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This study presents a fast multi-face detection and recognition system suitable for
surveillance applications using a self-supervised dataset generation approach. The face
detection subsystem employs pretrained frontal and profile Haar cascade classifier (HCC)
that are preprocessed for light normalization and postprocessed for eliminating duplicate
detections. The detector is assisted by skin-tone postprocessing and a Kernelized
Correlation Filter (KCF) tracker. To achieve a significant speed gain, HCC runs sparsely
while KCF maintains face tracking-detection in the skipped frames. This hybrid HCC
achieves F1-score improvements of 0.029 to 0.245 over baseline HCC and approximately
12x speed gain. Although Multi-Task Convolutional Neural Network (MTCNN) and
YOLOVS8 achieve higher F1 scores, hybrid HCC maintains superior frame rates, operating
approximately 2-9x faster than these advanced models. Detected faces are extracted,
augmented, and organized into a dataset (66.6% training, 33.3% testing split), enabling a
custom lightweight Convolutional Neural Network (CNN) to successfully handle face
recognition and achieve a perfect Fl-score in a prediction test. The complete system
demonstrates an effective solution for real-time surveillance applications in resource-

constrained environments.

1. INTRODUCTION

The past few years have witnessed intensive research efforts
to develop highly efficient and cost-effective people
identification systems for quickly and accurately identifying
individuals in various fields, including security and attendance
tracking, to name a few. Face identification is a vital
technology within this field, because the face is the most
prominent personal identity [1, 2]. This process typically
consists of two main phases: face detection and face
recognition. It begins with face detection, which identifies and
localizes human faces within images or video frames, followed
by face recognition, where the detected face is classified by
comparing and matching it against a database to confirm the
individual's identity [3, 4]. For a face recognition system to be
successful, it must first be able to reliably detect faces. One of
the classical and key techniques for face detection is Haar
cascade classifier (HCC), which was developed by Viola and
Jones [5] more than two decades ago. HCC is a pioneering and
simple technique that still provides a highly effective solution
for real-time face and object detection. The Viola-Jones
method is based on four key pillars: calculating Haar features,
generating integrated images to accelerate calculations,
training using a simple neural network (AdaBoost), and using
sequential classifiers to reduce processing time [6]. This
combination gives it a significant speed advantage, making it
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an ideal starting point for time-constrained systems. On the
other hand, Convolutional Neural Networks (CNNs), which is
one of the simplest deep learning techniques that has been used
in enormous applications, offer a more robust and adaptable
solution for image classification and pattern recognition tasks
than traditional techniques. CNNs utilize advanced
mathematical concepts to detect complex patterns in an image.
Its emergence has revolutionized face recognition, enabling a
more authentic representation of original facial features.
Through its ability to self-extract features and utilize deep
learning, face recognition accuracy has seen significant
improvements [7, 8].

Research in face detection and recognition in streaming
videos is an active research area. The published work in this
area has employed a variety of techniques that balance
accuracy and speed. Mamieva et al. [9] built a face detector
that enhanced the RetinaNet architecture, combining a region-
offering network for spotting possible faces with a detection
network for fine-tuning the boxes around each face. They
trained it on the WIDER FACE dataset. Their model scored
41.0 Average Precision (AP) at 11.8 Frames per Second (FPS)
with single-scale input, and 44.2 AP with multi-scale, which
makes it competitive against other models. In PyTorch, it
achieved a 95% face detection accuracy, which is excellent
given that the model is lightweight. Despite that, they
acknowledged that their model has challenges with poor
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lighting and blurry frames. Gupta et al. [10] compared classic
and modern face detection and recognition methods. They
stacked up Histogram of Gradient (HOG), HCC, CNN, Local
Binary Pattern Histogram (LBPH), and ResNet-34 against
each other. According to them, HOG + Support Vector
Machine (SVM) for detection paired with ResNet for
recognition gives the most reliable results. They stressed the
value of building recognition datasets straight from the
detection phase, though they did not provide performance
metrics that support the effectiveness of this strategy. Focusing
on real-time performance, Majeed et al. [11] developed a
system that used an HCC for face detection, a lightweight
CNN for face recognition, plus feature extraction with Linear
Discriminant Analysis (LDA) and HOG. They showed that
these compact CNNs can hit 100% accuracy even with poor
lighting and face pose changes. They ran their experiments on
both standard and video-derived datasets (extracted from
videos). That being said, they did not provide any metrics to
evaluate the detection phase. Furthermore, the videos they
used are of a single class and were set in a controlled
environment. Similarly, Wong et al. [12] developed a multi-
camera system for face detection, recognition, and tracking
that was built for real-world conditions. They used You Only
Look Once (YOLOv5n) for detection (with a mean AP of
0.495, precision at 0.868, and recall at 0.781), SphereFace for
recognition (scoring 82.05% accuracy), and DeepSORT to
keep track of identities across different cameras. They
mentioned that using OpenVINO for optimization could push
performance even more on edge devices. However, not all
hybrid approaches proved suitable for real-time use.
Abbattista et al. [13] combined HOG and SVM for detection
with a ResNet-34 model for recognition. On the CORDOBA
dataset, their setup hit 98% accuracy for detection and 100%
for recognition. The turning point was that their system was
very slow (recognition cycle took about a second), so it could
not handle real-time demands. Finally, Haq et al. [14] built a
mobile application that recognizes cricket players in real time.
It uses AdaBoost for detection and LDA for recognition, and
they tested it on datasets like YTF, LFW, and actual sports
videos. They claimed that their application responded instantly
in real-world use, though they did not report any performance
metrics.

Previous research has already shown that cutting-edge
methods boost recognition performance by using standardized
datasets. Yet, most of these methods just analyze the whole
image, which includes processing unnecessary background
information. Normally, that extra clutter downgrades model
efficiency. Furthermore, many studies have focused on
achieving the highest accuracy at the cost of practicality of
using these models for real-time applications. That can be
justified by knowing that computers have gotten much faster;
thus, worrying about computational efficiency is not an urgent
issue most of the time. Conversely, few researchers have built
datasets from live video streams or tried to lock recognition to
just the face area without the background. The work in study
[10], for example, overlaps with this study, but as mentioned
above, those efforts have not included performance metrics
that show the efficiency of this method.

This research gap of the absence of a simple method to build
real-time datasets focused just on facial data is considered in
this work, which would sharpen both accuracy and efficiency.
A self-supervised approach that extracts facial regions directly
from video streams during face detection results in a
recognition model that runs faster and performs better in real-
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time applications. Face detection phase really matters here. If
face detection is slow or unreliable, the whole system suffers,
no matter how good the recognition model is. Concisely, the
aim of this work is to realize a fast, reliable, compact and data
efficient face detection and recognition system.

This work introduces a system that can detect and recognize
different people across multiple video streams. For face
detection, a hybrid HCC approach is used. This approach
combines detection and tracking into one process.
Furthermore, it uses both frontal and profile HCC models to
detect faces in different angles, and it is combined with
preprocessing and postprocessing. Preprocessing includes
downsizing the frames, converting them to grayscale, and
correcting them for lighting. Postprocessing includes filtering
for skin tone and eliminating any duplicate faces that can result
from using frontal and profile HCCs. Since this is a heavy load
computationally, it is done sparsely. Kernelized Correlation
Filter (KCF) tracker completes the task and continues to track
faces that are detected. This hybrid method speeds up the
detection and pushes performance to the real-time demands.

Once faces have been detected, they are gathered,
processed, and sorted into a dataset for training and testing the
recognition phase. When it comes to recognition, a lightweight
CNN is utilized and trained on the extracted and augmented
dataset. The final step is testing the whole system on a new
video of the same target individuals to validate performance.

This approach is a real transition from the usual methods
that depend on previously made datasets. Instead, datasets are
built straight from live video feeds. This model works
especially well in closed environments, such as a private
surveillance system, where public datasets are often unsuitable
or unavailable. Focusing training solely on isolated faces
instead of whole bodies or background excludes a lot of
background noise and environmental clutter, which really
escalates recognition accuracy. Figure 1 shows the whole
system block diagram.
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Figure 1. The general structure of the face detection and
recognition system

The following sections of this article are organized as
follows: a short theory of the techniques that are utilized,
system design theory, followed by the results and discussions,
and finally, conclusions and references.



2. RESEARCH METHODOLOGY

This work utilizes the HCC algorithm for face detection,
supported by a KCF tracker, with a CNN used as a next step
for face recognition. While these techniques have become
widespread over the past decade, this research aims to
demonstrate that even traditional methods, with minor
processing modifications, can form the efficient core of an
intelligent face detection and recognition system without
requiring general standard datasets. By showing that these
basic methods can meet the system's fundamental
requirements, this work lays a foundation upon which to build
for future advancements in more complex techniques. The
following section provides the necessary theoretical
groundwork of HCC, KCF, and CNN before discussing
system design and experimental results.

2.1 Haar cascade classifier

HCC, based on an algorithm introduced by Viola and Jones
[5], uses a rectangular feature known as a Haar feature as a key
input for the cascaded classifier. Viola and Jones drew
inspiration from Haar wavelets to develop what are now
known as Haar features. By analyzing adjacent rectangular
regions in a detection window, summing pixel intensities
within these regions, and computing the difference between
these sums, these features enable the categorization of image
subsections. One of the most employed Haar features for face
detection is formed of two rectangles positioned above the eye
and cheek regions, considering the difference in light intensity
between these areas. The positions of these rectangles are
determined with respect to a detection window, which is a
bounding box for the face of interest. During detection, a
window with a size corresponding to the target object is moved
across the input image. For a given sub-region of an image, a
Haar feature is computed and compared with a learned
threshold for distinguishing objects and non-objects. Because
a Haar feature is only a weak learner, a set of features is needed
for obtaining a precise definition of an object. These features
are arranged as a classifier cascade for developing a strong
classifier. The most prominent benefit of using Haar features
compared with other approaches is related to the computation
speed provided by integral images, allowing for a constant
time computation of features of arbitrary sizes. Figure 2 shows
different detectors using a Haar feature.

Figure 2. Types of detectors based on Haar features [15]

These detectors employ different filters on specific regions
of an image, where the pixel sums from the white areas are
subtracted from those in the black areas. The weights for the
white and black regions are treated as values of “1” and “-1,”
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respectively. Haar features inspect adjacent rectangular areas
within a detection window, sum the pixel intensities of each
area, and calculate the difference. The difference is then used
to classify sections of the image. The key components of the
Haar cascade include integral images, the Adaboost algorithm,
and the cascaded classifier [15].

The first step of the Viola-Jones algorithm is to convert the
input image into an integral image. HCC, then, compares how
closely the actual scenario matches the ideal case, where the
value of the Haar feature is ideally one. Then the Adaboost
Algorithm, a machine learning algorithm, is used to develop a
classifier through weights [5].

The cascaded classifier is used for quickly rejecting error
windows and enhancing processing speed. In every node of the
trees, there is a non-object branch, indicating that the image
will not be the desired object, as shown in Figure 3. This
technique minimizes the false negative rate [16].

Reject Sub-windows

Figure 3. Schematic depiction of the detection cascade [5]
2.2 Kernelized Correlation Filter

KCF is a fast target-tracking algorithm that works through
three main stages: feature extraction, online learning, and
template updating, as shown in the block diagram in Figure 4.

First, the tracker extracts HOG features from the selected
target region and converts them into the frequency domain
using the Fourier transformation. It then computes the
correlation in the frequency domain to estimate the new target
position. After locating the target, the classifier is trained by
generating multiple cyclic shifted versions of the target patch
and learning their weights using a ridge-regression-based
classifier. The process of cyclic shifting converts a single
patch into a huge training dataset, allowing the tracker to
depend on very limited data to produce efficient discriminative
tracking. The tracker continues to follow the object by
repeatedly updating its model and filtering weights based on
the most recent target location, allowing real-time and

continuous tracking [17, 18].
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Figure 4. General framework of KCF [19]



2.3 Convolutional Neural Networks

Neural networks are a contemporary technology that
provides high precision in tasks related to classification and
prediction. Their high speed and compatibility with various
scientific fields make them one of the most used techniques.
There are different types of neural networks, that vary in
different aspects such as structure, level of hybridization with
other computational algorithms, and complexity. These
networks share common elements such as neurons, input and
output layers, and one or more hidden layers, but they differ in
the tasks performed by these layers.

CNN performs classification tasks, either supervised or
unsupervised. Supervised training involves providing a set of
corresponding inputs and outputs, and the system learns to
associate them and predict the output. Initially, input images
are entered, and several of their properties, such as edges and
gradients, are calculated in the primary layer. In the middle
stage, several features are extracted from the previous stage,
and then in the final stage, the features are extracted, which
can then be passed to the classifier [20, 21].

Extraction of features ~ Classificatio
OOutput
OO
= TS s
O
: ) Fully
Convolution  Pooling Connected

Figure 5. Basic CNN architecture [22]

A CNN is typically structured with multiple layers (as
shown in Figure 5), including [23-25]:

e  Convolutional Layer: This is a key layer in a standard
neural network. It contains a variety of filters, often
referred to as convolutional kernels (Figure 6). These
filters interact with the intended input to generate an
output that has the strongest correlation with the input
features. During training, the weights of the filter are
adjusted. This task is also known as subsampling
because it decreases the size of the samples in the
image. To ensure that the filter moves over the edges
as well, we need to add zero pixels (padding) to the
edges of the image.

Pooling Layer: This layer selects a pixel from each
mask, which could be the average or the maximum
pixel.

Activation Function: These functions determine the
threshold at which the neuron triggers the output.
Fully Connected Layer: This is the final stage of
CNN. It functions as the classifier by connecting each
neuron to all neurons in the preceding layer.
Essentially, it adopts the feed-forward approach of
traditional multi-layer perceptron neural networks.
The FC layer receives input as a vector, which comes
from the last pooling or convolutional layer, after
flattening the feature maps. The final output of the
CNN is derived from this layer.

Loss Functions: these are applied in the output layer
to compute the prediction error across training
samples, reflecting the difference between the actual
and predicted outputs. This error is then minimized
during the CNN learning process to enhance
accuracy.
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Filter

Figure 6. Convolution operation [26]

In CNN models, the primary challenge is achieving good
generalization without overfitting. Overfitting occurs when
the model fulfills the task on training data but fails on test data.
On the other hand, an under-fitted model lacks sufficient
learning from the training data, leading to poor performance
on training and consequently on test data also. A well-fitted
model, however, performs well on both training and test data.
Various intuitive concepts are employed to aid in
regularization and avoid overfitting, as further explained in the
subsequent sections [24, 27]:

e Dropout: During each training epoch, certain neurons
are randomly omitted. This distribution of feature
selection power ensures the model learns different
independent features. In training, the dropped
neurons are excluded from back-propagation and
forward-propagation. However, in the testing phase,
the entire network is used for prediction.
Drop-Weights: This technique is similar to dropout;
this method involves omitting the connections
between neurons (weights) during each training
epoch, rather than the neurons themselves.

Data Augmentation: Expanding the training dataset
with artificial techniques helps prevent overfitting.
With more examples to learn from, the model handles
data better and generalizes instead of just
memorizing.

Batch Normalization: This technique normalizes the
activations of the output at each layer, aligning the
values with a unit Gaussian distribution. Basically,
the mean is subtracted from each output, and the
result is divided by the standard deviation.

3. SYSTEM DESIGN

Although face detection and recognition systems have
achieved remarkable advancements recently, the main
challenge remains keeping accuracy high without draining
resources, especially on devices that do not have much
computational power. Deep learning models like Multi-Task
Convolutional Neural Network (MTCNN) and YOLO almost
nail detection accuracy, but their computational load is high.
That represents a problem for cheaper devices or real-time
scenarios, where boosting speed counts even if it means losing
some of the accuracy. In those cases, it is more important to
reduce False Positives (FP) rates than to catch every possible
False Negative (FN).

In this context, Classic techniques like HCC are still
relevant because they are simple, fast, and accurate enough for
most real-time needs. But they are not perfect and are known
for producing a lot of FPs and struggling with faces that are
not in a frontal pose or have poor lighting [15, 28]. Rather than
changing the internal structure of HCC, combining it with



other methods can target these specific problems.

This work takes that route. It introduces a hybrid system that
builds on HCC, aiming to boost detection performance while
keeping things lightweight. The system brings together three
strategies: widening the detection range, filtering by skin tone,
and adding KCF tracking.

The first step expands the capabilities of pretrained HCC
models found in OpenCV libraries. Combining HCC models
that are specifically trained for frontal and profile faces is
expected to drop FN rates because faces at different angles are
detected. The tradeoff of this step is more FPs, more repeated
detections of the same face, and heavier computation.

To tackle these side effects, the second step uses skin-tone
filtering after detection. By checking how much of the
detected area matches human skin tones, the system can
remove many FPs. An additional filter is used to cancel
duplicates from the frontal and profile detectors. These tweaks
lower the FP rate and are expected to have a mild effect on FN
rates. Yet, they do increase computational demand even more.

Finally, to keep resource use in check, the third step inserts
a KCF tracker. The idea is to run the enhanced HCC from the
past two steps on a key frame, then use KCF to track each face
across the following frames. This way, the system does not
have to run heavy detection every single time, so it can process
frames much faster. The risk here is missing new faces or
losing track during quick movement. The system can manage
this by adjusting the number of skipped frames to match the
speed of movement of individuals across the frames. The
result is a careful balance between speed and accuracy. Figure
7 shows the steps of this process.

Video=p Prepr OFESSng HCC-Frontal

Stream (Gray+Histogram) HCC-Profile
v

c Postprocessing

Faces 4= ;ké%_?anfs’ 4= (Nest-face Filter,

B Skin-tone Filter)

Figure 7. Face detection process using a hybrid Haar cascade

classifier (HCC)
Faces = Build Dataset = Dataset
Preprocessing
L
Face Training of CNN Dataset
Classes Model Augmentation

Figure 8. Face recognition process using CNN

The face recognition phase utilizes the power and
capabilities of CNN. It is trained on a dataset extracted straight
from video clips during the face detection phase. This dataset
contains only face information, which gives CNN a big boost
during the process of training and recognition. Despite the
neatness of this approach, there is a hitch. Faces from the same
video usually look similar with the same angle, same lighting,
same expressions. That is the typical recipe for overfitting. To
tackle this, the system selects images from frames spaced apart
in time, which brings in more variety. It also uses extensive
data augmentation during training, helping the model
generalize better and making overfitting less likely. The
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training set draws from several video clips, while a separate
video builds the validation set, ensuring a more objective
evaluation of the model's performance. The block diagram of
the face recognition phase using CNN is shown in Figure 8.

4. RESULTS AND DISCUSSIONS

The developed methodology consists of two main parts:
first, a hybrid face detection method (HCC-KCF), and then a
CNN-driven recognition phase. The system was implemented
on Python 3.11, with the help of OpenCV and Keras
(TensorFlow as backend and Adam as the optimizer). All the
experiments took place on a Windows 10 laptop with an Intel
Xeon CPU, 4GB NVIDIA Quadro GPU, and 32GB RAM.

Python makes sense here. It is flexible, efficient, and
supports object-oriented programming, which accelerates
prototyping and development. The simple yet powerful syntax
of Python, along with direct interpreting, makes it a perfect
choice for computer vision and machine learning work [29].

OpenCV handled the main computer vision tasks, offering
a deep toolkit for face detection, object recognition, and real-
time video analysis. TensorFlow, Google’s open-source deep
learning library, supports the efficient building and training of
complex neural networks [30].

For face detection, pretrained HCC models in the OpenCV
libraries did the main task. OpenCV offers four frontal face
detection models, though there is no documentation explaining
how they differ from each other. They are listed below with
names used throughout this paper for convenience:
HCC-default (haarcascade frontalface default.xml).
HCC-alt (haarcascade frontalface alt.xml).
HCC-alt2 (haarcascade frontalface alt2.xml).
HCC-alt-tree(haarcascade frontalface alt tree.xml).

Determining the best HCC frontal face model required
comparing the performance of these models. To this end, all
models were tested on three diverse video samples of three
individuals that vary in gender and skin complexion, to
provide diversity in the samples. Figure 9 gives a glance at the
content of these videos: Video-A (Figure 9(a)) has a rich
background, Video-B (Figure 9(b)) has relatively poor
lighting, and Video-C (Figure 9(c)) has a well-lit condition.
These videos are available online and free to use and
reproduce the results. To enhance testing efficiency, the
resolution of each video was reduced to 50% of its original
size. Before the detection process, the frames underwent
standard preprocessing, including grayscale conversion and
lighting enhancement using histogram balancing. To ensure
fair comparison, all models used standardized settings: (scale
factor = 1.1, minimum proximity = 5, minimum size = (60,
60)). Reference positions for faces were manually determined
to serve as the basis for evaluation.

Table 1 shows the test results. It can be noticed that some
models perform better than others in some metric criteria, but
there is no model that is superior in all the metrics. Further
analysis revealed that HCC-alt2 is the most balanced choice,
as it strikes the best practical compromise between speed and
detection reliability. While HCC-alt achieved slightly higher
precision, it did so at a high cost to recall. Conversely, HCC-
default suffered from low precision, and HCC-alt-tree, despite
its high speed, was unusable due to catastrophically low recall.
HCC-alt2 consistently delivered strong F1 scores across all
test scenarios, offering robust performance with high speed,
making it the most suitable and balanced candidate for our



hybrid HCC detector.

(a) Video-A (from: pexels.com/video/video-of-people-

-4625331

talking-while-walking

(b) Video-B (from: pexels.com/video/video-of-people-

talking-while-walking-4625293)

(¢) Video-C (from: pexels.com/video/ people-having-conversation-while-walking-on-sidewalk-4625296)

Figure 9. Three videos of three class faces

Table 1. Performance evaluation of several pretrained front
face HCC models found in the OpenCV library

Model Type Eval. Metrics  Vid-A  Vid-B  Vid-C
Haar cascade FPS 12.09 5.85 5.96
classifier Precision 0.7648 0.5570  0.4881
(HCO)- Recall 0.8144  0.6052  0.7609
default F1-score 0.7888  0.5801 0.5947
FPS 14.37 6.97 6.09
Precision 0.9728  0.9627  0.7802
HCC-alt Recall 0.7556 05187  0.7131
Fl-score 0.8505 0.6742  0.7451
FPS 15.26 7.13 6.79
Precision 0.9360 0.882 0.7704
HCC-alt2 Recall 0.7285  0.5526  0.7062
Fl-score 0.8193  0.6795 0.7369
FPS 22.26 10.68 10.69
Precision 1.0 1.0 1.0
HCC-alt-tree Recall 0.0678 02969  0.3647
F1-score 0.1271  0.4579  0.5345

There is only one pretrained profile model, HCC-profile
(haarcascade frontalface profile.xml), in the OpenCV
library; therefore, no need to make such a comparison. It must
be mentioned that most profile face detectors are trained on a
dataset of faces on one side. To cover all the possible face
orientations, the HCC-profile needs to be run twice on each
frame (normal frame and flipped one).

For convenience, we call our model that depends on HCC
and KCF as hybrid-HCC. It consists of the HCC part and the
KCEF part. The HCC part ran two pretrained models, HCC-alt2
and HCC-profile. HCC-profile was used twice (on the normal
frame and on the reversed one) to cover the left and right
profile faces. The parameters of both were set to (scale factor
= 1.1, minimum proximity = 5, minimum size = (60, 60)).
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Each frame fed to them is downsized by 50% of its original
size. Then, the frame was preprocessed by grayscale
conversion (integral image) and illumination correction (using
histogram equalization). The postprocessing consists of two
filters: the skin-tone filter and the nested-faces filter. The skin-
tone filter rejects any candidate region where more than 40%
of the color tone falls within the human skin range, defined in
the HSV color space H=0-40, S=50-120, and V=80-255. For
the KCF part, it was initialized by the detected faces in a frame.
Then, the tracker follows the face from frame to frame until a
new face detection happens, which resets the initialization.
The HCC part ran for a frame, and the remaining 25 frames
were run by the KCF part.

Table 2. Performance evaluation of the hybrid-HCC against
other models

Model Type Eval. Metrics  Vid-A  Vid-B  Vid-C
FPS 3.97 1.76 1.75
Ref-HCC Precision 0.8193  0.6509  0.5226
Recall 0.9984 09511 09767
F1-score 0.9000 0.7729  0.6809
FPS 44.89 2245 22.31
Hybrid-HCC Precision 1.0 0.8155 1.0
Recall 0.8672  0.8258 0.8620
F1-score 0.9289  0.8206  0.9258
FPS 4.60 4.72 4.82
Precision 0.9969  0.9705 0.9608
MTCNN Recall 0.9758 0.8245 0.9713
F1-score 0.9862 0.8915  0.9660
FPS 12.82 11.02 11.81
Precision 1.0 0.9536 1.0
YOLOVS Recall 1.0 09736 1.0
F1-score 1.0 0.9536 1.0




To evaluate the above modification in the hybrid-HCC face
detector, it must be tested against other face detectors. The first
candidate was a pure HCC. Table 1 shows the performance
metrics for one frontal HCC; therefore, a better version of
HCC was used. It is called ref-HCC here for convenience. Ref-
HCC consists of two pretrained models, HCC-alt2 and HCC-
profile, just like the hybrid-HCC. The same preprocessing of
grayscale conversion and illumination correction was used.
Because multiple HCCs were used in ref-HCC, too, a fair
comparison requires using the nested-faces filter in the
postprocessing. The other two candidates were state-of-the-art
pretrained detectors: MTCNN and YOLOv8n (nano). The
choice of YOLOvVS out of other versions is due to its high
performance and balance between accuracy and inference
velocity [31]. It was selected because it provides an ideal
trade-off between precision and processing speed. MTCNN is
part of the OpenCV library [32], but YOLOVS is not.
Therefore, a pretrained YOLOv8n for face detection
(yolov8n_100e.pt from github.com/Yusepp/YOLOv8-Face)
was used. All these models were evaluated under consistent,
resource-constrained conditions where video frames were
downsized by 50%. All the models run on every frame of test
videos, except the hybrid-HCC, which employed an
aggressive, tracker-assisted skip of 25 frames. Table 2 shows
the performance evaluation of the four models.

The most eye-catching result is the speed of hybrid-HCC. It
is 11.3 to 12.75 times faster than ref-HCC. Moreover, it is
nearly 9.7 times faster than MTCNN and about 2 to 3.5 times
faster than YOLOVS. When it comes to accuracy (F1 score),
YOLOVS achieved the highest accuracy, topping 1.0 F1 score,
followed by MTCNN. Hybrid-HCC outperformed ref-HCC in
all test videos by 2.8 to 24 percentage points. Its accuracy,
while still behind the newest face detectors, is very good and
balanced. Hybrid-HCC achieved perfect Precision (1.0) in
Vid-A and Vid-C, and 0.8155 in Vid-B. This is due to the
effectiveness of the skin-tone filter at minimizing FP. Hybrid-
HCC scored the lowest Recall rates across all the models. This
decline is the consequence of the discrete detection strategy.
Skipping many frames leads to an increase in FN when
tracking was temporarily lost or failed to initiate because of
missed detection. The results show a trade-off between
accuracy and speed. YOLOVS is the best in accuracy, Hybrid-
HCC model is the best in speed, and MTCNN offers balanced
but slower results. Ref-HCC model is significantly the worst.
These findings support the goal of running a detection system
on resource-constrained, real-time video surveillance, where
high FPS is prioritized over perfect accuracy. Regarding the
results per video, Vid-A is the easiest, while Vid-B is the most
challenging. The main reason is that the brightness in Vid-B is
lower than in other videos. This indicates that hybrid-HCC is
more susceptible to low-light conditions than YOLOVS, but it
is comparable to MTCNN.

After detecting faces in each frame, the face images are
extracted and categorized into folders for the training stage in
CNN. The CNN structure was set as shown in Table 3. It
consists of four convolutional layers, where each one is
followed by a batch normalization and a pooling layer (Max
pixel). This gradually reduces the image dimensions from 256
x 256 to 16 x 16 and keeps the feature maps at 32. The feature
maps are then flattened to a 6272-element vector. Next, the
flattened vector is fed to a dense fully connected classifier.
Batch Normalization and Dropout (at 0.8 value to reduce
possible overfitting) are performed as regularization during
training. The last layer is a fully connected dense layer that
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shapes the output of three classes. All the activation functions
in convolution and dense layers are ReLUs (Rectified Linear
Unit) except the last layer, which is activated by a SoftMax
function. The total CNN parameters are 431,075 (1.64 MB)
with 430,691 (1.64 MB) trainable parameters and 384 (1.50
KB) non-trainable parameters. This makes the CNN model a
lightweight one that is capable of being deployed on limited
hardware devices.

Table 3. Setting of the CNN model

The Type of Layer  The Output Shape  Param. Number
Conv2D (254,254, 32) 896
Batch Normalization (254, 254, 32) 128
MaxPooling2D (127,127, 32) 0
Conv2D (125, 125, 32) 9,248
Batch Normalization (125, 125, 32) 128
MaxPooling2D (62, 62,32) 0
Conv2D (60, 60, 32) 9,248
Batch Normalization (60, 60, 32) 128
MaxPooling2D (30, 30, 32) 0
Conv2D (28, 28, 32) 9,248
Batch Normalization (28, 28, 32) 128
MaxPooling2D (14, 14, 32) 0
Flatten (6272) 0
Dense (64) 401,472
Batch Normalization (64) 256
Dropout (64) 0
Dense 3) 195

CNN was trained using a set of 1,728 images, divided into
1152 images for the training set and 576 images for the test
set, with a batch size of 32 and a learning rate of 0.0001. Both
training and test sets were divided equally into three classes.
The number of training steps per epoch was calculated as the
number of training images divided by the batch size. In the
same way, the number of validation steps was calculated as the
number of test images divided by the batch size.

To overcome the overfitting problem that might result from
the limited size and low diversity of the dataset, extensive data
augmentation was employed. This involved applying various
geometric transformations to the training images, such as
rotation, translation, scaling, and reflection, thereby enhancing
the model's ability to generalize and handle variations in real-
world data. Images were rotated by 20°, shifted in width or
height by a percentage up to 60%, heavily sheared and zoomed
(both with a range of 0.4), and flipped horizontally. This level
of augmentation increases the diversity of the training set and
pushes CNN to handle all sorts of viewing conditions.

Figure 10 shows the accuracy and loss evolving through
both training and testing. 100 training epochs were enough to
achieve the required performance. Examining the accuracy
graph (Figure 10(a)) and loss graph (Figure 10(b)) indicates
the learning performance.

Training accuracy curve tops around 0.934, which is a solid
sign that the model learned the patterns in the data excellently.
Validation accuracy curve even tops around 0.9722, which
reflects the good generalization and evades the trap of
overfitting.

The training loss curve showed a decreasing shape and
settled at about 0.7187, which means that the model is
achieving more confidence in the classifications. Validation
hits even lower end-value of 0.6485. It follows the same shape
of validation accuracy. This ensures that overfitting is not a
prominent issue here.

The spikes in validation accuracy and loss may suggest that



the model faces some challenges with certain samples, but
ultimately, it maintains a consistent learning and loss
trajectory. The observed effect may stem from the applied
heavy augmentation on a relatively small dataset.

To test the recognition subsystem, the trained CNN model
was combined with hybrid-HCC. The detector was applied to

a new video. Since there was no truth table for the faces in the
video, it was not feasible to test the performance directly.
Therefore, a prediction sample of faces was extracted from the
new video, and then they were organized into three classes.
The prediction dataset consisted of 180 samples (60 for each
class).
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Figure 10. The CNN model performance: accuracy and loss across epochs
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Table 4. Classification report of CNN
Class Precision Recall F1-Score Support
Girl 1.0 1.0 1.0 60
Guyl 1.0 1.0 1.0 60
Guy2 1.0 1.0 1.0 60

Table 4 shows that the model nailed every single prediction,
hitting 100% total accuracy. That confirms the performance of
CNN in handling new data. Furthermore, the detector provides
clean, cropped faces that resemble the ones used during the
training and testing of the CNN.

Figure 11 supports the tabled results, showing a sample
frame from the new video where the system correctly detects
and recognizes face classes (guyl, girl, guy2). It must be
mentioned that this perfect score comes from a small,
controlled prediction test. The accuracy may drop slightly if
the test video is longer and more challenging. Nonetheless,
these results show that this setup, with hybrid-HCC detection
and the lightweight CNN, works smoothly and reliably for
real-time, class-specific face recognition.

Figure 11. Detection of the face classes correctly throughout
all frames (from: pexels.com/video/ a-group-of-people-
together-for-a-photo-sjhot-4625282)
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5. CONCLUSIONS

This study has introduced a system for face detection and
recognition in video streams that is suitable for real-time
applications such as surveillance systems. It combined a
hybrid HCC for face detection and a custom lightweight CNN
for face recognition. It has tackled two main challenges of
improving speed and maintaining a decent performance. For
detection, two pretrained HCC models (frontal and profile)
have been used in combination to reduce FN, with an added
preprocessing step to balance lighting and two postprocessing
filters: one for skin tone and another for removing nested
detections. Preprocessing and postprocessing worked to
reduce the FP. Additionally, the detector was assisted by a
KFC tracker that tracked faces when the detector was skipping
frames to push the speed enough for real-time use. This hybrid
HCC outperformed the reference HCC in performance (by 2.8
to 24 percentage points in F1-score) and speed (11.3 to 12.75
times faster). While MTCNN and pretrained YOLOvVS
performance was better, hybrid HCC outperformed them in
speed (2 to 9.7 times faster). The custom lightweight CNN
represented a self-supervised training loop tailored for face
recognition. The detected faces were extracted and augmented
into a dataset (split into 66.6% training and 33.3% testing) that
was utilized to train the CNN successfully. The CNN model
achieved perfect prediction performance when it was tested on
new data.

This approach proved that video streams can be utilized
directly to build custom face recognition datasets, and HCC
and CNN can be used for limited hardware devices while
keeping decent performance and real-time demands. However,
some limitations can be considered for future work. The
hybrid HCC needs to be tested on real surveillance cameras to
see the effectiveness of keeping detection while tracking in
more challenging environments. CNN is trained offline in this
work; therefore, using a half-trained face recognition system
leads to a fully automated system, where online light training
on a dynamic dataset can benefit from the speed gain of our



detector. Conversely, employment of knowledge distillation to
compress large pretrained models to a lightweight CNN,
without losing accuracy, can be an excellent next step.
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