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Designing scalable and interpretable control strategies for decentralized multi-agent
systems remains a challenge in reinforcement learning (RL). This challenge is particularly
evident in pursuit-evasion tasks, which require coordination under partial observability,
without explicit communication or centralized guidance. Although deep RL methods
achieve strong performance, they typically operate as black boxes, limiting trust and
deployment in safety-critical domains. We propose a Multi-Head DDPG architecture that
decomposes control into three interpretable force components - pursuit, cohesion, and
separation - weighted adaptively to generate context-aware actions. This design enables
emergent role differentiation and interpretable self-organization in the model. In grid-based
pursuit—evasion benchmarks, our method outperforms DQN, PPO, and standard DDPG in
terms of success rate, convergence speed, and generalization, while also yielding
transparent collective behaviors. Overall, the results show that weighted force-based

behavioral decomposition provides a principled pathway toward achieving both high-
performance and explainable multi-agent control.

1. INTRODUCTION

Reinforcement Learning (RL) is a computational
framework in which agents learn sequential decision-making
policies by interacting with their environment and optimizing
long-term cumulative rewards through trial and error [1]. Its
extension to multi-agent systems, known as Multi-Agent
Reinforcement Learning (MARL), addresses scenarios where
multiple agents must adapt their policies concurrently under
partial  observability, non-stationarity, and limited
communication [2]. In recent years, the integration of Deep
Reinforcement Learning (DRL) into MARL has significantly
advanced the field, allowing agents to approximate policies
and value functions directly from high-dimensional inputs [3-
7]. This synergy has positioned DRL-based MARL as a
cornerstone paradigm for distributed coordination in domains
such as swarm robotics, autonomous driving, and
collaborative multi-robot systems.

In this context, the pursuit-evasion problem has emerged as
a canonical benchmark for evaluating coordination under
decentralization. In this task, a team of pursuers must
cooperate to capture one or more evaders in discrete or
continuous environments, typically without centralized
supervision [8-24]. The challenge lies in the simultaneous
requirements for adaptation under uncertainty, cooperative
strategy formation and emergent role differentiation. Although
traditional solutions rooted in control theory, game-theoretic
models, or heuristic rules [13], Shoham and Leyton-Brown [5]
offered interpretable baselines, they lack the flexibility and

scalability required in dynamic and high-dimensional settings.

Despite the successes of DRL-based MARL and the
development of strategies such as Centralized Training with
Decentralized Execution (CTDE) [8], selective parameter
sharing [9], and emergent communication [10], a critical
limitation persists: most DRL policies behave as opaque black
boxes. They often achieve state-of-the-art performance in
UAYV swarms or multi-robot systems but provide little insight
into why specific coordination patterns or roles emerge,
thereby hindering trust, debugging, and safe deployment [14].
Among existing DRL algorithms, the Deep Deterministic
Policy Gradient (DDPG) [12] has been widely applied to
continuous control owing to its sample efficiency and actor-
critic structure. However, its monolithic design maps
observations directly to single actions, resulting in slow
convergence, high sensitivity to hyperparameters, and a lack
of mechanisms for role differentiation and self-organization
(8, 21].

To overcome these limitations, we introduce a Multi-Head
DDPG architecture that explicitly decomposes the actor’s
policy into three interpretable behavioral primitives—pursuit,
cohesion, and separation—each represented as a force-based
component. Unlike the monolithic DDPG, the final action is
computed as an adaptive weighted combination of these
primitives, thereby producing a modular and transparent
control policy. This formulation not only enhances
performance but also enables emergent self-organization, as
agents autonomously specialize in complementary roles
without central supervision. This work makes three main
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contributions. First, we propose a structural innovation in the
form of a Multi-Head Actor architecture that decomposes
continuous control into interpretable force-based behavioral
primitives, improving policy transparency and modularity in
decentralized MARL. Second, we introduce a mechanistic
innovation based on adaptive and context-aware weighting of
these primitives, enabling dynamic role specialization and
self-organized coordination during learning. Third, we provide
a comprehensive empirical validation of decentralized
pursuit—evasion benchmarks. The results show that the
proposed structural and mechanistic designs jointly yield
superior performance, faster convergence, and improved
generalization compared to DQN, PPO, and standard DDPG.

An interpretability analysis of the learned behavioral
weights further illustrates how coordinated strategies and role
differentiation emerge from this framework.

The remainder of this paper is organized as follows: Section
2 reviews the related work on MARL, pursuit-evasion, and
interpretable control. Section 3 formalizes the problem.
Section 4 introduces the proposed Multi-Head DDPG
framework. Section 5 presents the experimental evaluations,
including comparative benchmarks and interpretability
analysis. Finally, Section 6 concludes with the key findings
and future research directions.

2. RELATED WORK

The pursuit-evasion problem has long served as a
benchmark for studying coordination in MARL because it
naturally requires decentralized control, adaptability, and
emergent teamwork [3]. Existing approaches can be broadly
categorized along a spectrum between interpretable but limited
methods and scalable but opaque methods.

Early approaches. Heuristics, fuzzy control, and game-
theoretic models, such as Nash equilibria or rule-based
behavioral controllers inspired by collective motion models
[25-36], provide transparent and explainable policies. Their
interpretability makes them wuseful for understanding
coordination mechanisms; however, their handcrafted nature
limits their scalability to high-dimensional or stochastic
environments. These methods highlight the trade-off between
interpretability and adaptability, which is a limitation that
motivated the adoption of learning-based approaches.

DRL-based approaches. With the advent of DRL, agents
can learn policies directly from raw or high-dimensional
inputs, enabling scalable coordination strategies [6, 12]. State-
of-the-art performance has been demonstrated in complex
multi-agent tasks [1, 2]. However, the resulting policies
typically behave as black-box models, offering limited
interpretability. Thus, while DRL methods provide scalability
and robustness, they exacerbate the lack of transparency
regarding internal decision-making processes.

Communication and CTDE. Another research line has
focused on improving coordination through communication
learning and centralized training methods. Foerster et al. [10]
introduced Reinforced Inter-Agent Learning (RIAL) and
Differentiable Inter-Agent Learning (DIAL), showing that
agents can autonomously develop communication protocols.
Building on this, the now-dominant CTDE paradigm allows
leveraging global information during training while retaining
distributed autonomy at execution [20, 21]. These approaches
achieve strong performance, particularly in UAV
coordination, but the internal reasoning processes remain
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opaque. Thus, they maximize scalability but further reduce the
interpretability.

Interpretable MARL and behavior-based
decomposition. Recent work in MARL has increasingly
emphasized interpretability, motivated by the need for
transparency, debugging, and trustworthy deployment in
safety-critical multi-robot systems [11, 14]. Explainable Al
studies have highlighted that high-performing deep policies
often lack explicit causal structure, hindering decision
justification and failure diagnosis in multi-agent settings [1, 2].
To address this, behavioral decomposition and hierarchical
reinforcement learning represent policies as compositions of
reusable primitives or options rather than monolithic
mappings, improving both learning efficiency and
interpretability [22, 29]. However, such abstractions are often
detached from physically meaningful interaction mechanisms.
In parallel, swarm robotics and multi-agent navigation have
long relied on attractive—repulsive interaction rules, including
artificial potential fields and social-force models, to encode
goal attraction, collision avoidance, and group dynamics [4,
26]. Boids models and flocking theory further formalize
cohesion, separation, and alignment as decentralized
coordination primitives [27, 36]. Several DRL approaches
implicitly incorporate these interaction priors, for example
through socially aware reward shaping or interaction features,
demonstrating improved coordination and navigation
performance [17, 18, 32]. Nevertheless, in most existing
works, force-based components remain handcrafted or
auxiliary, and learned policies do not provide an explicit,
interpretable decomposition of behavioral roles. Importantly,
these interaction models are rarely integrated as first-class
components of the policy representation itself.

Emergent coordination without communication. A
complementary direction emphasizes self-organization
without explicit communication between the agents. Sun et al.
[16] proposed fuzzy self-organization for subgroup formation,
Christianos et al. [9] leveraged selective parameter sharing to
enhance scalability, and Hiittenrauch et al. [18] introduced
mean feature embeddings to enhance local spatial awareness.
In pursuit-evasion tasks, De Souza et al. [17] combined DRL
with curriculum learning to balance group and individual
incentives, whereas Yu et al. [19] extended Double-DQN and
Duelling-DQN to stabilize cooperative pursuits under partial
observability. These methods demonstrate that scalable
emergent teamwork is possible; however, because policies
remain opaque, role differentiation and self-organization
emerge implicitly rather than being explicitly modelled.

Our contribution. The proposed Multi-Head DDPG
addresses this gap by explicitly decomposing agent control
into three interpretable behavioral primitives: pursuit,
cohesion, and separation. Unlike existing DRL methods, our
approach maintains scalability while directly exposing the
modulation of behavior using adaptive weights. This not only
improves quantitative performance but also enables emergent
self-organization and transparent role differentiation,
reconciling the tension between performance and
interpretability of the model.

3. FORMULATION OF THE PURSUIT-EVASION
DILEMMA

The multi-agent pursuit-evasion (PE) problem serves as a
long-standing benchmark for cooperative and adversarial



decision-making, particularly in the field of MARL. It
involves two classes of agents, pursuers and evaders,
interacting in a shared environment characterized by
decentralization and partial observability. Pursuers aim to
coordinate their efforts to capture evaders, whereas evaders
seek to maximize their survival by avoiding detection and
confinement. This dilemma encapsulates fundamental
challenges of distributed perception, decentralized control,
and emergent self-organization [1, 2].

In this study, we adopt a grid-based discrete environment of
size¢ M x N, which is a widely used abstraction in pursuit-
evasion research that balances tractability with the ability to
model realistic multi-agent dynamics [19, 22, 23]. Each agent
occupies a single grid cell and evolves in discrete time steps t
=0, 1, 2, ... At each step, an agent may move to one of the
four cardinal neighboring cells (up, down, left, right) or remain
stationary, subject to the grid boundaries and occupancy
constraints. Formally, let P = {p1, p2, ..., pnp} denote the set of
pursuers and E = {ey, e, ..., en} the set of evaders, with A =
P U E representing the complete population of agents. The
position of agent a € A at time t is denoted pos;, € 72, and its
discrete action space is given by: A, = {up, down, left, right,
stay} with valid transitions restricted to:

posttl € N (posk)
= {pos{,post + (0,1), pos,,
—(0,1),post + (1,0), post
- (1,00}

(1

where, NV (pos)) denotes the Von Neumann neighborhood of
the agent’s position. This neighborhood includes the four
orthogonally adjacent cells along the cardinal axes, while
excluding diagonal cells. The Von Neumann neighborhood is
extensively employed in grid-based multi-agent environments
because it provides a simple yet realistic model of local
connectivity, facilitating efficient interaction dynamics and
collision handling [28].

The pursuit-evasion task is formally modeled as a Partially

Observable Markov Game (POMG) [24], defined by the tuple

G = (A, S, {0a}aes {Aa}aea T{Ra}acn P) (2)
where, S is the global state space of agent configurations, 0,
is the local observation space for agent a, T is the stochastic
transition function, R, is the agent-specific reward, and p €
[0, 1] is the discount factor.

Observability is egocentric, meaning that each agent
perceives the relative positions of other agents within a fixed
sensing radius 7;.

The local observation set of agent a at time t is therefore
defined as:

0% = {pos; — post 1) .
EAN ||posf —posill, <7} )

This egocentric design ensures translational invariance,
scalability to varying numbers of agents, and adaptability to
different grid sizes while reducing the input dimensionality by
retaining only spatially local motion cues. By excluding
environmental obstacles, we further isolate the intrinsic
coordination phenomena that emerge from agent-agent
interactions, making this formulation a robust testbed for
investigating emergent self-organization and cooperative
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strategies in decentralized multi-agent systems [8, 21].
3.1 Definition of capture

A capture event occurs when an evader is fully surrounded
by pursuers such that all adjacent cells are simultaneously
occupied. Let the position of evader e; € E at time t be
posé}. € Z2. Its neighborhood is defined as:
(x.y)eZ2|(xy) { pos, + 5},

5¢{(01),(0.-1), (10) (-10)}

N (pos; ) = )

An evader is captured at time t if at least k of the cells in its
Von Neumann neighborhood NV (posﬁ}.) are simultaneously
occupied by distinct pursuer agents p; € P:

|(x,y) € N(poséj) |3p; € P : post, = (x,y) | >k (5

Here, the neighborhood V (posgj) contains at most four

orthogonally adjacent cells. Therefore, parameter k < 4
denotes a capture threshold, corresponding to the minimum
number of neighboring cells that must be occupied for a
capture event to occur. Setting k 4 enforces strict
encirclement, requiring full occupation of the neighborhood,
whereas smaller values (e.g., k = 2) relax this constraint and
reduce the level of coordination required among pursuers.

This parameterization allows the task difficulty to be
systematically adjusted, ranging from partial containment to
complete encirclement, and enables controlled evaluation of
MARL algorithms under varying cooperation demands. Such
capture criteria naturally promote coordinated behaviors, such
as flanking, blocking, and convergence, fostering emergent
role differentiation and self-organization [18].

3.2 Reward and learning objectives

The objective of pursuers is to maximize the total number
of successful captures through decentralized coordination.
Following standard MARL formulations [9, 17], we employ a
sparse, event-driven reward structure. For each pursuer p; €
P, the immediate reward at time t is defined as:

+R,,if agent i contributes to a capture at time t
—T;,, if agent i makes an invalid or redundant move
0, otherwise

(6)

where, R-> 0 is the cooperative capture reward and rm> 0 is a
penalty for inefficiency. Each agent aims to optimize its
discounted return within a finite time horizon T, which is
defined as:

(7

T
R; = Z ptrf
t=0

with p € [0, 1] as the discount factor. This design ensures that
captures can only be achieved through collective effort, while
discouraging selfish or redundant actions. Meanwhile, evaders
follow reactive strategies aimed at maximizing their distance



from nearby pursuers, thus exerting adversarial pressure and
promoting the development of robust pursuit policies.

3.3 Significance for self-organization

The pursuit-evasion paradigm extends beyond theoretical
interest: it models practical scenarios in robotic surveillance,
UAYV swarms, and wildlife monitoring where agents operate
under strict communication and sensing constraints [25-27].
Its decentralized formulation, absence of global state
information, and reliance on local interactions make it a
natural benchmark for studying emergent coordination and
interpretable self-organization. By analyzing how global
strategies, such as encirclement or flanking, arise from local
force-based rules, this framework provides valuable insights
into the design of scalable, robust, and explainable MARL
systems.

4. BACKGROUND
ARCHITECTURE

AND PROPOSED MULTI-HEAD

4.1 Deep Deterministic Policy Gradient: Limitations and
Multi-Head enhancement

The DDPG algorithm, introduced by Lillicrap et al. [12], is
an off-policy actor-critic method designed for continuous
action spaces. It combines the Deterministic Policy Gradient
(DPG) [7] with deep neural networks to approximate both the
policy and value function, while employing replay buffers and
target networks to improve training stability. DDPG has been
successfully applied in robotics [31], navigation [32], and
multi-agent learning [8].

Actor Optimizer

7 Update GAJ

[ | Critic Optimizer

Update 6}, | Q gradient
l Online Actor Network 6, | EradientJOnline Critic Network 6, I
‘ Soft Update @ = u(se) Ve T lSoft Update
ITarget Actor Network 0“r| . [Target Critic Network Oer‘
‘ K (Sp41) N

Policy gradient|

D e

FZ\ Store

@ 5 _I
5 l
< Experience (St, @, T See1)

Replay Memory

v
Environment

Figure 1. Structure of the Deep Deterministic Policy
Gradient (DDPG) algorithm

As illustrated in Figure 1, the standard DDPG consists of
four neural networks: an online actor, an online critic, and their
respective target networks. The actor maps the states to
continuous actions, whereas the critic evaluates these actions
using the Q-function. Target networks stabilize training
through soft updates, and the replay buffer enables efficient
off-policy learning.

Despite these strengths, the standard DDPG exhibits key
limitations in multi-agent settings. Its monolithic architecture
maps observations directly to single actions, which (i) slows
convergence and increases sensitivity to hyperparameters, (ii)
produces opaque policies that hinder interpretability, and (iii)

3120

prevents role differentiation, thereby limiting the emergence
of complex cooperative behaviors such as encirclement.

To overcome these shortcomings, we introduce a Multi-
Head DDPG actor that decomposes the control signal into
three interpretable primitives—pursuit, cohesion, and
separation—weighted adaptively at each time step. This
modular design preserves the stability and sample efficiency
of the DDPG while enhancing policy transparency and
enabling emergent self-organization in decentralized pursuit-
evasion tasks.

4.2 Multi-Head Actor with force modulation

4.2.1 Architectural overview

The proposed Multi-Head Actor architecture constitutes a
substantial extension of the conventional DDPG framework
[12], introducing explicit behavioral modularity that promotes
emergent coordination in decentralized pursuit-evasion tasks.
Unlike the monolithic policy outputs of standard DDPG, our
actor decomposes decision-making into three interpretable
control primitives inspired by swarm intelligence [35], bio-
inspired collective behavior [26], and modular reinforcement

learning [29]: pursuit (Fgoa1), cohesion (F,p), and separation
(Tep)). This architecture is illustrated in Figure 2.

Shared Feature Extractor

(Backbone)

Local

Observatioll/

Cohesion Head F,p, | |Pursuit Head Fyoq

Separation Head F g,

Dynamic Weighting Module (at,B:yt)

\/
Weightd Force Composition Fioeq = @t Fgoar + Bt Feon + ¥t Fsep

v
Nearest Direction Mapping Discrete Action ]
€ {up,down,left,right,stay} |

Critic %

Network

Figure 2. Multi-Head Actor architecture

The network design begins with a shared feature extractor,
realized as a multilayer perceptron, which encodes the agent’s
local observation O/ into a latent representation. This common
backbone ensures that all behavioral components operate with
a unified semantic understanding of the environment. From
this latent representation, three parallel output heads compute
their respective continuous force vectors.

In parallel, a dynamic role-weighting module, implemented
as a separate branch with a softmax activation, generates a
triplet of normalized behavioral weights (a:By:)€[0, 1]°,
subject to the convexity constraint: a:+ [;+ y:+= 1. These
weights adaptively modulate the relative influence of each
control primitive based on the agent’s local context, thereby
supporting dynamic role allocation. The final continuous
control vector is then obtained as follows:

P e—

=

—
total — Fsep

at Fgoal + IBK Fcoh + yt (8)

Since the pursuit-evasion environment operates on a
discrete grid, Fyy¢q; 1S discretized into one of the available
movement actions A = {up, down, left, right, stay} using a

nearest-direction mapping.
This architectural choice offers three core advantages: (i)



interpretability, as the learned role weights can be directly
inspected over time, revealing the agent’s decision-making
process; (ii) context-sensitive coordination, allowing agents to
autonomously adapt their behavioral emphasis to situational
demands; and (iii) robustness and generalization, since
modular primitives can be dynamically recombined to handle
unseen or evolving scenarios.

By embedding these behavioral priors into the policy, the
Multi-Head Actor bridges the gap between high-performance
DRL [12] and explainable self-organization [11]. This results
in scalable, interpretable, and emergent group behaviors in
fully decentralized multi-agent systems.

4.2.2 Behavioral decomposition: Force-based modulation

The proposed Multi-Head Actor architecture aims to
achieve interpretable and modular control by decomposing the
policy into three fundamental behavioral primitives: pursuit,
cohesion, and separation. Consider an agent a € P,, which
represents a pursuer located at position pos, at time step t.
Based on its local perception Of, the agent calculates three
normalized force vectors, each corresponding to a distinct
behavioral primitive. These primitives function as modular
components within the control policy, facilitating interpretable
and adaptive multi-agent coordination.

Pursuit Force( m)z Generates a force vector oriented
toward the nearest target, enabling direct interception

behavior.
= ﬁage B ma
Fapal = 00— )
2 ™ |Ipos, — pos,ll
P0s, = arg min 0S; — pos,
pos, =arg min  [[pos; - posa[, (10)

Here, pos, denotes the position of the closest evader within
the sensing range of the agent. The resulting vector is unit-
normalized to preserve directionality while removing
magnitude scaling. From a behavioral perspective, a high
modulation coefficient @; indicates an aggressive pursuit
strategy whereby the agent prioritizes rapid engagement with
its target.

Cohesion Force (m): Produces a force vector that drives
the agent toward the centroid of its teammates within a fixed
radius 73 [27] and outside a repulsion zone 7., (to avoid

conflict with separation), thereby enhancing spatial
coordination.
a={jEP: Trep<||55§j_ma”2$rs} (11)
pos] pos,
Feon z 12
T ||pos] o34, (12)

The neighbour set N, consists of all pursuers in the annular
region 7., <d < ;. Each direction vector toward a teammate
was normalized, and the resulting mean vector points toward
the centroid of the group. A high value of f, reflects
formation-preserving  behavior, promoting coordinated
movement and group cohesion, which can improve
encirclement strategies (Figure 3).

Separation Force (m): Outputs a force vector that repels
the agent from nearby pursuers to prevent overcrowding and
collisions [27].
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= stzj _ma
Fep==—) ——— = (13)
jet Ipos; — posa|[,
No={j € (P VE)||[pos; —poS|l 2 < 1ep } (14

The set N, includes all agents within a predefined repulsion
radius 75, . Inverse-square distance weighting ensures that the
repulsion strength increases significantly in close proximity.
Behaviorally, a high coefficient y; corresponds to collision-
avoidance prioritization, which is a critical factor in dense
formations or confined environments.

Each force vector is calculated locally based on the
geometric relationships within the grid. All forces are
normalized to ensure stability and proper orientation. These
normalized forces are then combined to form the final motion

vector Fiprqr-

3 @® Pursuer (agent)
2 R e I 3 @® Nearest evader
Figs ; T Teammate
1|l = D Close agent
/ L ol/ b ', () Perception radius 7
0 \ | 1 f . T
: s \/ ’ /() Repulsion radius 7.,
'I \ 351 e 4 7
Sy D w— Fgoal
2 o T 4--17 Feon
3 = Fsep
3002 - 0 1 2 3

Figure 3. Illustration of force-based modulation around an
agent

4.2.3 Theoretical foundation and behavioral primitives

Within the proposed Multi-Head DDPG framework, the
actor’s decision-making process is realized through a context-
dependent weighted integration of three behavioral primitives:
pursuit, cohesion, and separation. Unlike standard DDPG
architectures that output a single continuous action [12], this
formulation introduces behavioral modularity and implicit role
differentiation using force-based heads. The design of these
primitives is directly inspired by the principles of swarm
intelligence [3] and bio-inspired collective behavior models
[35], where complex group dynamics emerge from simple
local interaction rules.

The choice of pursuit, cohesion, and separation as the core
set of primitives is based on both theoretical and empirical
evidence. In the classical boids model of Reynolds [36],
similar rules (attraction, alignment, and separation) were
shown to be sufficient to generate flocking, swarming, and
encirclement canonical patterns of distributed self-
organization. Pursuit dynamics extend this foundation by
explicitly modeling predator-prey interactions [36], making
the triplet a minimal yet expressive basis for coordinating
agents in pursuit evasion. From a control-theoretic
perspective, pursuit drives goal-directedness, cohesion
maintains group integrity, and separation ensures collision
avoidance and spatial safety of the flock. Together, these
forces span the exploration-exploitation trade-off at the
collective level: aggressive engagement versus cooperative
stability.

4.2.4 Weighted combination and policy output
Formally, each agent receives a local observation 0% €R¢,
which is processed by a multilayer perceptron (MLP). The



MLP applies successive affine transformations interleaved
with nonlinear activations, mapping the raw input into a
compact latent embedding z:€Rk. This latent representation
encodes the salient spatial and relational features of the
environment while attenuating irrelevant noise. Crucially, it
serves as a shared backbone for all behavioral primitives,
ensuring that pursuit, cohesion, and separation are grounded in
a unified perceptual representation while still allowing each to
specialize modularly [8, 10].

From this latent representation, three parallel output heads
compute unnormalized scalar activations (@, S, 7;), each
corresponding to one behavioral primitive:

[Zi},ﬁt, ]'/}] = ActorHeads(z;) (15)

To guarantee interpretability and stability, these activations
are normalized using a softmax transformation, producing a
triplet of adaptive behavioral weights:

[at, Be,vel = Softmax([?f;,[f;,ﬁ]) (16)
with the explicit formulation:
exp®
= (exp® + exp% + exp¥t)
expPt a7

" (exp® + expPt + expTt)
expTt

ve= (exp@ + expht + exp't)

This formulation guarantees that: (a,£,y)€[0, 1]* and a +
B +vy =1, allowing a probabilistic interpretation of role
allocation. At each time step, the model dynamically adjusts
the emphasis on pursuit, cohesion, or separation according to
the agent’s local context.

The final continuous control vector is obtained through a
convex combination of the pre-computed force vectors, as
defined in Eq. (8):

=

total = at I:goal + ﬂt I:coh + }/t F

—
sep

(18)

The resultant vector m constitutes an optimal synthesis
of behavioral primitives, as it preserves the directional
information from pursuit, cohesion, and separation while
adaptively weighting them according to the agent’s local
context. Unlike the selection of a single primitive, this convex
combination ensures continuity of behavior, robustness to
dynamic environments, and faithful preservation of the
underlying strategic intent when mapped onto a discrete action
space.

4.2.5 Direction discretization via angular mapping

Although the pursuit-evasion environment is defined over a
discrete action space, we deliberately adopted a continuous
control algorithm (DDPGQG) as the foundation of our proposed
framework. The motivation stems from the fact that the
underlying decision process is inherently continuous: agents
interact through force-based primitives (pursuit, cohesion, and
separation), which are naturally expressed as continuous
motion vectors in R2. Similar continuous-to-discrete control
strategies have been explored in prior reinforcement learning
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and robotics literature, where continuous policy learning is
combined with discretized action execution to preserve
expressiveness during optimization [7, 12, 30, 32, 34, 37, 38].
Directly modeling these interactions in discrete space obscures
directional nuances and restricts the expressivity of emergent
coordination. In contrast, continuous policies allow the actor
network to modulate the relative weights (;, S, ;) smoothly,
ensuring richer behavioral diversity and more precise
adaptations to local contexts before discretization.

To execute actions in the grid-based environment, the

continuous control vector Fy,¢q; (Eq. (8)) is projected into the
discrete action space via angular mapping. Specifically, the
orientation angle is computed as:
H:arctanZ(Fy,FX) (19)
where, arctan2(.) ensures quadrant disambiguation and robust
handling of directional signs [33]. The angle 8 is then
compared with the canonical direction angles corresponding

to the five discrete moves, and the action minimizing the
angular distance is selected (Table 1).

Table 1. Definition of cardinal target direction

. . Direction Angular Range
Discrete Action at Vector (dx,dy) (Degrees)
Up (0, +1) [45°,1357]
Down (0, -1) [225°,3157]
Left (-1,0) [135°,2257]
Right (+1,0) [-45°,457]
Stay (No
movement) 0,0 NIA
Up .
Up-Left Up-Right
Ftotal
Right
0.0 Lef E —» Mapped Action
Down-Left Down-Right
Down
0.0

Figure 4. Mapping resultant vector to discrete action

This nearest-direction projection guarantees that the chosen
discrete action remains the closest approximation of the
intended continuous force, thus preserving the strategic intent
of the policy (Figure 4). Importantly, no major loss of
information occurs because the grid constraints inherently
restrict the expressivity to five moves; hence, any control
architecture, whether continuous or discrete, must eventually
map to this finite set. The advantage of the continuous
formulation lies in its intermediate flexibility: two continuous
vectors pointing in slightly different directions but mapped to
the same discrete move still influence the learning process
differently, as they produce distinct gradients during the actor-
critic optimization. This ensures that the training signal
preserves fine-grained information even if the final executed
action is discrete.

Such discretization strategies have long been adopted in
robotics and multi-agent navigation, where continuous
velocity commands are transformed into grid-aligned
primitives for path planning and cooperative behaviors [25,
30]. The use of arctan2(-) further provides a deterministic



resolution in ambiguous cases (e.g., diagonal forces), ensuring
consistency across agents and stability in swarm dynamics
[33].

The algorithm of the Multi-Head Actor Network has been
presented in Algorithm 1.

Algorithm 1. Multi-Head Actor Network with Force-
Based Modulation
Initialize the actor network u(0¢; 8,) with a shared
backbone and three behavioral heads (pursuit, cohesion,
separation) producing raw outputs (&, 5, 7).
Initialize the critic network Q(s, a; 6,).
Create target networks by deep-copying parameters:
6,706, and 6, —6.
Initialize an empty replay buffer B of capacity D.
Initialize the exploration noise process JV;.
Begin
For episode = 1 to M:
a. Reset environment E and receive initial local
observations 0} for all agents
b. Fort=0to T:
i. Forward pass through the actor to compute
(@, B:, ) using Eq. (15)
ii. Apply softmax to obtain normalized weights
(at, Br, ve) using Eq. (16)
iii. Compute forces vectors a;, IFC_OZ, ﬁe;
using Eqgs. (9)-(14)
iv. Form weighted action ag®™

using Eq. (20) and
add exploration noise: a?msy using Eq. (21)
v. Discretize ads using Eq. (19)

vi. Execute action ad**¢ in E, and
observe (051,11, 541, doney)
Store (s, 0%, a;°"*” 11, 5141, done,) in B

noisy

vii. Sample a mini-batch (s;, 0({, a;

1 Tj Sj+1, done;)
from B
viii. Critic update:
compute target action: a; = ,u'(Oc{+1 ;0 r) compute
target value:
yy =1+ (1- donej)yQ’(st,aﬂHQI)
Minimize critic loss:

N
1 .
Lo = % ) Iy~ 00,4 [6p))?
=1

Update critic 8y < 8,— ncritic VOyL,

ix. Actor update: compute policy gradient Vo, using
Eq. (24) and update actor 6, « 6,,+ nactor Vo,J

x. Soft-update target using Eq. (25)

End for (timestep loop)

End for (episode loop)

The proposed angular mapping bridges the gap between
continuous force-based reasoning and discrete-action
execution. This enables our Multi-Head DDPG to exploit the
expressive power of continuous control during learning while
maintaining compatibility with the grid-based pursuit-evasion
task. This design choice ensures that the emergent behaviors
are strategically optimal, interpretable, and robust.

4.3 Training procedure of the Multi-Head Actor network

The proposed Multi-Head Actor Network is trained under
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the CTDE paradigm, ensuring that each agent operates solely
on local observations during execution while exploiting global
information during centralized training via a shared replay
buffer. This paradigm has been shown to be effective in
MARL in cooperative and competitive environments [8]. The
optimization builds upon the DDPG framework [12], which is
adapted here to incorporate the force-based action
representation and dynamic role-weighting mechanism
described in Section 4.2.

Let p (Of ;6p) denote the deterministic actor network
parameterized by @u, mapping the local observation Of to a
continuous control vector af®*™ € R2 The network
architecture consists of a shared backbone (MLP) that encodes
0! into a latent vector z¢, which is then processed by three
behavioral heads (pursuit, cohesion, separation). These heads
produce raw activations (@, S, 7;), which are normalized via
the softmax function into adaptive weights (at, St, y+) as in Eq.
(16). Based on the encoded observation, three behavioral
forces @, m, and E are computed (Egs. (9)-(14)). The
actor’s continuous control action is then obtained as the
weighted combination.

cont __
at = goal+ﬁFcoh+}/F

wp (20)
Exploration noise V; (e.g., Gaussian noise [37]) is added in
the continuous space before discretization:

atnoisy — a[cont +M (21)

and mapped to the discrete action space A = {up, down, left,
right, stay} via nearest-direction mapping to produce a#'s
(using Eq. (19)) for environment execution. Transitions
(¢, 08, a.°" 1y, 541, dome,) are stored in the replay buffer B
[6], where done; € {0,1}denotes the done flag indicating
whether the episode terminates at step t (done; = 1) or
continues (done, = 0). This signal is crucial for learning
because it prevents the critic from propagating future value
estimates beyond terminal states. The critic Q(s, a; 64) is then
updated by minimizing the temporal-difference loss as

follows:

N
1 .
Ly(8q) = NZ[)’]' = Q(s;, a;lmy|9q)]2 (22)

j=1

with target values:

y, =1, +(1—done,) yQ (SH, H (Oaj+l

0, |6, )

where, p' are target networks with parameters 6,/ and 6.

The actor parameters are updated using the deterministic
policy gradient [7]:

(23)

1 N
v, 30,) m;(m(sj,a\%) ey VO (000)) @)
=
followed by Polyak averaging:
0o <10+ (1 —1)0y, 2s)

O, <10, +(1—1)0,



4.4 Interpretable role allocation and emergent self-
organization

The  Multi-Head  DDPG  architecture  provides
interpretability by explicitly representing each agent's decision
as a weighted combination of three forces: pursuit, cohesion,
and separation. The agent's real-time priorities are revealed by
a triplet of normalized weights (a, 3, y), which can be directly
inspected during execution.

This formulation facilitates emergent role differentiation, as
agents are not constrained to preassigned static strategies. For
example, in open environments, an agent's policy tends to
prioritize pursuit (o), whereas in crowded spaces, it
increasingly emphasizes cohesion () and separation (y). This
dynamic specialization (e.g. as a chaser or blocker) arises
naturally from local observations without requiring central
control or explicit communication.

This mechanism constitutes a form of distributed self-
organization that echoes the collective intelligence observed
in biological swarms [27, 36]. It illustrates how complex
global strategies, such as encirclement, can emerge from
simple, interpretable local rules. The ability to monitor the
force weights transforms the model from a mere control
system into a diagnostic and explanatory tool, bridging the gap
between reinforcement learning and explainable artificial
intelligence (XAI) [11]. As a result, the system becomes more
scalable, robust, and resilient for real-world deployment.

5. EXPERIMENTAL SETUP AND RESULTS

This section presents the empirical evaluation of the
proposed Multi-Head DDPG architecture in a decentralized
multi-agent pursuit-evasion scenario. The analysis is
organized around four core dimensions: (i) quantitative
performance, (ii) learning stability and behavioral dynamics,
(iii) generalization and robustness, and (iv) interpretability
through emergent self-organization. Additionally, we
benchmarked the proposed method against established
baselines and provided a dedicated analysis of weighted force
coupling and control vector construction. Figures 5-10 jointly
illustrate how learning dynamics, interpretability, and
emergent self-organization arise from the proposed modular
actor design.

5.1 Experimental setup

To assess the performance and robustness of our approach,
we implemented a 2D grid-based pursuit-evasion simulation
environment with fixed dimensions of N > N. The
environment consists of ten cooperative pursuer agents and
two evading targets, where agents must coordinate to intercept
all evaders as quickly and efficiently as possible (see Figure 5
for an illustration of the environment).

Algorithm-specific ~ hyperparameters (e.g., network
architecture, learning rates, replay buffer size, and target
update coefficients) are summarized in Table 2.

Each agent operates under a partially observable
decentralized framework and receives a local observation
vector at each time step t. The agents can choose a discrete
movement action from the set A = {up, down, left, right, stay}.
A capture event is registered when the Euclidean distance
between the pursuer and evader satisfies |[pos,—posel|]2 < deap
with deap = 1, corresponding to the pursuer being in the same
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or an immediately adjacent cell in the Von Neumann
neighborhood (no diagonals).

20.0

® Agents
® Targets
-

17.5 A
-

12.5 A

7.5

5.0

T
0.0 2.5 5.0 7.5

Figure 5. Pursuit-evasion environment (20 x 20 Grid)

Table 2. Hyperparameter configuration for baseline

algorithms
Multi-Head
Parameter DQN PPO DDPG DDPG
Network 2x128 2x128 2x128 1522}{;3132:3
architecture MLP MLP MLP
heads
Actor learning o Je—4 le—4 le—4
rate
Critic learning le—4 Je—4 le=3 le=3
rate
Replay buffer les o 1e5 les
size
Target update _ _ 0.005 0.005

T

To ensure a fair and reproducible comparison across the
learning algorithms, the following experimental conditions
were uniformly applied:

e Agent configuration: 10 pursuers and 2 evaders.
Grid size: 20 x 20 cells.
Training duration: 1,000 episodes, with each episode
capped at 100 times steps.
Discount factor: All models used y = 0.95.
Batch size: 128.
Optimizer: Adam for all neural networks [1].

Exploration strategies followed standard algorithm-specific
practices. DQN employed an epsilon-greedy strategy with
linear annealing, PPO relied on stochastic policy sampling,
and actor—critic methods (standard DDPG and Multi-Head
DDPG) used additive Gaussian noise N(0, o) [34, 37].
Additional experiments using Ornstein—Uhlenbeck noise [12]
confirmed the robustness of the results with respect to the
choice of exploration process.

To mitigate stochasticity and initialization variance, each
algorithm was trained and evaluated over ten independent runs
with different random seeds. All reported metrics are
presented as mean + standard deviation after convergence.

All experiments were conducted on a workstation equipped
with an Intel Core 19-12900K CPU (3.2 GHz), 64 GB RAM,
and an NVIDIA RTX 3090 GPU (24 GB VRAM), running
Windows 11 with PyTorch 2.0.



Algorithm-specific  hyperparameters (e.g., network
architecture, learning rates, replay buffer size, and target
update coefficients) are summarized in Table 2.

5.2 Comparative methods

To rigorously validate the contribution of our approach, we
compared the proposed architecture with three representative
and widely recognized RL baselines:

Deep Q-Network (DQN): A value-based RL algorithm
effective for discrete action spaces [6]. This serves as a
fundamental baseline for measuring the benefits of
continuous-action extensions.

Proximal Policy Optimization (PPO): A robust and sample-
efficient policy-gradient method considered a state-of-the-art
baseline for policy optimization in multi-agent systems [15].
DDPG (Standard): A continuous-action actor-critic method
[12], that serves as a direct baseline to isolate the effects of our
behavioral decomposition and modular actor.

Multi-Head DDPG (Proposed): Our extension of the DDPG
introduces a modular actor with three behavioral heads
(pursuit, cohesion, and separation). These heads are
dynamically weighted to form a force-based control vector
that enables interpretable and adaptive decision-making.

This spectrum of baselines allows us to evaluate the
performance across discrete versus continuous action spaces,
monolithic versus modular architectures, and value-based
versus policy-gradient paradigms.

5.3 Quantitative results

To quantitatively assess our method, we conducted ten
independent training runs with different random seeds to
mitigate stochastic variance. Upon convergence, each trained
policy was evaluated over 1,000 noise-free episodes to obtain
stable and unbiased performance estimates. Evaluation was
based on three key metrics: Success Rate (percentage of
episodes in which all evaders were captured), Average Reward
(mean cumulative return per episode, reflecting both
efficiency and success), and Steps to Capture (mean number
of timesteps required to capture the final evader). The findings
are presented in Table 3. Importantly, the reward values
reported here correspond to normalized evaluation rewards,
ensuring comparability across methods.

To assess the statistical significance of the observed
performance differences, we conducted pairwise Welch’s t-
tests between the proposed Multi-Head DDPG and each
baseline across the 10 independent runs. For all three
evaluation metrics (success rate, average reward, and steps to
capture), the improvements achieved by the proposed method
were found to be statistically significant (p < 0.05).

Relative to the standard DDPG baseline, the proposed
Multi-Head DDPG achieves a +12.6% absolute improvement
in success rate, a +2.7 point increase in average reward, and a
—10.8 timestep reduction in capture time. Compared to PPO,
it yields a +17.8% absolute success rate gain, a +4.4 point
reward increase, and a —15.3 timestep reduction. Against
DQN, improvements are even more pronounced, with a
+24.0% absolute success rate gain, a +5.2 point reward
increase, and a —19.6 timestep reduction.

These consistent improvements across baselines validate
our hypothesis that explicit behavioral decomposition into
pursuit, cohesion, and separation forces, modulated by
adaptive role weights, enables superior coordination under
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partial observability. Shorter capture times indicate more
decisive and coordinated pursuit maneuvers, whereas higher
rewards reflect greater robustness and generalization.

Table 3. Final performance comparison on the pursuit-
evasion task (10 Runs, Mean + Standard Deviation)

. Success Avg Steps to

Algorithm Rate Reward Capture

Multi-Head DDPG g5 5, 51 145109  289+23
(Ours)

DDPG (Standard) 72.6+34 11.8+13 39.7+2.6

PPO 674+22 10.1+1.1 442+29

DQN 612+27 93+1.5 48.5+3.1

5.4 Learning curves and convergence behavior

To investigate stability and sample efficiency, we
monitored the evolution of raw average episodic reward
during training for all four algorithms (DQN, PPO, DDPG,
Multi-Head DDPG) over 1,000 episodes (10 runs averaged).
This comparison is visually summarized in Figure. 6. Unlike
the normalized metrics reported in Table 3, these learning
curves illustrate the wunnormalized reward dynamics
throughout training.

L e

—— DON
PPO
= DDPG
= Multi-Head DDPG
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-
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S

Average Reward
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Episodes

800 1000

Figure 6. Training curves of the raw (non-normalized)
average episodic reward for DQN, PPO, standard DDPG, and
the proposed Multi-Head DDPG, averaged over 10
independent runs

The curves illustrate learning stability, convergence speed,
and asymptotic performance; normalized rewards are reported
separately in Table 3.

Because DDPG was originally designed for continuous
spaces [12], its outputs were projected onto discrete directions
via force-based angular mapping. This ensures a fair
comparison with the DQN and PPO, which natively operate in
discrete domains.

The proposed Multi-Head DDPG exhibited the most
favorable learning dynamics, achieving rapid convergence
within the first 100 episodes and maintaining the highest
asymptotic reward (~180-190). In contrast, the standard
DDPG plateaus at approximately 150 with a higher variance,
indicating  sensitivity = to  exploration noise  and
hyperparameters. PPO demonstrated slower and unstable
convergence, ultimately yielding a near-zero average reward,
whereas DQN failed to progress beyond negative to near-zero
values, confirming the inadequacy of value-based methods in
this setting.

These results highlight three main findings: (i) accelerated



convergence and superior asymptotic performance of the
Multi-Head DDPG relative to all baselines; (ii) reduced
variance across runs, evidencing robustness against non-
stationarity; and (iii) clear limitations of monolithic or value-
based approaches, which lack the representational flexibility
required for fine-grained coordination. Overall, this analysis
confirms that modular behavioral decomposition with
adaptive weighting substantially enhances both learning
efficiency and reliability in decentralized multi-agent pursuit-
evasion tasks.

5.5 Behavioral role differentiation and interpretability

A distinctive advantage of the proposed Multi-Head DDPG
lies in its interpretable actor design, where each action is
parameterized by a triplet of role weights (a, B, )
corresponding to the pursuit, cohesion, and separation forces,
respectively. This explicit decomposition transforms latent

—— @ (Pursuit)

—— B (Cohesion)

policy modulations into observable quantities, thereby
providing a direct window into the decision-making process of
agents. Figure 7 illustrates the temporal evolution of the role
weights across 1,000 steps for all ten pursuers, whereas Figure
8 summarizes their mean profiles over the entire horizon. After
an initial transient phase (~150-200 steps), the majority of
agents converge to stable yet heterogeneous configurations,
reflecting emergent specialization. For instance, Agent 2
predominantly acts as a pursuit specialist (mean o ~ 0.94),
Agent 3 emphasizes cohesion (§ = 0.97), and Agent 1 adopts
a separation-dominant strategy (y = 0.96) with a reduced
pursuit. Conversely, Agent 7 exhibited high pursuit and
cohesion but persistently low separation, corresponding to a
risk-taking chaser. In contrast, several agents (e.g. Agents 0,
4,5, 8, and 9) maintained balanced weight distributions (a, 3,
v = 0.95-0.98), consistent with more generalist and adaptable
behaviors.
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Figure 7. Temporal evolution of role weights (a, B, y) for each pursuer

The heatmap in Figure 8 quantitatively confirms these
trends by distinguishing between specialized and balanced
roles without any pre-assignment or external coordination.

3126

Such differentiation arises end-to-end from decentralized
learning dynamics under partial observability, thereby
validating the self-organizing capacity of the architecture.
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Figure 8. Heatmap of mean role weights (o, 3, y) per agent

Importantly, the ability to monitor (o, B, y) over time not
only enhances interpretability but also facilitates human-in-
the-loop supervision, systematic diagnosis of emergent
behaviors, and more reliable deployment in safety-critical
multi-agent scenarios.
vector

5.6 Weighted force control

construction

coupling and

To elucidate the internal decision-making process of the
proposed architecture, the control vector at each time step is
expressed as a weighted linear combination of three
interpretable primitive forces—pursuit, cohesion, and
separation—as formalized in Eq. (8). Figures 8 and 9 provide
complementary perspectives: the trajectories of the adaptive
role weights (a, B, y) for all agents and the corresponding force
magnitudes ||[F_goal||, ||[F_coh||, ||F_sep||, together with the
resultant ||F_total|.

Three salient observations emerge from this analysis. First,
separation consistently accounted for the largest share of the
force budget. As illustrated by the recurrent peaks of |F_sepl||
(often in the range of 3-4) for Agents 5-9, collision avoidance
dominated when the agents operated in congested
configurations. In contrast, |F_goal|| and |[F_coh|| remained
comparatively smaller (typically below 1.5), except during
sparse regimes or post-dispersion phases. Second, despite the
high variability in the primitive forces, the resultant ||F_totall||
exhibits smooth temporal evolution, demonstrating that the
weighted coupling acts as a stabilizing mechanism. This
effectively ensures coherent motion policies and mitigates the
risk of erratic behavior. Third, the modulation of role weights
directly reflects context-sensitive adaptation: pursuit forces
weaken when agents close in on targets, whereas cohesion and
separation forces increase under high-density interactions,
consistent with transient rises in § and .

Overall, these findings highlight the operational
transparency of the proposed architecture. The explicit
mapping between role weights and force magnitudes provides
an interpretable bridge between internal policy modulation and
observable control signals, thereby reinforcing both the
robustness and explainability of the emergent behaviors of the
agent.

5.7 Generalization and robustness

To evaluate the generalization ability and robustness of the
learned policies beyond their training distribution, we
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designed a set of out-of-distribution (OOD) scenarios that
reflect the practical challenges of real-world multi-agent
coordination. Specifically, we considered three settings:

Increased Agent Density — 15 agents instead of 10, leading
to greater interaction complexity and collision potential.

Faster Evaders — evaders move more rapidly, making
pursuit and interception more difficult to achieve.

Presence of Dynamic Obstacles introduces
environmental unpredictability, requiring enhanced situational
awareness.

The success rates across these settings are reported in Table
4, which compares the performance of four algorithms: DQN,
PPO, standard DDPG, and our proposed Multi-Head DDPG.

Several key observations emerge from this evaluation.

Superior generalization of Multi-Head DDPG: In all three
scenarios, our method achieved the highest success rate, with
margins of over 10% compared to the next best baseline. This
consistent superiority indicates that the learned policy does not
overfit the training conditions and adapts effectively to novel
dynamics and spatial configurations.

Table 4. Success rates in out-of-distribution scenarios

. DDPG Multi-Head
Scenario DQN PPO Std DDPG
Dense Swarm ) 300 1805 67.1% 81.7%
(15 agents)
Faster Evaders 45.6% 52.0% 60.4% 75.3%
With Obstacles  40.1% 49.2% 57.3% 69.8%

Impact of modular force-based decomposition. The strength
of the proposed architecture lies in its decomposition of
control into interpretable behavioral forces (pursuit, cohesion,
and separation) with adaptive weighting. This modular
representation allows the policy to generalize its behavioral
response, even when facing previously unseen variations in the
agent’s behavior or environmental structure.

Limitations of value-based and monolithic approaches.
DQN, which lack continuous modulation capabilities, suffer
the most across all settings. PPO and standard DDPG
performed moderately better but still lacked the flexibility of
our Multi-Head modulation strategy when exposed to high-
density or nonstationary environments.

In summary, these results confirm that the Multi-Head
DDPG offers both robust performance and strong
generalization capacity, reinforcing the hypothesis that
modular policy structures are more suitable for scalable real-
world multi-agent coordination.

5.8 Emergent self-organization

We assessed whether the proposed Multi-Head DDPG
facilitates emergent self-organization through both individual
and collective analyses. At the agent level, the temporal
trajectories of role weights (a, B, y) indicated heterogeneous
specialization, with some agents consistently prioritizing
pursuit, while others emphasized cohesion or separation.
Crucially, these roles are not predefined but emerge
autonomously from decentralized interactions under partial
observability.

This demonstrates the ability of the architecture to induce
role differentiation without external supervision.

At the collective level, coordination metrics demonstrated
structured group behaviors, including reduced collision rates,
compact clustering around evaders, and spontaneous



emergence of encirclement and blocking formations. These
dynamics are exemplified in Figure 10, Multi-agent simulation
demonstrating emergent cooperative coordination and
encirclement of evaders, which visually depicts how agents
self-organize into cohesive formations to contain the targets.
Such patterns were absent in the DQN, PPO, and standard
DDPG, underscoring the distinct advantages of the proposed
architecture.

Agent 0 - Force Norms

Overall, these results show that Multi-Head DDPG does
more than improve task performance; it induces interpretable
emergent coordination grounded in local decision-making.
This capacity to monitor and quantify emergent dynamics
strengthens the link between reinforcement learning and
explainable multi-agent control, enhancing the scalability and
robustness of decentralized systems.
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Figure 9. Coupling between adaptive role weights and corresponding force magnitudes
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Figure 10. Pursuit-evasion episode illustrating emergent self-organization
6. CONCLUSION Wahid Chergui, Mohammed El Habib Souidi and Abdelaali

This study introduces a novel extension of the DDPG
algorithm for decentralized multi-agent coordination,
leveraging a Multi-Head Actor architecture that adaptively
balances three interpretable behavioral primitives—pursuit,
cohesion, and separation— dynamically modulated weights
(o, B, 7).

Extensive empirical evaluation against strong baselines
(DQN, PPO, standard DDPG) shows that the proposed
approach achieves consistent improvements across four
dimensions: (i) superior task performance and efficiency, (ii)
accelerated convergence with enhanced stability, (iii)
interpretability through role-specific weight trajectories, and
(iv) robust generalization to out-of-distribution scenarios
involving denser swarms, faster evaders, and cluttered
environments. Further coupling analysis confirm that
emergent macroscopic behaviors arise coherently from
modular force decomposition, offering both transparency and
reliability in collective decision-making.

Beyond performance, this study underscores the potential of
modular policy structures to bridge reinforcement learning
with explainable multi-agent control. Future research
directions include hierarchical role coordination, human-in-
the-loop guidance, hardware deployment in robotic swarms,
and theoretical analyses of convergence and stability
guarantees.

In conclusion, the Multi-Head DDPG framework provides
a scalable, interpretable, and high-performance foundation for
cooperative autonomy, with direct applicability to swarm
robotics, surveillance, and multi-agent search-and-rescue
missions.
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