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Designing scalable and interpretable control strategies for decentralized multi-agent 

systems remains a challenge in reinforcement learning (RL). This challenge is particularly 

evident in pursuit–evasion tasks, which require coordination under partial observability, 

without explicit communication or centralized guidance. Although deep RL methods 

achieve strong performance, they typically operate as black boxes, limiting trust and 

deployment in safety-critical domains. We propose a Multi-Head DDPG architecture that 

decomposes control into three interpretable force components - pursuit, cohesion, and 

separation - weighted adaptively to generate context-aware actions. This design enables 

emergent role differentiation and interpretable self-organization in the model. In grid-based 

pursuit–evasion benchmarks, our method outperforms DQN, PPO, and standard DDPG in 

terms of success rate, convergence speed, and generalization, while also yielding 

transparent collective behaviors. Overall, the results show that weighted force-based 

behavioral decomposition provides a principled pathway toward achieving both high-

performance and explainable multi-agent control. 
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1. INTRODUCTION

Reinforcement Learning (RL) is a computational 

framework in which agents learn sequential decision-making 

policies by interacting with their environment and optimizing 

long-term cumulative rewards through trial and error [1]. Its 

extension to multi-agent systems, known as Multi-Agent 

Reinforcement Learning (MARL), addresses scenarios where 

multiple agents must adapt their policies concurrently under 

partial observability, non-stationarity, and limited 

communication [2]. In recent years, the integration of Deep 

Reinforcement Learning (DRL) into MARL has significantly 

advanced the field, allowing agents to approximate policies 

and value functions directly from high-dimensional inputs [3-

7]. This synergy has positioned DRL-based MARL as a 

cornerstone paradigm for distributed coordination in domains 

such as swarm robotics, autonomous driving, and 

collaborative multi-robot systems. 

In this context, the pursuit-evasion problem has emerged as 

a canonical benchmark for evaluating coordination under 

decentralization. In this task, a team of pursuers must 

cooperate to capture one or more evaders in discrete or 

continuous environments, typically without centralized 

supervision [8-24]. The challenge lies in the simultaneous 

requirements for adaptation under uncertainty, cooperative 

strategy formation and emergent role differentiation. Although 

traditional solutions rooted in control theory, game-theoretic 

models, or heuristic rules [13], Shoham and Leyton-Brown [5] 

offered interpretable baselines, they lack the flexibility and 

scalability required in dynamic and high-dimensional settings. 

Despite the successes of DRL-based MARL and the 

development of strategies such as Centralized Training with 

Decentralized Execution (CTDE) [8], selective parameter 

sharing [9], and emergent communication [10], a critical 

limitation persists: most DRL policies behave as opaque black 

boxes. They often achieve state-of-the-art performance in 

UAV swarms or multi-robot systems but provide little insight 

into why specific coordination patterns or roles emerge, 

thereby hindering trust, debugging, and safe deployment [14]. 

Among existing DRL algorithms, the Deep Deterministic 

Policy Gradient (DDPG) [12] has been widely applied to 

continuous control owing to its sample efficiency and actor-

critic structure. However, its monolithic design maps 

observations directly to single actions, resulting in slow 

convergence, high sensitivity to hyperparameters, and a lack 

of mechanisms for role differentiation and self-organization 

[8, 21]. 

To overcome these limitations, we introduce a Multi-Head 

DDPG architecture that explicitly decomposes the actor’s 

policy into three interpretable behavioral primitives—pursuit, 

cohesion, and separation—each represented as a force-based 

component. Unlike the monolithic DDPG, the final action is 

computed as an adaptive weighted combination of these 

primitives, thereby producing a modular and transparent 

control policy. This formulation not only enhances 

performance but also enables emergent self-organization, as 

agents autonomously specialize in complementary roles 

without central supervision. This work makes three main 
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contributions. First, we propose a structural innovation in the 

form of a Multi-Head Actor architecture that decomposes 

continuous control into interpretable force-based behavioral 

primitives, improving policy transparency and modularity in 

decentralized MARL. Second, we introduce a mechanistic 

innovation based on adaptive and context-aware weighting of 

these primitives, enabling dynamic role specialization and 

self-organized coordination during learning. Third, we provide 

a comprehensive empirical validation of decentralized 

pursuit–evasion benchmarks. The results show that the 

proposed structural and mechanistic designs jointly yield 

superior performance, faster convergence, and improved 

generalization compared to DQN, PPO, and standard DDPG. 

An interpretability analysis of the learned behavioral 

weights further illustrates how coordinated strategies and role 

differentiation emerge from this framework. 

The remainder of this paper is organized as follows: Section 

2 reviews the related work on MARL, pursuit-evasion, and 

interpretable control. Section 3 formalizes the problem. 

Section 4 introduces the proposed Multi-Head DDPG 

framework. Section 5 presents the experimental evaluations, 

including comparative benchmarks and interpretability 

analysis. Finally, Section 6 concludes with the key findings 

and future research directions. 

 

 

2. RELATED WORK  

 

The pursuit-evasion problem has long served as a 

benchmark for studying coordination in MARL because it 

naturally requires decentralized control, adaptability, and 

emergent teamwork [3]. Existing approaches can be broadly 

categorized along a spectrum between interpretable but limited 

methods and scalable but opaque methods. 

Early approaches. Heuristics, fuzzy control, and game-

theoretic models, such as Nash equilibria or rule-based 

behavioral controllers inspired by collective motion models 

[25-36], provide transparent and explainable policies. Their 

interpretability makes them useful for understanding 

coordination mechanisms; however, their handcrafted nature 

limits their scalability to high-dimensional or stochastic 

environments. These methods highlight the trade-off between 

interpretability and adaptability, which is a limitation that 

motivated the adoption of learning-based approaches. 

DRL-based approaches. With the advent of DRL, agents 

can learn policies directly from raw or high-dimensional 

inputs, enabling scalable coordination strategies [6, 12]. State-

of-the-art performance has been demonstrated in complex 

multi-agent tasks [1, 2]. However, the resulting policies 

typically behave as black-box models, offering limited 

interpretability. Thus, while DRL methods provide scalability 

and robustness, they exacerbate the lack of transparency 

regarding internal decision-making processes. 

Communication and CTDE. Another research line has 

focused on improving coordination through communication 

learning and centralized training methods. Foerster et al. [10] 

introduced Reinforced Inter-Agent Learning (RIAL) and 

Differentiable Inter-Agent Learning (DIAL), showing that 

agents can autonomously develop communication protocols. 

Building on this, the now-dominant CTDE paradigm allows 

leveraging global information during training while retaining 

distributed autonomy at execution [20, 21]. These approaches 

achieve strong performance, particularly in UAV 

coordination, but the internal reasoning processes remain 

opaque. Thus, they maximize scalability but further reduce the 

interpretability. 

Interpretable MARL and behavior-based 

decomposition. Recent work in MARL has increasingly 

emphasized interpretability, motivated by the need for 

transparency, debugging, and trustworthy deployment in 

safety-critical multi-robot systems [11, 14]. Explainable AI 

studies have highlighted that high-performing deep policies 

often lack explicit causal structure, hindering decision 

justification and failure diagnosis in multi-agent settings [1, 2]. 

To address this, behavioral decomposition and hierarchical 

reinforcement learning represent policies as compositions of 

reusable primitives or options rather than monolithic 

mappings, improving both learning efficiency and 

interpretability [22, 29]. However, such abstractions are often 

detached from physically meaningful interaction mechanisms. 

In parallel, swarm robotics and multi-agent navigation have 

long relied on attractive–repulsive interaction rules, including 

artificial potential fields and social-force models, to encode 

goal attraction, collision avoidance, and group dynamics [4, 

26]. Boids models and flocking theory further formalize 

cohesion, separation, and alignment as decentralized 

coordination primitives [27, 36]. Several DRL approaches 

implicitly incorporate these interaction priors, for example 

through socially aware reward shaping or interaction features, 

demonstrating improved coordination and navigation 

performance [17, 18, 32]. Nevertheless, in most existing 

works, force-based components remain handcrafted or 

auxiliary, and learned policies do not provide an explicit, 

interpretable decomposition of behavioral roles. Importantly, 

these interaction models are rarely integrated as first-class 

components of the policy representation itself. 

Emergent coordination without communication. A 

complementary direction emphasizes self-organization 

without explicit communication between the agents. Sun et al. 

[16] proposed fuzzy self-organization for subgroup formation, 

Christianos et al. [9] leveraged selective parameter sharing to 

enhance scalability, and Hüttenrauch et al. [18] introduced 

mean feature embeddings to enhance local spatial awareness. 

In pursuit-evasion tasks, De Souza et al. [17] combined DRL 

with curriculum learning to balance group and individual 

incentives, whereas Yu et al. [19] extended Double-DQN and 

Duelling-DQN to stabilize cooperative pursuits under partial 

observability. These methods demonstrate that scalable 

emergent teamwork is possible; however, because policies 

remain opaque, role differentiation and self-organization 

emerge implicitly rather than being explicitly modelled. 

Our contribution. The proposed Multi-Head DDPG 

addresses this gap by explicitly decomposing agent control 

into three interpretable behavioral primitives: pursuit, 

cohesion, and separation. Unlike existing DRL methods, our 

approach maintains scalability while directly exposing the 

modulation of behavior using adaptive weights. This not only 

improves quantitative performance but also enables emergent 

self-organization and transparent role differentiation, 

reconciling the tension between performance and 

interpretability of the model. 

 

 

3. FORMULATION OF THE PURSUIT-EVASION 

DILEMMA  

 

The multi-agent pursuit-evasion (PE) problem serves as a 

long-standing benchmark for cooperative and adversarial 
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decision-making, particularly in the field of MARL. It 

involves two classes of agents, pursuers and evaders, 

interacting in a shared environment characterized by 

decentralization and partial observability. Pursuers aim to 

coordinate their efforts to capture evaders, whereas evaders 

seek to maximize their survival by avoiding detection and 

confinement. This dilemma encapsulates fundamental 

challenges of distributed perception, decentralized control, 

and emergent self-organization [1, 2]. 

In this study, we adopt a grid-based discrete environment of 

size M × N, which is a widely used abstraction in pursuit-

evasion research that balances tractability with the ability to 

model realistic multi-agent dynamics [19, 22, 23]. Each agent 

occupies a single grid cell and evolves in discrete time steps t 

= 0, 1, 2, … At each step, an agent may move to one of the 

four cardinal neighboring cells (up, down, left, right) or remain 

stationary, subject to the grid boundaries and occupancy 

constraints. Formally, let P = {p₁, p₂, …, pₙₚ} denote the set of 

pursuers and E = {e₁, e₂, …, eₙₑ} the set of evaders, with 𝐴 =
𝑃 ∪ 𝐸  representing the complete population of agents. The 

position of agent 𝑎 ∈ 𝐴 at time 𝑡 is denoted 𝑝𝑜𝑠𝑎
𝑡 ∈ ℤ², and its 

discrete action space is given by: 𝒜𝑎 = {up, down, left, right, 

stay} with valid transitions restricted to: 

 

𝑝𝑜𝑠𝑎
𝑡+1 ∈ 𝒩(𝑝𝑜𝑠𝑎

𝑡)
= {𝑝𝑜𝑠𝑎

𝑡 , 𝑝𝑜𝑠𝑎
𝑡 + (0,1), 𝑝𝑜𝑠𝑎

𝑡

− (0,1), 𝑝𝑜𝑠𝑎
𝑡 + (1,0),  𝑝𝑜𝑠𝑎

𝑡

− (1,0)} 

(1) 

 

where, 𝒩(𝑝𝑜𝑠𝑎
𝑡) denotes the Von Neumann neighborhood of 

the agent’s position. This neighborhood includes the four 

orthogonally adjacent cells along the cardinal axes, while 

excluding diagonal cells. The Von Neumann neighborhood is 

extensively employed in grid-based multi-agent environments 

because it provides a simple yet realistic model of local 

connectivity, facilitating efficient interaction dynamics and 

collision handling [28]. 

The pursuit-evasion task is formally modeled as a Partially 

Observable Markov Game (POMG) [24], defined by the tuple 

 

𝐺 = ⟨𝒜, 𝑆, {𝒪𝑎}𝑎∈𝒜 , {𝒜𝑎}𝑎∈𝒜 , 𝑇,{ℛ𝑎}𝑎∈𝒜 , ρ⟩ (2) 

 

where, S is the global state space of agent configurations, 𝒪𝑎 

is the local observation space for agent 𝑎, 𝑇 is the stochastic 

transition function, ℛ𝑎 is the agent-specific reward, and 𝜌 ∈
[0, 1] is the discount factor.  

Observability is egocentric, meaning that each agent 

perceives the relative positions of other agents within a fixed 

sensing radius 𝑟𝑠.  

The local observation set of agent 𝑎 at time 𝑡 is therefore 

defined as: 

 

𝑂𝑎
𝑡  =  {𝑝𝑜𝑠𝑗

𝑡 − 𝑝𝑜𝑠𝑎
𝑡  | 𝑗

∈ 𝓐 ∧ ‖𝑝𝑜𝑠𝑗
𝑡 − 𝑝𝑜𝑠𝑎

𝑡‖ 2 ≤ 𝑟𝑠} 
(3) 

 

This egocentric design ensures translational invariance, 

scalability to varying numbers of agents, and adaptability to 

different grid sizes while reducing the input dimensionality by 

retaining only spatially local motion cues. By excluding 

environmental obstacles, we further isolate the intrinsic 

coordination phenomena that emerge from agent-agent 

interactions, making this formulation a robust testbed for 

investigating emergent self-organization and cooperative 

strategies in decentralized multi-agent systems [8, 21]. 

 

3.1 Definition of capture  

 

A capture event occurs when an evader is fully surrounded 

by pursuers such that all adjacent cells are simultaneously 

occupied. Let the position of evader 𝑒𝑗 ∈ 𝐸  at time 𝑡 be 

𝑝𝑜𝑠𝑒𝑗
𝑡 ∈ 𝑍2. Its neighborhood is defined as: 

 

( )
( ) ( )  

( ) ( ) ( ) ( ) 

2, , ,

0,1 , 0, 1 , 1,0 , 1,0

j

j

t

et
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x y x y pos
pos





   + 
=  
  − − 

 (4) 

 

An evader is captured at time t if at least k of the cells in its 

Von Neumann neighborhood 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡 ) are simultaneously 

occupied by distinct pursuer agents 𝑝𝑖 ∈ 𝑃: 

 

|(𝑥, 𝑦) ∈ 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡 ) |∃𝑝𝑖 ∈ 𝑃 ∶ 𝑝𝑜𝑠𝑝𝑖

𝑡 = (𝑥, 𝑦) |  ≥ k (5) 

 

Here, the neighborhood 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡 ) contains at most four 

orthogonally adjacent cells. Therefore, parameter k ≤ 4 

denotes a capture threshold, corresponding to the minimum 

number of neighboring cells that must be occupied for a 

capture event to occur. Setting k = 4 enforces strict 

encirclement, requiring full occupation of the neighborhood, 

whereas smaller values (e.g., k = 2) relax this constraint and 

reduce the level of coordination required among pursuers. 

This parameterization allows the task difficulty to be 

systematically adjusted, ranging from partial containment to 

complete encirclement, and enables controlled evaluation of 

MARL algorithms under varying cooperation demands. Such 

capture criteria naturally promote coordinated behaviors, such 

as flanking, blocking, and convergence, fostering emergent 

role differentiation and self-organization [18]. 

 

3.2 Reward and learning objectives 

 

The objective of pursuers is to maximize the total number 

of successful captures through decentralized coordination. 

Following standard MARL formulations [9, 17], we employ a 

sparse, event-driven reward structure. For each pursuer 𝑝𝑖 ∈
𝑃, the immediate reward at time t is defined as:  

 

𝑟𝑖
𝑡 = 

{
+𝑅𝑐 , if agent i contributes to a capture at time t      
−𝑟𝑚 , if agent i makes an invalid or redundant move
0,   otherwise                                                                       

 
(6) 

 

where, R𝑐 > 0 is the cooperative capture reward and 𝑟𝑚 > 0 is a 

penalty for inefficiency. Each agent aims to optimize its 

discounted return within a finite time horizon T, which is 

defined as: 

 

𝑅𝑖 = ∑𝜌𝑡𝑟𝑖
𝑡

𝑇

𝑡=0 

 (7) 

 

with 𝜌 ∈ [0, 1] as the discount factor. This design ensures that 

captures can only be achieved through collective effort, while 

discouraging selfish or redundant actions. Meanwhile, evaders 

follow reactive strategies aimed at maximizing their distance 
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from nearby pursuers, thus exerting adversarial pressure and 

promoting the development of robust pursuit policies. 

 

3.3 Significance for self-organization 

 

The pursuit-evasion paradigm extends beyond theoretical 

interest: it models practical scenarios in robotic surveillance, 

UAV swarms, and wildlife monitoring where agents operate 

under strict communication and sensing constraints [25-27]. 

Its decentralized formulation, absence of global state 

information, and reliance on local interactions make it a 

natural benchmark for studying emergent coordination and 

interpretable self-organization. By analyzing how global 

strategies, such as encirclement or flanking, arise from local 

force-based rules, this framework provides valuable insights 

into the design of scalable, robust, and explainable MARL 

systems. 

 

 

4. BACKGROUND AND PROPOSED MULTI-HEAD 

ARCHITECTURE 

 

4.1 Deep Deterministic Policy Gradient: Limitations and 

Multi-Head enhancement 

 

The DDPG algorithm, introduced by Lillicrap et al. [12], is 

an off-policy actor-critic method designed for continuous 

action spaces. It combines the Deterministic Policy Gradient 

(DPG) [7] with deep neural networks to approximate both the 

policy and value function, while employing replay buffers and 

target networks to improve training stability. DDPG has been 

successfully applied in robotics [31], navigation [32], and 

multi-agent learning [8]. 

 

 
 

Figure 1. Structure of the Deep Deterministic Policy 

Gradient (DDPG) algorithm 

 

As illustrated in Figure 1, the standard DDPG consists of 

four neural networks: an online actor, an online critic, and their 

respective target networks. The actor maps the states to 

continuous actions, whereas the critic evaluates these actions 

using the Q-function. Target networks stabilize training 

through soft updates, and the replay buffer enables efficient 

off-policy learning. 

Despite these strengths, the standard DDPG exhibits key 

limitations in multi-agent settings. Its monolithic architecture 

maps observations directly to single actions, which (i) slows 

convergence and increases sensitivity to hyperparameters, (ii) 

produces opaque policies that hinder interpretability, and (iii) 

prevents role differentiation, thereby limiting the emergence 

of complex cooperative behaviors such as encirclement. 

To overcome these shortcomings, we introduce a Multi-

Head DDPG actor that decomposes the control signal into 

three interpretable primitives—pursuit, cohesion, and 

separation—weighted adaptively at each time step. This 

modular design preserves the stability and sample efficiency 

of the DDPG while enhancing policy transparency and 

enabling emergent self-organization in decentralized pursuit-

evasion tasks. 

 

4.2 Multi-Head Actor with force modulation  

 

4.2.1 Architectural overview 

The proposed Multi-Head Actor architecture constitutes a 

substantial extension of the conventional DDPG framework 

[12], introducing explicit behavioral modularity that promotes 

emergent coordination in decentralized pursuit-evasion tasks. 

Unlike the monolithic policy outputs of standard DDPG, our 

actor decomposes decision-making into three interpretable 

control primitives inspired by swarm intelligence [35], bio-

inspired collective behavior [26], and modular reinforcement 

learning [29]: pursuit (𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), cohesion (𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), and separation 

(𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗). This architecture is illustrated in Figure 2. 

 

 
 

Figure 2. Multi-Head Actor architecture 

 

The network design begins with a shared feature extractor, 

realized as a multilayer perceptron, which encodes the agent’s 

local observation 𝑂𝑎
𝑡  into a latent representation. This common 

backbone ensures that all behavioral components operate with 

a unified semantic understanding of the environment. From 

this latent representation, three parallel output heads compute 

their respective continuous force vectors. 

In parallel, a dynamic role-weighting module, implemented 

as a separate branch with a softmax activation, generates a 

triplet of normalized behavioral weights (𝛼𝑡,𝛽t,𝛾𝑡)∈ [0, 1]3, 

subject to the convexity constraint: 𝛼𝑡 + 𝛽t + 𝛾𝑡 = 1. These 

weights adaptively modulate the relative influence of each 

control primitive based on the agent’s local context, thereby 

supporting dynamic role allocation. The final continuous 

control vector is then obtained as follows: 

 

total t goal t coh t sepF F F F  = + +  (8) 

 

Since the pursuit-evasion environment operates on a 

discrete grid, 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is discretized into one of the available 

movement actions A = {up, down, left, right, stay} using a 

nearest-direction mapping. 

This architectural choice offers three core advantages: (i) 
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interpretability, as the learned role weights can be directly 

inspected over time, revealing the agent’s decision-making 

process; (ii) context-sensitive coordination, allowing agents to 

autonomously adapt their behavioral emphasis to situational 

demands; and (iii) robustness and generalization, since 

modular primitives can be dynamically recombined to handle 

unseen or evolving scenarios. 

By embedding these behavioral priors into the policy, the 

Multi-Head Actor bridges the gap between high-performance 

DRL [12] and explainable self-organization [11]. This results 

in scalable, interpretable, and emergent group behaviors in 

fully decentralized multi-agent systems. 

 

4.2.2 Behavioral decomposition: Force-based modulation 

The proposed Multi-Head Actor architecture aims to 

achieve interpretable and modular control by decomposing the 

policy into three fundamental behavioral primitives: pursuit, 

cohesion, and separation. Consider an agent a ∈ Pa, which 

represents a pursuer located at position 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎  at time step t. 

Based on its local perception 𝑂𝑎
𝑡 , the agent calculates three 

normalized force vectors, each corresponding to a distinct 

behavioral primitive. These primitives function as modular 

components within the control policy, facilitating interpretable 

and adaptive multi-agent coordination. 

Pursuit Force( 𝑭𝐠𝐨𝐚𝐥
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): Generates a force vector oriented 

toward the nearest target, enabling direct interception 

behavior.  

 

𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑒 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎
‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑒 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖2

 (9) 

 

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑒 = arg min
𝑝 𝑗∈(𝐸∩𝑄𝑎

𝑡 )
‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖2

 (10) 

 

Here, 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝒆 denotes the position of the closest evader within 

the sensing range of the agent. The resulting vector is unit-

normalized to preserve directionality while removing 

magnitude scaling. From a behavioral perspective, a high 

modulation coefficient 𝛼𝑡  indicates an aggressive pursuit 

strategy whereby the agent prioritizes rapid engagement with 

its target. 

Cohesion Force (𝑭𝒄𝒐𝒉
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ): Produces a force vector that drives 

the agent toward the centroid of its teammates within a fixed 

radius 𝑟𝑠  [27] and outside a repulsion zone 𝑟𝑟𝑒𝑝  (to avoid 

conflict with separation), thereby enhancing spatial 

coordination. 

 

𝑁𝑎 = {𝑗 ∈ 𝑃 ∶ |𝑟𝑟𝑒𝑝 < ‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖2
≤ 𝑟𝑠} (11) 

 

𝐹𝑐𝑜ℎ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

1

|𝑁𝑎|
∑

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎

‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖2𝑗∈𝑁𝑎

 (12) 

 

The neighbour set 𝑁𝑎 consists of all pursuers in the annular 

region 𝑟𝑟𝑒𝑝  <𝑑 ≤ 𝑟𝑠. Each direction vector toward a teammate 

was normalized, and the resulting mean vector points toward 

the centroid of the group. A high value of 𝛽𝑡  reflects 

formation-preserving behavior, promoting coordinated 

movement and group cohesion, which can improve 

encirclement strategies (Figure 3). 

Separation Force (𝑭𝒔𝒆𝒑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ): Outputs a force vector that repels 

the agent from nearby pursuers to prevent overcrowding and 

collisions [27]. 

𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = − ∑

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎

‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖2

2

𝑗∈𝑁𝑎
′

 (13) 

 

𝑁𝑎
′ = {𝑗 ∈ (𝑃 ∪ 𝐸) |‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗𝑎‖ 2 ≤ 𝑟𝑟𝑒𝑝  } (14) 

 

The set 𝑁𝑎
′  includes all agents within a predefined repulsion 

radius 𝑟𝑟𝑒𝑝. Inverse-square distance weighting ensures that the 

repulsion strength increases significantly in close proximity. 

Behaviorally, a high coefficient 𝛾𝑡  corresponds to collision-

avoidance prioritization, which is a critical factor in dense 

formations or confined environments. 

Each force vector is calculated locally based on the 

geometric relationships within the grid. All forces are 

normalized to ensure stability and proper orientation. These 

normalized forces are then combined to form the final motion 

vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

 

 
 

Figure 3. Illustration of force-based modulation around an 

agent 

 

4.2.3 Theoretical foundation and behavioral primitives 

Within the proposed Multi-Head DDPG framework, the 

actor’s decision-making process is realized through a context-

dependent weighted integration of three behavioral primitives: 

pursuit, cohesion, and separation. Unlike standard DDPG 

architectures that output a single continuous action [12], this 

formulation introduces behavioral modularity and implicit role 

differentiation using force-based heads. The design of these 

primitives is directly inspired by the principles of swarm 

intelligence [3] and bio-inspired collective behavior models 

[35], where complex group dynamics emerge from simple 

local interaction rules. 

The choice of pursuit, cohesion, and separation as the core 

set of primitives is based on both theoretical and empirical 

evidence. In the classical boids model of Reynolds [36], 

similar rules (attraction, alignment, and separation) were 

shown to be sufficient to generate flocking, swarming, and 

encirclement canonical patterns of distributed self-

organization. Pursuit dynamics extend this foundation by 

explicitly modeling predator-prey interactions [36], making 

the triplet a minimal yet expressive basis for coordinating 

agents in pursuit evasion. From a control-theoretic 

perspective, pursuit drives goal-directedness, cohesion 

maintains group integrity, and separation ensures collision 

avoidance and spatial safety of the flock. Together, these 

forces span the exploration-exploitation trade-off at the 

collective level: aggressive engagement versus cooperative 

stability. 

 

4.2.4 Weighted combination and policy output 

Formally, each agent receives a local observation 𝑂𝑎
𝑡 ∈𝑅𝑑, 

which is processed by a multilayer perceptron (MLP). The 

3121



 

MLP applies successive affine transformations interleaved 

with nonlinear activations, mapping the raw input into a 

compact latent embedding 𝑧𝑡∈ 𝑅𝑘. This latent representation 

encodes the salient spatial and relational features of the 

environment while attenuating irrelevant noise. Crucially, it 

serves as a shared backbone for all behavioral primitives, 

ensuring that pursuit, cohesion, and separation are grounded in 

a unified perceptual representation while still allowing each to 

specialize modularly [8, 10]. 

From this latent representation, three parallel output heads 

compute unnormalized scalar activations ( 𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃ ), each 

corresponding to one behavioral primitive: 

 

[𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃] = 𝐴𝑐𝑡𝑜𝑟𝐻𝑒𝑎𝑑𝑠(𝑧𝑡) (15) 

 

To guarantee interpretability and stability, these activations 

are normalized using a softmax transformation, producing a 

triplet of adaptive behavioral weights: 

 

[𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃]) (16) 

 

with the explicit formulation: 

 

𝛼𝑡 =
𝑒𝑥𝑝𝛼𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)
 

𝛽𝑡 =
𝑒𝑥𝑝𝛽𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)
 

𝛾𝑡 =
𝑒𝑥𝑝𝛾𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)
 

(17) 

 

This formulation guarantees that: (𝛼,𝛽,𝛾)∈[0, 1]3 and 𝛼 +
𝛽 + 𝛾 = 1 , allowing a probabilistic interpretation of role 

allocation. At each time step, the model dynamically adjusts 

the emphasis on pursuit, cohesion, or separation according to 

the agent’s local context. 

The final continuous control vector is obtained through a 

convex combination of the pre-computed force vectors, as 

defined in Eq. (8): 

 

total t goal t coh t sepF F F F  = + +  (18) 

 

The resultant vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   constitutes an optimal synthesis 

of behavioral primitives, as it preserves the directional 

information from pursuit, cohesion, and separation while 

adaptively weighting them according to the agent’s local 

context. Unlike the selection of a single primitive, this convex 

combination ensures continuity of behavior, robustness to 

dynamic environments, and faithful preservation of the 

underlying strategic intent when mapped onto a discrete action 

space. 

 

4.2.5 Direction discretization via angular mapping 

Although the pursuit-evasion environment is defined over a 

discrete action space, we deliberately adopted a continuous 

control algorithm (DDPG) as the foundation of our proposed 

framework. The motivation stems from the fact that the 

underlying decision process is inherently continuous: agents 

interact through force-based primitives (pursuit, cohesion, and 

separation), which are naturally expressed as continuous 

motion vectors in R2. Similar continuous-to-discrete control 

strategies have been explored in prior reinforcement learning 

and robotics literature, where continuous policy learning is 

combined with discretized action execution to preserve 

expressiveness during optimization [7, 12, 30, 32, 34, 37, 38]. 

Directly modeling these interactions in discrete space obscures 

directional nuances and restricts the expressivity of emergent 

coordination. In contrast, continuous policies allow the actor 

network to modulate the relative weights (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) smoothly, 

ensuring richer behavioral diversity and more precise 

adaptations to local contexts before discretization. 

To execute actions in the grid-based environment, the 

continuous control vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (Eq. (8)) is projected into the 

discrete action space via angular mapping. Specifically, the 

orientation angle is computed as: 

  

( )2 ,y xarctan F F =  (19) 

 

where, arctan2(.) ensures quadrant disambiguation and robust 

handling of directional signs [33]. The angle  𝜃  is then 

compared with the canonical direction angles corresponding 

to the five discrete moves, and the action minimizing the 

angular distance is selected (Table 1). 

 

Table 1. Definition of cardinal target direction 

 

Discrete Action at 
Direction 

Vector (dx,dy) 

Angular Range 

(Degrees) 

Up (0, +1) [45∘,135∘] 

Down (0, -1) [225∘,315∘] 

Left (-1, 0) [135∘,225∘] 

Right (+1, 0) [-45∘,45∘] 

Stay (No 

movement) 
(0, 0) N/A 

 

 
 

Figure 4. Mapping resultant vector to discrete action 

 

This nearest-direction projection guarantees that the chosen 

discrete action remains the closest approximation of the 

intended continuous force, thus preserving the strategic intent 

of the policy (Figure 4). Importantly, no major loss of 

information occurs because the grid constraints inherently 

restrict the expressivity to five moves; hence, any control 

architecture, whether continuous or discrete, must eventually 

map to this finite set. The advantage of the continuous 

formulation lies in its intermediate flexibility: two continuous 

vectors pointing in slightly different directions but mapped to 

the same discrete move still influence the learning process 

differently, as they produce distinct gradients during the actor-

critic optimization. This ensures that the training signal 

preserves fine-grained information even if the final executed 

action is discrete. 

Such discretization strategies have long been adopted in 

robotics and multi-agent navigation, where continuous 

velocity commands are transformed into grid-aligned 

primitives for path planning and cooperative behaviors [25, 

30]. The use of arctan2(⋅) further provides a deterministic 
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resolution in ambiguous cases (e.g., diagonal forces), ensuring 

consistency across agents and stability in swarm dynamics 

[33]. 

The algorithm of the Multi-Head Actor Network has been 

presented in Algorithm 1. 

 

Algorithm 1. Multi-Head Actor Network with Force-

Based Modulation 

Initialize the actor network 𝜇(𝑂𝑎
𝑡; θ𝜇) with a shared 

backbone and three behavioral heads (pursuit, cohesion, 

separation) producing raw outputs (𝛼̃, 𝛽, 𝛾̃). 

Initialize the critic network 𝑄(𝑠, 𝑎; θ𝑄). 

Create target networks by deep-copying parameters: 

𝜃𝜇′←θ𝜇 and 𝜃𝑄′←θ𝑄. 

Initialize an empty replay buffer B of capacity D. 

Initialize the exploration noise process 𝒩𝑡 . 

Begin 

For episode = 1 to M: 

a. Reset environment E and receive initial local 

    observations 𝑂𝑎
𝑡  for all agents 

b. For t = 0 to T: 

i. Forward pass through the actor to compute 

           (𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃) using Eq. (15) 

ii. Apply softmax to obtain normalized weights 

           (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) using Eq. (16) 

iii. Compute forces vectors 𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗  

              using Eqs. (9)-(14) 

iv. Form weighted action 𝑎𝑡
𝑐𝑜𝑛𝑡 using Eq. (20) and  

          add exploration noise: 𝑎𝑡
𝑛𝑜𝑖𝑠𝑦

 using Eq. (21) 

     v. Discretize 𝑎𝑡
𝑑𝑖𝑠𝑐  using Eq. (19) 

     vi. Execute action 𝑎𝑡
𝑑𝑖𝑠𝑐 in E, and 

         observe (𝑂𝑎
𝑡+1, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) 

    Store (𝑠𝑡 , 𝑂𝑎
𝑡 , 𝑎𝑡

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) in B 

vii. Sample a mini-batch (𝑠𝑗 , 𝑂𝑎
𝑗
, 𝑎𝑗

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑗 , 𝑠𝑗+1, 𝑑𝑜𝑛𝑒𝑗)  

     from B 

viii. Critic update: 

compute target action: 𝑎𝑗
′ = 𝜇′(𝑂𝑎

𝑗+1
; 𝜃𝜇′)  compute 

target value:  

𝑦𝑗  =  𝑟𝑗 + (1 − 𝑑𝑜𝑛𝑒𝑗)𝛾𝑄′(𝑠𝑗+1, 𝑎𝑗
′|𝜃𝑄′) 

Minimize critic loss:  

𝐿𝑄  =  
1

𝑁
∑[𝑦𝑗 − 𝑄(𝑠𝑗,

𝑁

𝑗=1

𝑎𝑗
𝑛𝑜𝑖𝑠𝑦

|𝜃𝑄)]2 

Update critic 𝜃𝑄 ← 𝜃𝑄− ηcritic ∇𝜃𝑄𝐿𝑄  

ix. Actor update: compute policy gradient ∇𝜃𝜇
𝐽 using  

          Eq. (24) and update actor 𝜃𝜇← 𝜃𝜇+ ηactor ∇𝜃𝜇
𝐽 

x. Soft-update target using Eq. (25)  

End for (timestep loop) 

End for (episode loop) 

 

The proposed angular mapping bridges the gap between 

continuous force-based reasoning and discrete-action 

execution. This enables our Multi-Head DDPG to exploit the 

expressive power of continuous control during learning while 

maintaining compatibility with the grid-based pursuit-evasion 

task. This design choice ensures that the emergent behaviors 

are strategically optimal, interpretable, and robust. 

 

4.3 Training procedure of the Multi-Head Actor network 
 

The proposed Multi-Head Actor Network is trained under 

the CTDE paradigm, ensuring that each agent operates solely 

on local observations during execution while exploiting global 

information during centralized training via a shared replay 

buffer. This paradigm has been shown to be effective in 

MARL in cooperative and competitive environments [8]. The 

optimization builds upon the DDPG framework [12], which is 

adapted here to incorporate the force-based action 

representation and dynamic role-weighting mechanism 

described in Section 4.2. 

Let μ (𝑂𝑎
𝑡 ;θμ) denote the deterministic actor network 

parameterized by 𝜃𝜇, mapping the local observation 𝑂𝑎
𝑡  to a 

continuous control vector 𝑎𝑡
𝑐𝑜𝑢𝑛𝑡  ∈  R2. The network 

architecture consists of a shared backbone (MLP) that encodes 

𝑂𝑎
𝑡  into a latent vector 𝑧𝑡, which is then processed by three 

behavioral heads (pursuit, cohesion, separation). These heads 

produce raw activations (𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃), which are normalized via 

the softmax function into adaptive weights (𝛼𝑡, 𝛽𝑡, 𝛾𝑡) as in Eq. 

(16). Based on the encoded observation, three behavioral 

forces 𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and 𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ are computed (Eqs. (9)-(14)). The 

actor’s continuous control action is then obtained as the 

weighted combination. 
 

cont

t goal coh sepa F F F  = + +  (20) 

 

Exploration noise 𝒩𝑡  (e.g., Gaussian noise [37]) is added in 

the continuous space before discretization: 
 

noisy cont

t t ta a= +  (21) 

 

and mapped to the discrete action space A = {up, down, left, 

right, stay} via nearest-direction mapping to produce 𝑎𝑡
𝑑𝑖𝑠𝑐  

(using Eq. (19)) for environment execution. Transitions 

(𝑠𝑡 , 𝑂𝑎
𝑡 , 𝑎𝑡

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) are stored in the replay buffer B 

[6], where donet ∈ {0,1}denotes the done flag indicating 

whether the episode terminates at step t ( 𝑑𝑜𝑛𝑒𝑡 = 1 ) or 

continues (𝑑𝑜𝑛𝑒𝑡 = 0 ). This signal is crucial for learning 

because it prevents the critic from propagating future value 

estimates beyond terminal states. The critic 𝑄(𝑠, 𝑎; θ𝑄) is then 

updated by minimizing the temporal-difference loss as 

follows: 
 

𝐿𝑄(𝜃𝑄) =
1

𝑁
∑[𝑦𝑗 − 𝑄(𝑠𝑗,

𝑁

𝑗=1

𝑎𝑗
𝑛𝑜𝑖𝑠𝑦

|𝜃𝑄)]2 (22) 

 

with target values:  
 

( )( )1

1(1 ) , j

j j j j a Q
y r done Q s O


    

  +

+= + −  (23) 

 

where, 𝜇′  are target networks with parameters 𝜃𝜇′  and 𝜃𝑄′ . 

The actor parameters are updated using the deterministic 

policy gradient [7]: 

 

( ) ( )( ), ( ; )
1

1
( ) t

a

N
t

a j Q aa O
j

J Q s a O
N 

    
    

=
=

     (24) 

 

followed by Polyak averaging: 

 

𝜃𝑄′
 
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ ,

𝜃𝜇′
 
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′ 

(25) 
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4.4 Interpretable role allocation and emergent self-

organization 

 

The Multi-Head DDPG architecture provides 

interpretability by explicitly representing each agent's decision 

as a weighted combination of three forces: pursuit, cohesion, 

and separation. The agent's real-time priorities are revealed by 

a triplet of normalized weights (α, β, γ), which can be directly 

inspected during execution. 

This formulation facilitates emergent role differentiation, as 

agents are not constrained to preassigned static strategies. For 

example, in open environments, an agent's policy tends to 

prioritize pursuit (α), whereas in crowded spaces, it 

increasingly emphasizes cohesion (β) and separation (γ). This 

dynamic specialization (e.g. as a chaser or blocker) arises 

naturally from local observations without requiring central 

control or explicit communication. 

This mechanism constitutes a form of distributed self-

organization that echoes the collective intelligence observed 

in biological swarms [27, 36]. It illustrates how complex 

global strategies, such as encirclement, can emerge from 

simple, interpretable local rules. The ability to monitor the 

force weights transforms the model from a mere control 

system into a diagnostic and explanatory tool, bridging the gap 

between reinforcement learning and explainable artificial 

intelligence (XAI) [11]. As a result, the system becomes more 

scalable, robust, and resilient for real-world deployment. 

 

 

5. EXPERIMENTAL SETUP AND RESULTS  

 

This section presents the empirical evaluation of the 

proposed Multi-Head DDPG architecture in a decentralized 

multi-agent pursuit–evasion scenario. The analysis is 

organized around four core dimensions: (i) quantitative 

performance, (ii) learning stability and behavioral dynamics, 

(iii) generalization and robustness, and (iv) interpretability 

through emergent self-organization. Additionally, we 

benchmarked the proposed method against established 

baselines and provided a dedicated analysis of weighted force 

coupling and control vector construction. Figures 5-10 jointly 

illustrate how learning dynamics, interpretability, and 

emergent self-organization arise from the proposed modular 

actor design. 

 

5.1 Experimental setup 

 

To assess the performance and robustness of our approach, 

we implemented a 2D grid-based pursuit-evasion simulation 

environment with fixed dimensions of N × N. The 

environment consists of ten cooperative pursuer agents and 

two evading targets, where agents must coordinate to intercept 

all evaders as quickly and efficiently as possible (see Figure 5 

for an illustration of the environment). 

Algorithm-specific hyperparameters (e.g., network 

architecture, learning rates, replay buffer size, and target 

update coefficients) are summarized in Table 2. 

Each agent operates under a partially observable 

decentralized framework and receives a local observation 

vector at each time step t. The agents can choose a discrete 

movement action from the set A = {up, down, left, right, stay}. 

A capture event is registered when the Euclidean distance 

between the pursuer and evader satisfies ||posp−pose||2 ≤ dcap 

with dcap = 1, corresponding to the pursuer being in the same 

or an immediately adjacent cell in the Von Neumann 

neighborhood (no diagonals). 

 

 
 

Figure 5. Pursuit-evasion environment (20 × 20 Grid) 

 

Table 2. Hyperparameter configuration for baseline 

algorithms 

 

Parameter DQN PPO DDPG 
Multi-Head 

DDPG 

Network 

architecture 

2 × 128 

MLP 

2 × 128 

MLP 

2 × 128 

MLP 

Shared 2 × 

128 MLP + 3 

heads 

Actor learning 

rate 
— 3e−4 1e−4 1e−4 

Critic learning 

rate 
1e−4 3e−4 1e−3 1e−3 

Replay buffer 

size 
1e5 — 1e5 1e5 

Target update 

τ 
— — 0.005 0.005 

 

To ensure a fair and reproducible comparison across the 

learning algorithms, the following experimental conditions 

were uniformly applied: 

 Agent configuration: 10 pursuers and 2 evaders. 

  Grid size: 20 × 20 cells. 

 Training duration: 1,000 episodes, with each episode 

capped at 100 times steps. 

 Discount factor: All models used γ = 0.95. 

 Batch size: 128. 

 Optimizer: Adam for all neural networks [1]. 

Exploration strategies followed standard algorithm-specific 

practices. DQN employed an epsilon-greedy strategy with 

linear annealing, PPO relied on stochastic policy sampling, 

and actor–critic methods (standard DDPG and Multi-Head 

DDPG) used additive Gaussian noise N(0, σ²) [34, 37]. 

Additional experiments using Ornstein–Uhlenbeck noise [12] 

confirmed the robustness of the results with respect to the 

choice of exploration process. 

To mitigate stochasticity and initialization variance, each 

algorithm was trained and evaluated over ten independent runs 

with different random seeds. All reported metrics are 

presented as mean ± standard deviation after convergence. 

All experiments were conducted on a workstation equipped 

with an Intel Core i9-12900K CPU (3.2 GHz), 64 GB RAM, 

and an NVIDIA RTX 3090 GPU (24 GB VRAM), running 

Windows 11 with PyTorch 2.0. 
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Algorithm-specific hyperparameters (e.g., network 

architecture, learning rates, replay buffer size, and target 

update coefficients) are summarized in Table 2. 

 

5.2 Comparative methods 

 

To rigorously validate the contribution of our approach, we 

compared the proposed architecture with three representative 

and widely recognized RL baselines: 

Deep Q-Network (DQN): A value-based RL algorithm 

effective for discrete action spaces [6]. This serves as a 

fundamental baseline for measuring the benefits of 

continuous-action extensions. 

Proximal Policy Optimization (PPO): A robust and sample-

efficient policy-gradient method considered a state-of-the-art 

baseline for policy optimization in multi-agent systems [15]. 

DDPG (Standard): A continuous-action actor-critic method 

[12], that serves as a direct baseline to isolate the effects of our 

behavioral decomposition and modular actor. 

Multi-Head DDPG (Proposed): Our extension of the DDPG 

introduces a modular actor with three behavioral heads 

(pursuit, cohesion, and separation). These heads are 

dynamically weighted to form a force-based control vector 

that enables interpretable and adaptive decision-making. 

This spectrum of baselines allows us to evaluate the 

performance across discrete versus continuous action spaces, 

monolithic versus modular architectures, and value-based 

versus policy-gradient paradigms. 

 

5.3 Quantitative results 

 

To quantitatively assess our method, we conducted ten 

independent training runs with different random seeds to 

mitigate stochastic variance. Upon convergence, each trained 

policy was evaluated over 1,000 noise-free episodes to obtain 

stable and unbiased performance estimates. Evaluation was 

based on three key metrics: Success Rate (percentage of 

episodes in which all evaders were captured), Average Reward 

(mean cumulative return per episode, reflecting both 

efficiency and success), and Steps to Capture (mean number 

of timesteps required to capture the final evader). The findings 

are presented in Table 3. Importantly, the reward values 

reported here correspond to normalized evaluation rewards, 

ensuring comparability across methods. 

To assess the statistical significance of the observed 

performance differences, we conducted pairwise Welch’s t-

tests between the proposed Multi-Head DDPG and each 

baseline across the 10 independent runs. For all three 

evaluation metrics (success rate, average reward, and steps to 

capture), the improvements achieved by the proposed method 

were found to be statistically significant (p < 0.05). 

Relative to the standard DDPG baseline, the proposed 

Multi-Head DDPG achieves a +12.6% absolute improvement 

in success rate, a +2.7 point increase in average reward, and a 

−10.8 timestep reduction in capture time. Compared to PPO, 

it yields a +17.8% absolute success rate gain, a +4.4 point 

reward increase, and a −15.3 timestep reduction. Against 

DQN, improvements are even more pronounced, with a 

+24.0% absolute success rate gain, a +5.2 point reward 

increase, and a −19.6 timestep reduction. 

These consistent improvements across baselines validate 

our hypothesis that explicit behavioral decomposition into 

pursuit, cohesion, and separation forces, modulated by 

adaptive role weights, enables superior coordination under 

partial observability. Shorter capture times indicate more 

decisive and coordinated pursuit maneuvers, whereas higher 

rewards reflect greater robustness and generalization. 

 

Table 3. Final performance comparison on the pursuit-

evasion task (10 Runs, Mean ± Standard Deviation) 

 

Algorithm 
Success 

Rate 

Avg 

Reward 

Steps to 

Capture 

Multi-Head DDPG 

(Ours) 
85.2 ± 2.1 14.5 ± 0.9 28.9 ± 2.3 

DDPG (Standard) 72.6 ± 3.4 11.8 ± 1.3 39.7 ± 2.6 

PPO 67.4 ± 2.2 10.1 ± 1.1 44.2 ± 2.9 

DQN 61.2 ± 2.7 9.3 ± 1.5 48.5 ± 3.1 

 

5.4 Learning curves and convergence behavior 

 

To investigate stability and sample efficiency, we 

monitored the evolution of raw average episodic reward 

during training for all four algorithms (DQN, PPO, DDPG, 

Multi-Head DDPG) over 1,000 episodes (10 runs averaged). 

This comparison is visually summarized in Figure. 6. Unlike 

the normalized metrics reported in Table 3, these learning 

curves illustrate the unnormalized reward dynamics 

throughout training. 

 

 
 

Figure 6. Training curves of the raw (non-normalized) 

average episodic reward for DQN, PPO, standard DDPG, and 

the proposed Multi-Head DDPG, averaged over 10 

independent runs 

 

The curves illustrate learning stability, convergence speed, 

and asymptotic performance; normalized rewards are reported 

separately in Table 3. 

Because DDPG was originally designed for continuous 

spaces [12], its outputs were projected onto discrete directions 

via force-based angular mapping. This ensures a fair 

comparison with the DQN and PPO, which natively operate in 

discrete domains. 

The proposed Multi-Head DDPG exhibited the most 

favorable learning dynamics, achieving rapid convergence 

within the first 100 episodes and maintaining the highest 

asymptotic reward (~180-190). In contrast, the standard 

DDPG plateaus at approximately 150 with a higher variance, 

indicating sensitivity to exploration noise and 

hyperparameters. PPO demonstrated slower and unstable 

convergence, ultimately yielding a near-zero average reward, 

whereas DQN failed to progress beyond negative to near-zero 

values, confirming the inadequacy of value-based methods in 

this setting.  

These results highlight three main findings: (i) accelerated 
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convergence and superior asymptotic performance of the 

Multi-Head DDPG relative to all baselines; (ii) reduced 

variance across runs, evidencing robustness against non-

stationarity; and (iii) clear limitations of monolithic or value-

based approaches, which lack the representational flexibility 

required for fine-grained coordination. Overall, this analysis 

confirms that modular behavioral decomposition with 

adaptive weighting substantially enhances both learning 

efficiency and reliability in decentralized multi-agent pursuit-

evasion tasks. 

 

5.5 Behavioral role differentiation and interpretability 

 

A distinctive advantage of the proposed Multi-Head DDPG 

lies in its interpretable actor design, where each action is 

parameterized by a triplet of role weights (α, β, γ) 

corresponding to the pursuit, cohesion, and separation forces, 

respectively. This explicit decomposition transforms latent 

policy modulations into observable quantities, thereby 

providing a direct window into the decision-making process of 

agents. Figure 7 illustrates the temporal evolution of the role 

weights across 1,000 steps for all ten pursuers, whereas Figure 

8 summarizes their mean profiles over the entire horizon. After 

an initial transient phase (~150-200 steps), the majority of 

agents converge to stable yet heterogeneous configurations, 

reflecting emergent specialization. For instance, Agent 2 

predominantly acts as a pursuit specialist (mean α ≈ 0.94), 

Agent 3 emphasizes cohesion (β ≈ 0.97), and Agent 1 adopts 

a separation-dominant strategy (γ ≈ 0.96) with a reduced 

pursuit. Conversely, Agent 7 exhibited high pursuit and 

cohesion but persistently low separation, corresponding to a 

risk-taking chaser. In contrast, several agents (e.g. Agents 0, 

4, 5, 8, and 9) maintained balanced weight distributions (α, β, 

γ ≈ 0.95-0.98), consistent with more generalist and adaptable 

behaviors. 

 

 
 

Figure 7. Temporal evolution of role weights (α, β, γ) for each pursuer 

 

The heatmap in Figure 8 quantitatively confirms these 

trends by distinguishing between specialized and balanced 

roles without any pre-assignment or external coordination. 

Such differentiation arises end-to-end from decentralized 

learning dynamics under partial observability, thereby 

validating the self-organizing capacity of the architecture. 
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Figure 8. Heatmap of mean role weights (α, β, γ) per agent 

 

Importantly, the ability to monitor (α, β, γ) over time not 

only enhances interpretability but also facilitates human-in-

the-loop supervision, systematic diagnosis of emergent 

behaviors, and more reliable deployment in safety-critical 

multi-agent scenarios. 

 

5.6 Weighted force coupling and control vector 

construction 

 

To elucidate the internal decision-making process of the 

proposed architecture, the control vector at each time step is 

expressed as a weighted linear combination of three 

interpretable primitive forces—pursuit, cohesion, and 

separation—as formalized in Eq. (8). Figures 8 and 9 provide 

complementary perspectives: the trajectories of the adaptive 

role weights (α, β, γ) for all agents and the corresponding force 

magnitudes ||F_goal||, ||F_coh||, ||F_sep||, together with the 

resultant ||F_total||. 

Three salient observations emerge from this analysis. First, 

separation consistently accounted for the largest share of the 

force budget. As illustrated by the recurrent peaks of ||F_sep|| 

(often in the range of 3-4) for Agents 5-9, collision avoidance 

dominated when the agents operated in congested 

configurations. In contrast, ||F_goal|| and ||F_coh|| remained 

comparatively smaller (typically below 1.5), except during 

sparse regimes or post-dispersion phases. Second, despite the 

high variability in the primitive forces, the resultant ||F_total|| 

exhibits smooth temporal evolution, demonstrating that the 

weighted coupling acts as a stabilizing mechanism. This 

effectively ensures coherent motion policies and mitigates the 

risk of erratic behavior. Third, the modulation of role weights 

directly reflects context-sensitive adaptation: pursuit forces 

weaken when agents close in on targets, whereas cohesion and 

separation forces increase under high-density interactions, 

consistent with transient rises in β and γ. 

Overall, these findings highlight the operational 

transparency of the proposed architecture. The explicit 

mapping between role weights and force magnitudes provides 

an interpretable bridge between internal policy modulation and 

observable control signals, thereby reinforcing both the 

robustness and explainability of the emergent behaviors of the 

agent.  

 

5.7 Generalization and robustness 

 

To evaluate the generalization ability and robustness of the 

learned policies beyond their training distribution, we 

designed a set of out-of-distribution (OOD) scenarios that 

reflect the practical challenges of real-world multi-agent 

coordination. Specifically, we considered three settings: 

Increased Agent Density — 15 agents instead of 10, leading 

to greater interaction complexity and collision potential. 

Faster Evaders — evaders move more rapidly, making 

pursuit and interception more difficult to achieve. 

Presence of Dynamic Obstacles — introduces 

environmental unpredictability, requiring enhanced situational 

awareness. 

The success rates across these settings are reported in Table 

4, which compares the performance of four algorithms: DQN, 

PPO, standard DDPG, and our proposed Multi-Head DDPG. 

Several key observations emerge from this evaluation. 

Superior generalization of Multi-Head DDPG: In all three 

scenarios, our method achieved the highest success rate, with 

margins of over 10% compared to the next best baseline. This 

consistent superiority indicates that the learned policy does not 

overfit the training conditions and adapts effectively to novel 

dynamics and spatial configurations. 

 

Table 4. Success rates in out-of-distribution scenarios 

 

Scenario DQN PPO 
DDPG 

Std 

Multi-Head 

DDPG 

Dense Swarm 

(15 agents) 
54.3% 61.8% 67.1% 81.7% 

Faster Evaders 45.6% 52.0% 60.4% 75.3% 

With Obstacles 40.1% 49.2% 57.3% 69.8% 

 

Impact of modular force-based decomposition. The strength 

of the proposed architecture lies in its decomposition of 

control into interpretable behavioral forces (pursuit, cohesion, 

and separation) with adaptive weighting. This modular 

representation allows the policy to generalize its behavioral 

response, even when facing previously unseen variations in the 

agent’s behavior or environmental structure. 

Limitations of value-based and monolithic approaches. 

DQN, which lack continuous modulation capabilities, suffer 

the most across all settings. PPO and standard DDPG 

performed moderately better but still lacked the flexibility of 

our Multi-Head modulation strategy when exposed to high-

density or nonstationary environments. 

In summary, these results confirm that the Multi-Head 

DDPG offers both robust performance and strong 

generalization capacity, reinforcing the hypothesis that 

modular policy structures are more suitable for scalable real-

world multi-agent coordination. 

 

5.8 Emergent self-organization 

 

We assessed whether the proposed Multi-Head DDPG 

facilitates emergent self-organization through both individual 

and collective analyses. At the agent level, the temporal 

trajectories of role weights (α, β, γ) indicated heterogeneous 

specialization, with some agents consistently prioritizing 

pursuit, while others emphasized cohesion or separation. 

Crucially, these roles are not predefined but emerge 

autonomously from decentralized interactions under partial 

observability. 

This demonstrates the ability of the architecture to induce 

role differentiation without external supervision. 

At the collective level, coordination metrics demonstrated 

structured group behaviors, including reduced collision rates, 

compact clustering around evaders, and spontaneous 
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emergence of encirclement and blocking formations. These 

dynamics are exemplified in Figure 10, Multi-agent simulation 

demonstrating emergent cooperative coordination and 

encirclement of evaders, which visually depicts how agents 

self-organize into cohesive formations to contain the targets. 

Such patterns were absent in the DQN, PPO, and standard 

DDPG, underscoring the distinct advantages of the proposed 

architecture. 

Overall, these results show that Multi-Head DDPG does 

more than improve task performance; it induces interpretable 

emergent coordination grounded in local decision-making. 

This capacity to monitor and quantify emergent dynamics 

strengthens the link between reinforcement learning and 

explainable multi-agent control, enhancing the scalability and 

robustness of decentralized systems. 

 

 
 

Figure 9. Coupling between adaptive role weights and corresponding force magnitudes 
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Figure 10. Pursuit-evasion episode illustrating emergent self-organization 

 

 

6. CONCLUSION  

 

This study introduces a novel extension of the DDPG 

algorithm for decentralized multi-agent coordination, 

leveraging a Multi-Head Actor architecture that adaptively 

balances three interpretable behavioral primitives—pursuit, 

cohesion, and separation— dynamically modulated weights 

(α, β, γ). 

Extensive empirical evaluation against strong baselines 

(DQN, PPO, standard DDPG) shows that the proposed 

approach achieves consistent improvements across four 

dimensions: (i) superior task performance and efficiency, (ii) 

accelerated convergence with enhanced stability, (iii) 

interpretability through role-specific weight trajectories, and 

(iv) robust generalization to out-of-distribution scenarios 

involving denser swarms, faster evaders, and cluttered 

environments. Further coupling analysis confirm that 

emergent macroscopic behaviors arise coherently from 

modular force decomposition, offering both transparency and 

reliability in collective decision-making. 

Beyond performance, this study underscores the potential of 

modular policy structures to bridge reinforcement learning 

with explainable multi-agent control. Future research 

directions include hierarchical role coordination, human-in-

the-loop guidance, hardware deployment in robotic swarms, 

and theoretical analyses of convergence and stability 

guarantees. 

In conclusion, the Multi-Head DDPG framework provides 

a scalable, interpretable, and high-performance foundation for 

cooperative autonomy, with direct applicability to swarm 

robotics, surveillance, and multi-agent search-and-rescue 

missions.  
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