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This study presents a fast multi-face detection and recognition system suitable for 

surveillance applications using a self-supervised dataset generation approach. The face 

detection subsystem employs pretrained frontal and profile Haar cascade classifier (HCC) 

that are preprocessed for light normalization and postprocessed for eliminating duplicate 

detections. The detector is assisted by skin-tone postprocessing and a Kernelized 

Correlation Filter (KCF) tracker. To achieve a significant speed gain, HCC runs sparsely 

while KCF maintains face tracking-detection in the skipped frames. This hybrid HCC 

achieves F1-score improvements of 0.029 to 0.245 over baseline HCC and approximately 

12× speed gain. Although Multi-Task Convolutional Neural Network (MTCNN) and 

YOLOv8 achieve higher F1 scores, hybrid HCC maintains superior frame rates, operating 

approximately 2-9× faster than these advanced models. Detected faces are extracted, 

augmented, and organized into a dataset (66.6% training, 33.3% testing split), enabling a 

custom lightweight Convolutional Neural Network (CNN) to successfully handle face 

recognition and achieve a perfect F1-score in a prediction test. The complete system 

demonstrates an effective solution for real-time surveillance applications in resource-

constrained environments. 
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1. INTRODUCTION

The past few years have witnessed intensive research efforts 

to develop highly efficient and cost-effective people 

identification systems for quickly and accurately identifying 

individuals in various fields, including security and attendance 

tracking, to name a few. Face identification is a vital 

technology within this field, because the face is the most 

prominent personal identity [1, 2]. This process typically 

consists of two main phases: face detection and face 

recognition. It begins with face detection, which identifies and 

localizes human faces within images or video frames, followed 

by face recognition, where the detected face is classified by 

comparing and matching it against a database to confirm the 

individual's identity [3, 4]. For a face recognition system to be 

successful, it must first be able to reliably detect faces. One of 

the classical and key techniques for face detection is Haar 

cascade classifier (HCC), which was developed by Viola and 

Jones [5] more than two decades ago. HCC is a pioneering and 

simple technique that still provides a highly effective solution 

for real-time face and object detection. The Viola-Jones 

method is based on four key pillars: calculating Haar features, 

generating integrated images to accelerate calculations, 

training using a simple neural network (AdaBoost), and using 

sequential classifiers to reduce processing time [6]. This 

combination gives it a significant speed advantage, making it 

an ideal starting point for time-constrained systems. On the 

other hand, Convolutional Neural Networks (CNNs), which is 

one of the simplest deep learning techniques that has been used 

in enormous applications, offer a more robust and adaptable 

solution for image classification and pattern recognition tasks 

than traditional techniques. CNNs utilize advanced 

mathematical concepts to detect complex patterns in an image. 

Its emergence has revolutionized face recognition, enabling a 

more authentic representation of original facial features. 

Through its ability to self-extract features and utilize deep 

learning, face recognition accuracy has seen significant 

improvements [7, 8].  

Research in face detection and recognition in streaming 

videos is an active research area. The published work in this 

area has employed a variety of techniques that balance 

accuracy and speed. Mamieva et al. [9] built a face detector 

that enhanced the RetinaNet architecture, combining a region-

offering network for spotting possible faces with a detection 

network for fine-tuning the boxes around each face. They 

trained it on the WIDER FACE dataset. Their model scored 

41.0 Average Precision (AP) at 11.8 Frames per Second (FPS) 

with single-scale input, and 44.2 AP with multi-scale, which 

makes it competitive against other models. In PyTorch, it 

achieved a 95% face detection accuracy, which is excellent 

given that the model is lightweight. Despite that, they 

acknowledged that their model has challenges with poor 
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lighting and blurry frames. Gupta et al. [10] compared classic 

and modern face detection and recognition methods. They 

stacked up Histogram of Gradient (HOG), HCC, CNN, Local 

Binary Pattern Histogram (LBPH), and ResNet-34 against 

each other. According to them, HOG + Support Vector 

Machine (SVM) for detection paired with ResNet for 

recognition gives the most reliable results. They stressed the 

value of building recognition datasets straight from the 

detection phase, though they did not provide performance 

metrics that support the effectiveness of this strategy. Focusing 

on real-time performance, Majeed et al. [11] developed a 

system that used an HCC for face detection, a lightweight 

CNN for face recognition, plus feature extraction with Linear 

Discriminant Analysis (LDA) and HOG. They showed that 

these compact CNNs can hit 100% accuracy even with poor 

lighting and face pose changes. They ran their experiments on 

both standard and video-derived datasets (extracted from 

videos). That being said, they did not provide any metrics to 

evaluate the detection phase. Furthermore, the videos they 

used are of a single class and were set in a controlled 

environment. Similarly, Wong et al. [12] developed a multi-

camera system for face detection, recognition, and tracking 

that was built for real-world conditions. They used You Only 

Look Once (YOLOv5n) for detection (with a mean AP of 

0.495, precision at 0.868, and recall at 0.781), SphereFace for 

recognition (scoring 82.05% accuracy), and DeepSORT to 

keep track of identities across different cameras. They 

mentioned that using OpenVINO for optimization could push 

performance even more on edge devices. However, not all 

hybrid approaches proved suitable for real-time use. 

Abbattista et al. [13] combined HOG and SVM for detection 

with a ResNet-34 model for recognition. On the CORDOBA 

dataset, their setup hit 98% accuracy for detection and 100% 

for recognition. The turning point was that their system was 

very slow (recognition cycle took about a second), so it could 

not handle real-time demands. Finally, Haq et al. [14] built a 

mobile application that recognizes cricket players in real time. 

It uses AdaBoost for detection and LDA for recognition, and 

they tested it on datasets like YTF, LFW, and actual sports 

videos. They claimed that their application responded instantly 

in real-world use, though they did not report any performance 

metrics. 

Previous research has already shown that cutting-edge 

methods boost recognition performance by using standardized 

datasets. Yet, most of these methods just analyze the whole 

image, which includes processing unnecessary background 

information. Normally, that extra clutter downgrades model 

efficiency. Furthermore, many studies have focused on 

achieving the highest accuracy at the cost of practicality of 

using these models for real-time applications. That can be 

justified by knowing that computers have gotten much faster; 

thus, worrying about computational efficiency is not an urgent 

issue most of the time. Conversely, few researchers have built 

datasets from live video streams or tried to lock recognition to 

just the face area without the background. The work in study 

[10], for example, overlaps with this study, but as mentioned 

above, those efforts have not included performance metrics 

that show the efficiency of this method.  

This research gap of the absence of a simple method to build 

real-time datasets focused just on facial data is considered in 

this work, which would sharpen both accuracy and efficiency. 

A self-supervised approach that extracts facial regions directly 

from video streams during face detection results in a 

recognition model that runs faster and performs better in real-

time applications. Face detection phase really matters here. If 

face detection is slow or unreliable, the whole system suffers, 

no matter how good the recognition model is. Concisely, the 

aim of this work is to realize a fast, reliable, compact and data 

efficient face detection and recognition system.  

This work introduces a system that can detect and recognize 

different people across multiple video streams. For face 

detection, a hybrid HCC approach is used. This approach 

combines detection and tracking into one process. 

Furthermore, it uses both frontal and profile HCC models to 

detect faces in different angles, and it is combined with 

preprocessing and postprocessing. Preprocessing includes 

downsizing the frames, converting them to grayscale, and 

correcting them for lighting. Postprocessing includes filtering 

for skin tone and eliminating any duplicate faces that can result 

from using frontal and profile HCCs. Since this is a heavy load 

computationally, it is done sparsely. Kernelized Correlation 

Filter (KCF) tracker completes the task and continues to track 

faces that are detected. This hybrid method speeds up the 

detection and pushes performance to the real-time demands. 

Once faces have been detected, they are gathered, 

processed, and sorted into a dataset for training and testing the 

recognition phase. When it comes to recognition, a lightweight 

CNN is utilized and trained on the extracted and augmented 

dataset. The final step is testing the whole system on a new 

video of the same target individuals to validate performance. 

This approach is a real transition from the usual methods 

that depend on previously made datasets. Instead, datasets are 

built straight from live video feeds. This model works 

especially well in closed environments, such as a private 

surveillance system, where public datasets are often unsuitable 

or unavailable. Focusing training solely on isolated faces 

instead of whole bodies or background excludes a lot of 

background noise and environmental clutter, which really 

escalates recognition accuracy. Figure 1 shows the whole 

system block diagram. 

 

 
 

Figure 1. The general structure of the face detection and 

recognition system 

 

The following sections of this article are organized as 

follows: a short theory of the techniques that are utilized, 

system design theory, followed by the results and discussions, 

and finally, conclusions and references. 
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2. RESEARCH METHODOLOGY

This work utilizes the HCC algorithm for face detection, 

supported by a KCF tracker, with a CNN used as a next step 

for face recognition. While these techniques have become 

widespread over the past decade, this research aims to 

demonstrate that even traditional methods, with minor 

processing modifications, can form the efficient core of an 

intelligent face detection and recognition system without 

requiring general standard datasets. By showing that these 

basic methods can meet the system's fundamental 

requirements, this work lays a foundation upon which to build 

for future advancements in more complex techniques. The 

following section provides the necessary theoretical 

groundwork of HCC, KCF, and CNN before discussing 

system design and experimental results.  

2.1 Haar cascade classifier 

HCC, based on an algorithm introduced by Viola and Jones 

[5], uses a rectangular feature known as a Haar feature as a key 

input for the cascaded classifier. Viola and Jones drew 

inspiration from Haar wavelets to develop what are now 

known as Haar features. By analyzing adjacent rectangular 

regions in a detection window, summing pixel intensities 

within these regions, and computing the difference between 

these sums, these features enable the categorization of image 

subsections. One of the most employed Haar features for face 

detection is formed of two rectangles positioned above the eye 

and cheek regions, considering the difference in light intensity 

between these areas. The positions of these rectangles are 

determined with respect to a detection window, which is a 

bounding box for the face of interest. During detection, a 

window with a size corresponding to the target object is moved 

across the input image. For a given sub-region of an image, a 

Haar feature is computed and compared with a learned 

threshold for distinguishing objects and non-objects. Because 

a Haar feature is only a weak learner, a set of features is needed 

for obtaining a precise definition of an object. These features 

are arranged as a classifier cascade for developing a strong 

classifier. The most prominent benefit of using Haar features 

compared with other approaches is related to the computation 

speed provided by integral images, allowing for a constant 

time computation of features of arbitrary sizes. Figure 2 shows 

different detectors using a Haar feature.  

Figure 2. Types of detectors based on Haar features [15] 

These detectors employ different filters on specific regions 

of an image, where the pixel sums from the white areas are 

subtracted from those in the black areas. The weights for the 

white and black regions are treated as values of “1” and “−1,” 

respectively. Haar features inspect adjacent rectangular areas 

within a detection window, sum the pixel intensities of each 

area, and calculate the difference. The difference is then used 

to classify sections of the image. The key components of the 

Haar cascade include integral images, the Adaboost algorithm, 

and the cascaded classifier [15]. 

The first step of the Viola-Jones algorithm is to convert the 

input image into an integral image. HCC, then, compares how 

closely the actual scenario matches the ideal case, where the 

value of the Haar feature is ideally one. Then the Adaboost 

Algorithm, a machine learning algorithm, is used to develop a 

classifier through weights [5].  

The cascaded classifier is used for quickly rejecting error 

windows and enhancing processing speed. In every node of the 

trees, there is a non-object branch, indicating that the image 

will not be the desired object, as shown in Figure 3. This 

technique minimizes the false negative rate [16]. 

Figure 3. Schematic depiction of the detection cascade [5] 

2.2 Kernelized Correlation Filter 

KCF is a fast target-tracking algorithm that works through 

three main stages: feature extraction, online learning, and 

template updating, as shown in the block diagram in Figure 4. 

First, the tracker extracts HOG features from the selected 

target region and converts them into the frequency domain 

using the Fourier transformation. It then computes the 

correlation in the frequency domain to estimate the new target 

position. After locating the target, the classifier is trained by 

generating multiple cyclic shifted versions of the target patch 

and learning their weights using a ridge-regression-based 

classifier. The process of cyclic shifting converts a single 

patch into a huge training dataset, allowing the tracker to 

depend on very limited data to produce efficient discriminative 

tracking. The tracker continues to follow the object by 

repeatedly updating its model and filtering weights based on 

the most recent target location, allowing real-time and 

continuous tracking [17, 18]. 

Figure 4. General framework of KCF [19] 
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2.3 Convolutional Neural Networks 

 

Neural networks are a contemporary technology that 

provides high precision in tasks related to classification and 

prediction. Their high speed and compatibility with various 

scientific fields make them one of the most used techniques. 

There are different types of neural networks, that vary in 

different aspects such as structure, level of hybridization with 

other computational algorithms, and complexity. These 

networks share common elements such as neurons, input and 

output layers, and one or more hidden layers, but they differ in 

the tasks performed by these layers. 

CNN performs classification tasks, either supervised or 

unsupervised. Supervised training involves providing a set of 

corresponding inputs and outputs, and the system learns to 

associate them and predict the output. Initially, input images 

are entered, and several of their properties, such as edges and 

gradients, are calculated in the primary layer. In the middle 

stage, several features are extracted from the previous stage, 

and then in the final stage, the features are extracted, which 

can then be passed to the classifier [20, 21].  

 

 
 

Figure 5. Basic CNN architecture [22] 

 

A CNN is typically structured with multiple layers (as 

shown in Figure 5), including [23-25]: 

• Convolutional Layer: This is a key layer in a standard 

neural network. It contains a variety of filters, often 

referred to as convolutional kernels (Figure 6). These 

filters interact with the intended input to generate an 

output that has the strongest correlation with the input 

features. During training, the weights of the filter are 

adjusted. This task is also known as subsampling 

because it decreases the size of the samples in the 

image. To ensure that the filter moves over the edges 

as well, we need to add zero pixels (padding) to the 

edges of the image. 

• Pooling Layer: This layer selects a pixel from each 

mask, which could be the average or the maximum 

pixel.  

• Activation Function: These functions determine the 

threshold at which the neuron triggers the output.  

• Fully Connected Layer: This is the final stage of 

CNN. It functions as the classifier by connecting each 

neuron to all neurons in the preceding layer. 

Essentially, it adopts the feed-forward approach of 

traditional multi-layer perceptron neural networks. 

The FC layer receives input as a vector, which comes 

from the last pooling or convolutional layer, after 

flattening the feature maps. The final output of the 

CNN is derived from this layer. 

• Loss Functions: these are applied in the output layer 

to compute the prediction error across training 

samples, reflecting the difference between the actual 

and predicted outputs. This error is then minimized 

during the CNN learning process to enhance 

accuracy.  

 
 

Figure 6. Convolution operation [26] 

 

In CNN models, the primary challenge is achieving good 

generalization without overfitting. Overfitting occurs when 

the model fulfills the task on training data but fails on test data. 

On the other hand, an under-fitted model lacks sufficient 

learning from the training data, leading to poor performance 

on training and consequently on test data also. A well-fitted 

model, however, performs well on both training and test data. 

Various intuitive concepts are employed to aid in 

regularization and avoid overfitting, as further explained in the 

subsequent sections [24, 27]: 

• Dropout: During each training epoch, certain neurons 

are randomly omitted. This distribution of feature 

selection power ensures the model learns different 

independent features. In training, the dropped 

neurons are excluded from back-propagation and 

forward-propagation. However, in the testing phase, 

the entire network is used for prediction. 

• Drop-Weights: This technique is similar to dropout; 

this method involves omitting the connections 

between neurons (weights) during each training 

epoch, rather than the neurons themselves. 

• Data Augmentation: Expanding the training dataset 

with artificial techniques helps prevent overfitting. 

With more examples to learn from, the model handles 

data better and generalizes instead of just 

memorizing. 

• Batch Normalization: This technique normalizes the 

activations of the output at each layer, aligning the 

values with a unit Gaussian distribution. Basically, 

the mean is subtracted from each output, and the 

result is divided by the standard deviation.  

 

 

3. SYSTEM DESIGN 

 

Although face detection and recognition systems have 

achieved remarkable advancements recently, the main 

challenge remains keeping accuracy high without draining 

resources, especially on devices that do not have much 

computational power. Deep learning models like Multi-Task 

Convolutional Neural Network (MTCNN) and YOLO almost 

nail detection accuracy, but their computational load is high. 

That represents a problem for cheaper devices or real-time 

scenarios, where boosting speed counts even if it means losing 

some of the accuracy. In those cases, it is more important to 

reduce False Positives (FP) rates than to catch every possible 

False Negative (FN). 

In this context, Classic techniques like HCC are still 

relevant because they are simple, fast, and accurate enough for 

most real-time needs. But they are not perfect and are known 

for producing a lot of FPs and struggling with faces that are 

not in a frontal pose or have poor lighting [15, 28]. Rather than 

changing the internal structure of HCC, combining it with 
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other methods can target these specific problems. 

This work takes that route. It introduces a hybrid system that 

builds on HCC, aiming to boost detection performance while 

keeping things lightweight. The system brings together three 

strategies: widening the detection range, filtering by skin tone, 

and adding KCF tracking. 

The first step expands the capabilities of pretrained HCC 

models found in OpenCV libraries. Combining HCC models 

that are specifically trained for frontal and profile faces is 

expected to drop FN rates because faces at different angles are 

detected. The tradeoff of this step is more FPs, more repeated 

detections of the same face, and heavier computation. 

To tackle these side effects, the second step uses skin-tone 

filtering after detection. By checking how much of the 

detected area matches human skin tones, the system can 

remove many FPs. An additional filter is used to cancel 

duplicates from the frontal and profile detectors. These tweaks 

lower the FP rate and are expected to have a mild effect on FN 

rates. Yet, they do increase computational demand even more. 

Finally, to keep resource use in check, the third step inserts 

a KCF tracker. The idea is to run the enhanced HCC from the 

past two steps on a key frame, then use KCF to track each face 

across the following frames. This way, the system does not 

have to run heavy detection every single time, so it can process 

frames much faster. The risk here is missing new faces or 

losing track during quick movement. The system can manage 

this by adjusting the number of skipped frames to match the 

speed of movement of individuals across the frames. The 

result is a careful balance between speed and accuracy. Figure 

7 shows the steps of this process. 

 

 
 

Figure 7. Face detection process using a hybrid Haar cascade 

classifier (HCC) 

 

 
 

Figure 8. Face recognition process using CNN 

 

The face recognition phase utilizes the power and 

capabilities of CNN. It is trained on a dataset extracted straight 

from video clips during the face detection phase. This dataset 

contains only face information, which gives CNN a big boost 

during the process of training and recognition. Despite the 

neatness of this approach, there is a hitch. Faces from the same 

video usually look similar with the same angle, same lighting, 

same expressions. That is the typical recipe for overfitting. To 

tackle this, the system selects images from frames spaced apart 

in time, which brings in more variety. It also uses extensive 

data augmentation during training, helping the model 

generalize better and making overfitting less likely. The 

training set draws from several video clips, while a separate 

video builds the validation set, ensuring a more objective 

evaluation of the model's performance. The block diagram of 

the face recognition phase using CNN is shown in Figure 8. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The developed methodology consists of two main parts: 

first, a hybrid face detection method (HCC-KCF), and then a 

CNN-driven recognition phase. The system was implemented 

on Python 3.11, with the help of OpenCV and Keras 

(TensorFlow as backend and Adam as the optimizer). All the 

experiments took place on a Windows 10 laptop with an Intel 

Xeon CPU, 4GB NVIDIA Quadro GPU, and 32GB RAM. 

Python makes sense here. It is flexible, efficient, and 

supports object-oriented programming, which accelerates 

prototyping and development. The simple yet powerful syntax 

of Python, along with direct interpreting, makes it a perfect 

choice for computer vision and machine learning work [29]. 

OpenCV handled the main computer vision tasks, offering 

a deep toolkit for face detection, object recognition, and real-

time video analysis. TensorFlow, Google’s open-source deep 

learning library, supports the efficient building and training of 

complex neural networks [30]. 

For face detection, pretrained HCC models in the OpenCV 

libraries did the main task. OpenCV offers four frontal face 

detection models, though there is no documentation explaining 

how they differ from each other. They are listed below with 

names used throughout this paper for convenience: 

• HCC-default (haarcascade_frontalface_default.xml). 

• HCC-alt (haarcascade_frontalface_alt.xml). 

• HCC-alt2 (haarcascade_frontalface_alt2.xml). 

• HCC-alt-tree(haarcascade_frontalface_alt_tree.xml). 

Determining the best HCC frontal face model required 

comparing the performance of these models. To this end, all 

models were tested on three diverse video samples of three 

individuals that vary in gender and skin complexion, to 

provide diversity in the samples. Figure 9 gives a glance at the 

content of these videos: Video-A (Figure 9(a)) has a rich 

background, Video-B (Figure 9(b)) has relatively poor 

lighting, and Video-C (Figure 9(c)) has a well-lit condition. 

These videos are available online and free to use and 

reproduce the results. To enhance testing efficiency, the 

resolution of each video was reduced to 50% of its original 

size. Before the detection process, the frames underwent 

standard preprocessing, including grayscale conversion and 

lighting enhancement using histogram balancing. To ensure 

fair comparison, all models used standardized settings: (scale 

factor = 1.1, minimum proximity = 5, minimum size = (60, 

60)). Reference positions for faces were manually determined 

to serve as the basis for evaluation.  

Table 1 shows the test results. It can be noticed that some 

models perform better than others in some metric criteria, but 

there is no model that is superior in all the metrics. Further 

analysis revealed that HCC-alt2 is the most balanced choice, 

as it strikes the best practical compromise between speed and 

detection reliability. While HCC-alt achieved slightly higher 

precision, it did so at a high cost to recall. Conversely, HCC-

default suffered from low precision, and HCC-alt-tree, despite 

its high speed, was unusable due to catastrophically low recall. 

HCC-alt2 consistently delivered strong F1 scores across all 

test scenarios, offering robust performance with high speed, 

making it the most suitable and balanced candidate for our 
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hybrid HCC detector. 

(a) Video-A (from: pexels.com/video/video-of-people-

talking-while-walking-4625331) 

(b) Video-B (from: pexels.com/video/video-of-people-

talking-while-walking-4625293) 

(c) Video-C (from: pexels.com/video/ people-having-conversation-while-walking-on-sidewalk-4625296)

Figure 9. Three videos of three class faces 

Table 1. Performance evaluation of several pretrained front 

face HCC models found in the OpenCV library 

Model Type Eval. Metrics Vid-A Vid-B Vid-C 

Haar cascade 

classifier 

(HCC)-

default 

FPS 12.09 5.85 5.96 

Precision 0.7648 0.5570 0.4881 

Recall 0.8144 0.6052 0.7609 

F1-score 0.7888 0.5801 0.5947 

HCC-alt 

FPS 14.37 6.97 6.09 

Precision 0.9728 0.9627 0.7802 

Recall 0.7556 0.5187 0.7131 

F1-score 0.8505 0.6742 0.7451 

HCC-alt2 

FPS 15.26 7.13 6.79 

Precision 0.9360 0.882 0.7704 

Recall 0.7285 0.5526 0.7062 

F1-score 0.8193 0.6795 0.7369 

HCC-alt-tree 

FPS 22.26 10.68 10.69 

Precision 1.0 1.0 1.0 

Recall 0.0678 0.2969 0.3647 

F1-score 0.1271 0.4579 0.5345 

There is only one pretrained profile model, HCC-profile 

(haarcascade_frontalface_profile.xml), in the OpenCV 

library; therefore, no need to make such a comparison. It must 

be mentioned that most profile face detectors are trained on a 

dataset of faces on one side. To cover all the possible face 

orientations, the HCC-profile needs to be run twice on each 

frame (normal frame and flipped one). 

For convenience, we call our model that depends on HCC 

and KCF as hybrid-HCC. It consists of the HCC part and the 

KCF part. The HCC part ran two pretrained models, HCC-alt2 

and HCC-profile. HCC-profile was used twice (on the normal 

frame and on the reversed one) to cover the left and right 

profile faces. The parameters of both were set to (scale factor 

= 1.1, minimum proximity = 5, minimum size = (60, 60)). 

Each frame fed to them is downsized by 50% of its original 

size. Then, the frame was preprocessed by grayscale 

conversion (integral image) and illumination correction (using 

histogram equalization). The postprocessing consists of two 

filters: the skin-tone filter and the nested-faces filter. The skin-

tone filter rejects any candidate region where more than 40% 

of the color tone falls within the human skin range, defined in 

the HSV color space H=0-40, S=50-120, and V=80-255. For 

the KCF part, it was initialized by the detected faces in a frame. 

Then, the tracker follows the face from frame to frame until a 

new face detection happens, which resets the initialization. 

The HCC part ran for a frame, and the remaining 25 frames 

were run by the KCF part.  

Table 2. Performance evaluation of the hybrid-HCC against 

other models 

Model Type Eval. Metrics Vid-A Vid-B Vid-C 

Ref-HCC 

FPS 3.97 1.76 1.75 

Precision 0.8193 0.6509 0.5226 

Recall 0.9984 0.9511 0.9767 

F1-score 0.9000 0.7729 0.6809 

Hybrid-HCC 

FPS 44.89 22.45 22.31 

Precision 1.0 0.8155 1.0 

Recall 0.8672 0.8258 0.8620 

F1-score 0.9289 0.8206 0.9258 

MTCNN 

FPS 4.60 4.72 4.82 

Precision 0.9969 0.9705 0.9608 

Recall 0.9758 0.8245 0.9713 

F1-score 0.9862 0.8915 0.9660 

YOLOv8 

FPS 12.82 11.02 11.81 

Precision 1.0 0.9536 1.0 

Recall 1.0 0.9736 1.0 

F1-score 1.0 0.9536 1.0 
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To evaluate the above modification in the hybrid-HCC face 

detector, it must be tested against other face detectors. The first 

candidate was a pure HCC. Table 1 shows the performance 

metrics for one frontal HCC; therefore, a better version of 

HCC was used. It is called ref-HCC here for convenience. Ref-

HCC consists of two pretrained models, HCC-alt2 and HCC-

profile, just like the hybrid-HCC. The same preprocessing of 

grayscale conversion and illumination correction was used. 

Because multiple HCCs were used in ref-HCC, too, a fair 

comparison requires using the nested-faces filter in the 

postprocessing. The other two candidates were state-of-the-art 

pretrained detectors: MTCNN and YOLOv8n (nano). The 

choice of YOLOv8 out of other versions is due to its high 

performance and balance between accuracy and inference 

velocity [31]. It was selected because it provides an ideal 

trade-off between precision and processing speed. MTCNN is 

part of the OpenCV library [32], but YOLOv8 is not. 

Therefore, a pretrained YOLOv8n for face detection 

(yolov8n_100e.pt from github.com/Yusepp/YOLOv8-Face) 

was used. All these models were evaluated under consistent, 

resource-constrained conditions where video frames were 

downsized by 50%. All the models run on every frame of test 

videos, except the hybrid-HCC, which employed an 

aggressive, tracker-assisted skip of 25 frames. Table 2 shows 

the performance evaluation of the four models. 

The most eye-catching result is the speed of hybrid-HCC. It 

is 11.3 to 12.75 times faster than ref-HCC. Moreover, it is 

nearly 9.7 times faster than MTCNN and about 2 to 3.5 times 

faster than YOLOv8. When it comes to accuracy (F1 score), 

YOLOv8 achieved the highest accuracy, topping 1.0 F1 score, 

followed by MTCNN. Hybrid-HCC outperformed ref-HCC in 

all test videos by 2.8 to 24 percentage points. Its accuracy, 

while still behind the newest face detectors, is very good and 

balanced. Hybrid-HCC achieved perfect Precision (1.0) in 

Vid-A and Vid-C, and 0.8155 in Vid-B. This is due to the 

effectiveness of the skin-tone filter at minimizing FP. Hybrid-

HCC scored the lowest Recall rates across all the models. This 

decline is the consequence of the discrete detection strategy. 

Skipping many frames leads to an increase in FN when 

tracking was temporarily lost or failed to initiate because of 

missed detection. The results show a trade-off between 

accuracy and speed. YOLOv8 is the best in accuracy, Hybrid-

HCC model is the best in speed, and MTCNN offers balanced 

but slower results. Ref-HCC model is significantly the worst. 

These findings support the goal of running a detection system 

on resource-constrained, real-time video surveillance, where 

high FPS is prioritized over perfect accuracy. Regarding the 

results per video, Vid-A is the easiest, while Vid-B is the most 

challenging. The main reason is that the brightness in Vid-B is 

lower than in other videos. This indicates that hybrid-HCC is 

more susceptible to low-light conditions than YOLOv8, but it 

is comparable to MTCNN. 

After detecting faces in each frame, the face images are 

extracted and categorized into folders for the training stage in 

CNN. The CNN structure was set as shown in Table 3. It 

consists of four convolutional layers, where each one is 

followed by a batch normalization and a pooling layer (Max 

pixel). This gradually reduces the image dimensions from 256 

× 256 to 16 × 16 and keeps the feature maps at 32. The feature 

maps are then flattened to a 6272-element vector. Next, the 

flattened vector is fed to a dense fully connected classifier. 

Batch Normalization and Dropout (at 0.8 value to reduce 

possible overfitting) are performed as regularization during 

training. The last layer is a fully connected dense layer that 

shapes the output of three classes. All the activation functions 

in convolution and dense layers are ReLUs (Rectified Linear 

Unit) except the last layer, which is activated by a SoftMax 

function. The total CNN parameters are 431,075 (1.64 MB) 

with 430,691 (1.64 MB) trainable parameters and 384 (1.50 

KB) non-trainable parameters. This makes the CNN model a 

lightweight one that is capable of being deployed on limited 

hardware devices. 

 

Table 3. Setting of the CNN model 

 
The Type of Layer The Output Shape Param. Number 

Conv2D (254, 254, 32) 896 

Batch Normalization (254, 254, 32) 128 

MaxPooling2D (127, 127, 32) 0 

Conv2D (125, 125, 32) 9,248 

Batch Normalization (125, 125, 32) 128 

MaxPooling2D (62, 62, 32) 0 

Conv2D (60, 60, 32) 9,248 

Batch Normalization (60, 60, 32) 128 

MaxPooling2D (30, 30, 32) 0 

Conv2D (28, 28, 32) 9,248 

Batch Normalization (28, 28, 32) 128 

MaxPooling2D (14, 14, 32) 0 

Flatten (6272) 0 

Dense (64) 401,472 

Batch Normalization (64) 256 

Dropout (64) 0 

Dense (3) 195 

 

CNN was trained using a set of 1,728 images, divided into 

1152 images for the training set and 576 images for the test 

set, with a batch size of 32 and a learning rate of 0.0001. Both 

training and test sets were divided equally into three classes. 

The number of training steps per epoch was calculated as the 

number of training images divided by the batch size. In the 

same way, the number of validation steps was calculated as the 

number of test images divided by the batch size. 

To overcome the overfitting problem that might result from 

the limited size and low diversity of the dataset, extensive data 

augmentation was employed. This involved applying various 

geometric transformations to the training images, such as 

rotation, translation, scaling, and reflection, thereby enhancing 

the model's ability to generalize and handle variations in real-

world data. Images were rotated by 20°, shifted in width or 

height by a percentage up to 60%, heavily sheared and zoomed 

(both with a range of 0.4), and flipped horizontally. This level 

of augmentation increases the diversity of the training set and 

pushes CNN to handle all sorts of viewing conditions. 

Figure 10 shows the accuracy and loss evolving through 

both training and testing. 100 training epochs were enough to 

achieve the required performance. Examining the accuracy 

graph (Figure 10(a)) and loss graph (Figure 10(b)) indicates 

the learning performance. 

Training accuracy curve tops around 0.934, which is a solid 

sign that the model learned the patterns in the data excellently. 

Validation accuracy curve even tops around 0.9722, which 

reflects the good generalization and evades the trap of 

overfitting.  

The training loss curve showed a decreasing shape and 

settled at about 0.7187, which means that the model is 

achieving more confidence in the classifications. Validation 

hits even lower end-value of 0.6485. It follows the same shape 

of validation accuracy. This ensures that overfitting is not a 

prominent issue here.  

The spikes in validation accuracy and loss may suggest that 
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the model faces some challenges with certain samples, but 

ultimately, it maintains a consistent learning and loss 

trajectory. The observed effect may stem from the applied 

heavy augmentation on a relatively small dataset.  

To test the recognition subsystem, the trained CNN model 

was combined with hybrid-HCC. The detector was applied to 

a new video. Since there was no truth table for the faces in the 

video, it was not feasible to test the performance directly. 

Therefore, a prediction sample of faces was extracted from the 

new video, and then they were organized into three classes. 

The prediction dataset consisted of 180 samples (60 for each 

class).  

(a) Training and validation accuracy (b) Training and validation loss

Figure 10. The CNN model performance: accuracy and loss across epochs 

Table 4. Classification report of CNN 

Class Precision Recall F1-Score Support 

Girl 1.0 1.0 1.0 60 

Guy1 1.0 1.0 1.0 60 

Guy2 1.0 1.0 1.0 60 

Table 4 shows that the model nailed every single prediction, 

hitting 100% total accuracy. That confirms the performance of 

CNN in handling new data. Furthermore, the detector provides 

clean, cropped faces that resemble the ones used during the 

training and testing of the CNN.  

Figure 11 supports the tabled results, showing a sample 

frame from the new video where the system correctly detects 

and recognizes face classes (guy1, girl, guy2). It must be 

mentioned that this perfect score comes from a small, 

controlled prediction test. The accuracy may drop slightly if 

the test video is longer and more challenging. Nonetheless, 

these results show that this setup, with hybrid-HCC detection 

and the lightweight CNN, works smoothly and reliably for 

real-time, class-specific face recognition. 

Figure 11. Detection of the face classes correctly throughout 

all frames (from: pexels.com/video/ a-group-of-people-

together-for-a-photo-sjhot-4625282) 

5. CONCLUSIONS

This study has introduced a system for face detection and 

recognition in video streams that is suitable for real-time 

applications such as surveillance systems. It combined a 

hybrid HCC for face detection and a custom lightweight CNN 

for face recognition. It has tackled two main challenges of 

improving speed and maintaining a decent performance. For 

detection, two pretrained HCC models (frontal and profile) 

have been used in combination to reduce FN, with an added 

preprocessing step to balance lighting and two postprocessing 

filters: one for skin tone and another for removing nested 

detections. Preprocessing and postprocessing worked to 

reduce the FP. Additionally, the detector was assisted by a 

KFC tracker that tracked faces when the detector was skipping 

frames to push the speed enough for real-time use. This hybrid 

HCC outperformed the reference HCC in performance (by 2.8 

to 24 percentage points in F1-score) and speed (11.3 to 12.75 

times faster). While MTCNN and pretrained YOLOv8 

performance was better, hybrid HCC outperformed them in 

speed (2 to 9.7 times faster). The custom lightweight CNN 

represented a self-supervised training loop tailored for face 

recognition. The detected faces were extracted and augmented 

into a dataset (split into 66.6% training and 33.3% testing) that 

was utilized to train the CNN successfully. The CNN model 

achieved perfect prediction performance when it was tested on 

new data.  

This approach proved that video streams can be utilized 

directly to build custom face recognition datasets, and HCC 

and CNN can be used for limited hardware devices while 

keeping decent performance and real-time demands. However, 

some limitations can be considered for future work. The 

hybrid HCC needs to be tested on real surveillance cameras to 

see the effectiveness of keeping detection while tracking in 

more challenging environments. CNN is trained offline in this 

work; therefore, using a half-trained face recognition system 

leads to a fully automated system, where online light training 

on a dynamic dataset can benefit from the speed gain of our 
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detector. Conversely, employment of knowledge distillation to 

compress large pretrained models to a lightweight CNN, 

without losing accuracy, can be an excellent next step. 
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