Precision 1.0 1.0 1.0

Recall 0.0678 0.2969 0.3647

F1-score 0.1271 0.4579 0.5345

There is only one pretrained profile model, HCC-profile

(haarcascade_frontalface_profile.xml), in the OpenCV

library; therefore, no need to make such a comparison. It must

be mentioned that most profile face detectors are trained on a

dataset of faces on one side. To cover all the possible face

orientations, the HCC-profile needs to be run twice on each

frame (normal frame and flipped one).

For convenience, we call our model that depends on HCC

and KCF as hybrid-HCC. It consists of the HCC part and the

KCF part. The HCC part ran two pretrained models, HCC-alt2

and HCC-profile. HCC-profile was used twice (on the normal

frame and on the reversed one) to cover the left and right

profile faces. The parameters of both were set to (scale factor

= 1.1, minimum proximity = 5, minimum size = (60, 60)).

Each frame fed to them is downsized by 50% of its original

size. Then, the frame was preprocessed by grayscale

conversion (integral image) and illumination correction (using

histogram equalization). The postprocessing consists of two

filters: the skin-tone filter and the nested-faces filter. The skin-

tone filter rejects any candidate region where more than 40%

of the color tone falls within the human skin range, defined in

the HSV color space H=0-40, S=50-120, and V=80-255. For

the KCF part, it was initialized by the detected faces in a frame.

Then, the tracker follows the face from frame to frame until a

new face detection happens, which resets the initialization.

The HCC part ran for a frame, and the remaining 25 frames

were run by the KCF part.

Table 2. Performance evaluation of the hybrid-HCC against

other models

Model Type Eval. Metrics Vid-A Vid-B Vid-C

Ref-HCC

FPS 3.97 1.76 1.75

Precision 0.8193 0.6509 0.5226

Recall 0.9984 0.9511 0.9767

F1-score 0.9000 0.7729 0.6809

Hybrid-HCC

FPS 44.89 22.45 22.31

Precision 1.0 0.8155 1.0

Recall 0.8672 0.8258 0.8620

F1-score 0.9289 0.8206 0.9258

MTCNN

FPS 4.60 4.72 4.82

Precision 0.9969 0.9705 0.9608

Recall 0.9758 0.8245 0.9713

F1-score 0.9862 0.8915 0.9660

YOLOv8

FPS 12.82 11.02 11.81

Precision 1.0 0.9536 1.0

Recall 1.0 0.9736 1.0

F1-score 1.0 0.9536 1.0

3268

To evaluate the above modification in the hybrid-HCC face

detector, it must be tested against other face detectors. The first

candidate was a pure HCC. Table 1 shows the performance

metrics for one frontal HCC; therefore, a better version of

HCC was used. It is called ref-HCC here for convenience. Ref-

HCC consists of two pretrained models, HCC-alt2 and HCC-

profile, just like the hybrid-HCC. The same preprocessing of

grayscale conversion and illumination correction was used.

Because multiple HCCs were used in ref-HCC, too, a fair

comparison requires using the nested-faces filter in the

postprocessing. The other two candidates were state-of-the-art

pretrained detectors: MTCNN and YOLOv8n (nano). The

choice of YOLOv8 out of other versions is due to its high

performance and balance between accuracy and inference

velocity [31]. It was selected because it provides an ideal

trade-off between precision and processing speed. MTCNN is

part of the OpenCV library [32], but YOLOv8 is not.

Therefore, a pretrained YOLOv8n for face detection

(yolov8n_100e.pt from github.com/Yusepp/YOLOv8-Face)

was used. All these models were evaluated under consistent,

resource-constrained conditions where video frames were

downsized by 50%. All the models run on every frame of test

videos, except the hybrid-HCC, which employed an

aggressive, tracker-assisted skip of 25 frames. Table 2 shows

the performance evaluation of the four models.

The most eye-catching result is the speed of hybrid-HCC. It

is 11.3 to 12.75 times faster than ref-HCC. Moreover, it is

nearly 9.7 times faster than MTCNN and about 2 to 3.5 times

faster than YOLOv8. When it comes to accuracy (F1 score),

YOLOv8 achieved the highest accuracy, topping 1.0 F1 score,

followed by MTCNN. Hybrid-HCC outperformed ref-HCC in

all test videos by 2.8 to 24 percentage points. Its accuracy,

while still behind the newest face detectors, is very good and

balanced. Hybrid-HCC achieved perfect Precision (1.0) in

Vid-A and Vid-C, and 0.8155 in Vid-B. This is due to the

effectiveness of the skin-tone filter at minimizing FP. Hybrid-

HCC scored the lowest Recall rates across all the models. This

decline is the consequence of the discrete detection strategy.

Skipping many frames leads to an increase in FN when

tracking was temporarily lost or failed to initiate because of

missed detection. The results show a trade-off between

accuracy and speed. YOLOv8 is the best in accuracy, Hybrid-

HCC model is the best in speed, and MTCNN offers balanced

but slower results. Ref-HCC model is significantly the worst.

These findings support the goal of running a detection system

on resource-constrained, real-time video surveillance, where

high FPS is prioritized over perfect accuracy. Regarding the

results per video, Vid-A is the easiest, while Vid-B is the most

challenging. The main reason is that the brightness in Vid-B is

lower than in other videos. This indicates that hybrid-HCC is

more susceptible to low-light conditions than YOLOv8, but it

is comparable to MTCNN.

After detecting faces in each frame, the face images are

extracted and categorized into folders for the training stage in

CNN. The CNN structure was set as shown in Table 3. It

consists of four convolutional layers, where each one is

followed by a batch normalization and a pooling layer (Max

pixel). This gradually reduces the image dimensions from 256

× 256 to 16 × 16 and keeps the feature maps at 32. The feature

maps are then flattened to a 6272-element vector. Next, the

flattened vector is fed to a dense fully connected classifier.

Batch Normalization and Dropout (at 0.8 value to reduce

possible overfitting) are performed as regularization during

training. The last layer is a fully connected dense layer that

shapes the output of three classes. All the activation functions

in convolution and dense layers are ReLUs (Rectified Linear

Unit) except the last layer, which is activated by a SoftMax

function. The total CNN parameters are 431,075 (1.64 MB)

with 430,691 (1.64 MB) trainable parameters and 384 (1.50

KB) non-trainable parameters. This makes the CNN model a

lightweight one that is capable of being deployed on limited

hardware devices.

Table 3. Setting of the CNN model

The Type of Layer The Output Shape Param. Number

Conv2D (254, 254, 32) 896

Batch Normalization (254, 254, 32) 128

MaxPooling2D (127, 127, 32) 0

Conv2D (125, 125, 32) 9,248

Batch Normalization (125, 125, 32) 128

MaxPooling2D (62, 62, 32) 0

Conv2D (60, 60, 32) 9,248

Batch Normalization (60, 60, 32) 128

MaxPooling2D (30, 30, 32) 0

Conv2D (28, 28, 32) 9,248

Batch Normalization (28, 28, 32) 128

MaxPooling2D (14, 14, 32) 0

Flatten (6272) 0

Dense (64) 401,472

Batch Normalization (64) 256

Dropout (64) 0

Dense (3) 195

CNN was trained using a set of 1,728 images, divided into

1152 images for the training set and 576 images for the test

set, with a batch size of 32 and a learning rate of 0.0001. Both

training and test sets were divided equally into three classes.

The number of training steps per epoch was calculated as the

number of training images divided by the batch size. In the

same way, the number of validation steps was calculated as the

number of test images divided by the batch size.

To overcome the overfitting problem that might result from

the limited size and low diversity of the dataset, extensive data

augmentation was employed. This involved applying various

geometric transformations to the training images, such as

rotation, translation, scaling, and reflection, thereby enhancing

the model's ability to generalize and handle variations in real-

world data. Images were rotated by 20°, shifted in width or

height by a percentage up to 60%, heavily sheared and zoomed

(both with a range of 0.4), and flipped horizontally. This level

of augmentation increases the diversity of the training set and

pushes CNN to handle all sorts of viewing conditions.

Figure 10 shows the accuracy and loss evolving through

both training and testing. 100 training epochs were enough to

achieve the required performance. Examining the accuracy

graph (Figure 10(a)) and loss graph (Figure 10(b)) indicates

the learning performance.

Training accuracy curve tops around 0.934, which is a solid

sign that the model learned the patterns in the data excellently.

Validation accuracy curve even tops around 0.9722, which

reflects the good generalization and evades the trap of

overfitting.

The training loss curve showed a decreasing shape and

settled at about 0.7187, which means that the model is

achieving more confidence in the classifications. Validation

hits even lower end-value of 0.6485. It follows the same shape

of validation accuracy. This ensures that overfitting is not a

prominent issue here.

The spikes in validation accuracy and loss may suggest that

3269

the model faces some challenges with certain samples, but

ultimately, it maintains a consistent learning and loss

trajectory. The observed effect may stem from the applied

heavy augmentation on a relatively small dataset.

To test the recognition subsystem, the trained CNN model

was combined with hybrid-HCC. The detector was applied to

a new video. Since there was no truth table for the faces in the

video, it was not feasible to test the performance directly.

Therefore, a prediction sample of faces was extracted from the

new video, and then they were organized into three classes.

The prediction dataset consisted of 180 samples (60 for each

class).

(a) Training and validation accuracy (b) Training and validation loss

Figure 10. The CNN model performance: accuracy and loss across epochs

Table 4. Classification report of CNN

Class Precision Recall F1-Score Support

Girl 1.0 1.0 1.0 60

Guy1 1.0 1.0 1.0 60

Guy2 1.0 1.0 1.0 60

Table 4 shows that the model nailed every single prediction,

hitting 100% total accuracy. That confirms the performance of

CNN in handling new data. Furthermore, the detector provides

clean, cropped faces that resemble the ones used during the

training and testing of the CNN.

Figure 11 supports the tabled results, showing a sample

frame from the new video where the system correctly detects

and recognizes face classes (guy1, girl, guy2). It must be

mentioned that this perfect score comes from a small,

controlled prediction test. The accuracy may drop slightly if

the test video is longer and more challenging. Nonetheless,

these results show that this setup, with hybrid-HCC detection

and the lightweight CNN, works smoothly and reliably for

real-time, class-specific face recognition.

Figure 11. Detection of the face classes correctly throughout

all frames (from: pexels.com/video/ a-group-of-people-

together-for-a-photo-sjhot-4625282)

5. CONCLUSIONS

This study has introduced a system for face detection and

recognition in video streams that is suitable for real-time

applications such as surveillance systems. It combined a

hybrid HCC for face detection and a custom lightweight CNN

for face recognition. It has tackled two main challenges of

improving speed and maintaining a decent performance. For

detection, two pretrained HCC models (frontal and profile)

have been used in combination to reduce FN, with an added

preprocessing step to balance lighting and two postprocessing

filters: one for skin tone and another for removing nested

detections. Preprocessing and postprocessing worked to

reduce the FP. Additionally, the detector was assisted by a

KFC tracker that tracked faces when the detector was skipping

frames to push the speed enough for real-time use. This hybrid

HCC outperformed the reference HCC in performance (by 2.8

to 24 percentage points in F1-score) and speed (11.3 to 12.75

times faster). While MTCNN and pretrained YOLOv8

performance was better, hybrid HCC outperformed them in

speed (2 to 9.7 times faster). The custom lightweight CNN

represented a self-supervised training loop tailored for face

recognition. The detected faces were extracted and augmented

into a dataset (split into 66.6% training and 33.3% testing) that

was utilized to train the CNN successfully. The CNN model

achieved perfect prediction performance when it was tested on

new data.

This approach proved that video streams can be utilized

directly to build custom face recognition datasets, and HCC

and CNN can be used for limited hardware devices while

keeping decent performance and real-time demands. However,

some limitations can be considered for future work. The

hybrid HCC needs to be tested on real surveillance cameras to

see the effectiveness of keeping detection while tracking in

more challenging environments. CNN is trained offline in this

work; therefore, using a half-trained face recognition system

leads to a fully automated system, where online light training

on a dynamic dataset can benefit from the speed gain of our

3270

detector. Conversely, employment of knowledge distillation to

compress large pretrained models to a lightweight CNN,

without losing accuracy, can be an excellent next step.

REFERENCES

[1] Shi, Y., Zhang, H., Guo, W., Zhou, M., Li, S., Li, J.,

Ding, Y. (2024). Lighterface model for community face

detection and recognition. Information, 15(4): 215.

https://doi.org/10.3390/info15040215

[2] Ali, N.S., Alsafo, A.F., Ali, H.D., Taha, M.S. (2024). An

effective face detection and recognition model based on

improved YOLO v3 and VGG 16 networks. International

Journal of Computational Methods and Experimental

Measurements, 12(2): 107-119.

https://doi.org/10.18280/ijcmem.120201

[3] Alkhan, T.E., Hameed, A.A., Jamil, A., Ja, A. (2021).

Deep learning for face detection and recognition. In

International Conference on Advanced Engineering,

Technology and Applications, Istanbul, Turkey, pp. 148-

153.

[4] Paulchamy, B., Yahya, A., Chinnasamy, N., Kasilingam,

K. (2025). Facial expression recognition through transfer

learning: Integration of VGG16, ResNet, and AlexNet

with a multiclass classifier. Acadlore Transactions on AI

and Machine Learning, 4(1): 25-39.

https://doi.org/10.56578/ataiml040103

[5] Viola, P., Jones, M. (2001). Rapid object detection using

a boosted cascade of simple features. In Proceedings of

the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, Kauai, HI,

USA. https://doi.org/10.1109/CVPR.2001.990517

[6] Dubovečak, M., Dumić, E., Bernik, A. (2023). Face

detection and recognition using raspberry PI computer.

Tehnički Glasnik, 17(3): 346-352.

https://doi.org/10.31803/tg-20220321232047

[7] Ahmed, H.A., Croock, M.S., Al-Hayanni, M.A.N.

(2023). Intelligent vehicle driver face and conscious

recognition. Revue d’Intelligence Artificielle, 37(6):

1483-1492. https://doi.org/10.18280/ria.370612

[8] Alagappan, V.V., Vaishnav, H. (2023). Digital forensics

face detection and recognition. International Journal for

Research in Applied Science & Engineering Technology,

11(3): 535-541.

https://doi.org/10.22214/ijraset.2023.49393

[9] Mamieva, D., Abdusalomov, A.B., Mukhiddinov, M.,

Whangbo, T.K. (2023). Improved face detection via

learning small faces on hard images using deep learning.

Sensors, 23(1): 502. https://doi.org/10.3390/s23010502

[10] Gupta, R., Gupta, A.K., Panwar, D., Jain, A.,

Chakraborty, P. (2023). Design and analysis of an expert

system for detection and recognition of criminal faces.

Journal of Electrical and Computer Engineering,

2023(1): 4284045.

https://doi.org/10.1155/2023/4284045

[11] Majeed, A.W., Shaker, S.H., Saeid, A.A. (2024). Real-

time face recognition and tracking using lightweight

convolutional neural network. BIO Web of Conferences,

97: 00029.

https://doi.org/10.1051/bioconf/20249700029

[12] Wong, Y.J., Lee, K.H., Tham, M.L., Kwan, B.H. (2023).

Multi-camera face detection and recognition in

unconstrained environments. In 2023 IEEE World AI

IoT Congress (AIIoT), Seattle, WA, USA, pp. 0548-

0553. https://doi.org/10.13140/RG.2.2.31681.12644

[13] Abbattista, G., Convertini, V.N., Gattulli, V., Sarcinella,

L. (2020). CORDOBA system: Physical access

management control with face detection and recognition.

IOSR Journal of Computer Engineering, 22(1): 42-48.

https://doi.org/10.9790/0661-2201024248

[14] Haq, M.U., Sethi, M.A.J., Ahmad, S., ELAffendi, M.A.,

Asim, M. (2024). Automatic player face detection and

recognition in cricket games. IEEE Access, 12: 41219-

41233. https://doi.org/10.1109/ACCESS.2024.3377564

[15] Mustafa, R., Min, Y., Zhu, D. (2014). Obscenity

detection using Haar-like features and gentle AdaBoost

classifier. The Scientific World Journal, 2014(1):

753860. https://doi.org/10.1155/2014/753860

[16] Najeeb, A., Sachan, A., Tomer, A., Prakash, A. (2023).

Face mask detection using OpenCV. Advances in

Science and Technology, 124: 53-59.

https://doi.org/10.4028/p-2ffx83

[17] Huang, Z., Ou, C., Guo, Z., Ye, L., Li, J. (2024). Human-

following strategy for orchard mobile robot based on the

KCF-YOLO algorithm. Horticulturae, 10(4): 348.

https://doi.org/10.3390/horticulturae10040348

[18] Zhao, F., Hui, K., Wang, T., Zhang, Z., Chen, Y. (2021).

A KCF-based incremental target tracking method with

constant update speed. IEEE Access, 9: 73544-73560.

https://doi.org/10.1109/ACCESS.2021.3080308

[19] Zhou, Z., Hu, X., Li, Z., Jing, Z., Qu, C. (2022). A fusion

algorithm of object detection and tracking for unmanned

surface vehicles. Frontiers in Neurorobotics, 16: 808147.

https://doi.org/10.3389/fnbot.2022.808147

[20] Gdeeb, R.T. (2023). A survey of face detection and

recognition systems. Iraqi Journal of Intelligent

Computing and Informatics, 2(1): 44-57.

https://doi.org/10.52940/ijici.v2i1.32

[21] Ahmed, H.A., Al-Hayanni, M.N., Croock, M.S. (2024).

Intelligent and secure real-time auto-stop car system

using deep-learning models. International Journal of

Electrical and Computer Engineering Systems, 15(1):

31-39. https://doi.org/10.32985/ijeces.15.1.4

[22] Ismail, W.N., Alsalamah, H.A., Hassan, M.M.,

Mohamed, E. (2023). AUTO-HAR: An adaptive human

activity recognition framework using an automated CNN

design. Heliyon, 9(2): e13636.

https://doi.org/10.1016/j.heliyon.2023.e13636

[23] Kamagate, B.H., Kopoin, N.C., Koffi, D.D.A., Asseu,

O.P. (2024). A robust Convolutional Neural Network

model for fruit image classification. Ingénierie des

Systèmes d’Information, 29(5): 1701-1710.

https://doi.org/10.18280/isi.290504

[24] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al Dujaili, A.,

Duan, Y., Al Shamma, O., et al. (2021). Review of deep

learning: Concepts, CNN architectures, challenges,

applications, and future directions. Journal of Big Data,

8(1): 53. https://doi.org/10.1186/s40537-021-00444-8

[25] Merzah, B.M., Croock, M.S., Rashid, A.N. (2024).

Intelligent classifiers for football player performance

using machine learning. International Journal of

Electrical and Computer Engineering Systems, 15(2):

173-183. https://doi.org/10.32985/ijeces.15.2.6

[26] Peng, P., Zhao, X., Pan, X., Ye, W. (2018). Gas

classification using deep convolutional neural networks.

Sensors, 18(1): 157. https://doi.org/10.3390/s18010157

[27] Hssayeni, M.D., Croock, M.S., Salman, A.D., Al-

3271

Khafaji, H.F., Yahya, Z.A., Ghoraani, B. (2020).

Intracranial hemorrhage segmentation using a deep

convolutional model. Data, 5(1): 14.

https://doi.org/10.3390/data5010014

[28] McCullagh, P. (2023). Face detection by using Haar

cascade classifier. Wasit Journal of Computer and

Mathematics Science, 2(1): 1-5.

https://doi.org/10.31185/wjcm.109

[29] Nongthombam, K., Sharma, D. (2021). Data analysis

using Python. International Journal of Engineering

Research and Technology, 10(7): 463-468.

https://doi.org/ 10.17577/IJERTV10IS070241

[30] Adusumalli, H., Kalyani, D., Sri, R.K., Pratapteja, M.,

Rao, P.P. (2021). Face mask detection using OpenCV. In

Third International Conference on Intelligent

Communication Technologies and Virtual Mobile

Networks (ICICV), Tirunelveli, India, pp. 1304-1309.

https://doi.org/10.1109/ICICV50876.2021.9388375

[31] Hameed, A.S., Hasan, T.M., Khaji, R. (2025). Real time

classification of retail theft utilizing YOLO algorithm.

Ingénierie des Systèmes d’Information, 30(6): 1517-

1522. https://doi.org/10.18280/isi.300610

[32] Xie, Y., Wang, H., Guo, S. (2020). Research on MTCNN

face recognition system in low computing power

scenarios. Journal of Internet Technology, 21(5): 1463-

1475.

3272

https://doi.org/10.1109/ICICV50876.2021.9388375

