
Multi-Head DDPG for Pursuit-Evasion with Interpretable Behavioral Decomposition

Saida Lehis1,2* , Abderrahim Siam2 , Hamouma Moumen1 , Wahid Chergui2 , Mohammed El Habib Souidi2 ,

Abdelaali Bekhouche2

1 Department of Computer Science, Mostefa Ben Boulaid University, Batna 2, Batna 05001, Algeria
2 Department of Computer Science, ICOSI Laboratory, Abbes Laghrour University, Khenchela 40004, Algeria

Corresponding Author Email: lehis.saida@univ-khenchela.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301204 ABSTRACT

Received: 21 September 2025

Revised: 30 November 2025

Accepted: 14 December 2025

Available online: 31 December 2025

Designing scalable and interpretable control strategies for decentralized multi-agent

systems remains a challenge in reinforcement learning (RL). This challenge is particularly

evident in pursuit–evasion tasks, which require coordination under partial observability,

without explicit communication or centralized guidance. Although deep RL methods

achieve strong performance, they typically operate as black boxes, limiting trust and

deployment in safety-critical domains. We propose a Multi-Head DDPG architecture that

decomposes control into three interpretable force components - pursuit, cohesion, and

separation - weighted adaptively to generate context-aware actions. This design enables

emergent role differentiation and interpretable self-organization in the model. In grid-based

pursuit–evasion benchmarks, our method outperforms DQN, PPO, and standard DDPG in

terms of success rate, convergence speed, and generalization, while also yielding

transparent collective behaviors. Overall, the results show that weighted force-based

behavioral decomposition provides a principled pathway toward achieving both high-

performance and explainable multi-agent control.

Keywords:

Deep Reinforcement Learning, multi-agent

systems, decentralized coordination, self-

organization, behavioral decomposition,

pursuit-evasion, Multi-Head architecture,

force-based control

1. INTRODUCTION

Reinforcement Learning (RL) is a computational

framework in which agents learn sequential decision-making

policies by interacting with their environment and optimizing

long-term cumulative rewards through trial and error [1]. Its

extension to multi-agent systems, known as Multi-Agent

Reinforcement Learning (MARL), addresses scenarios where

multiple agents must adapt their policies concurrently under

partial observability, non-stationarity, and limited

communication [2]. In recent years, the integration of Deep

Reinforcement Learning (DRL) into MARL has significantly

advanced the field, allowing agents to approximate policies

and value functions directly from high-dimensional inputs [3-

7]. This synergy has positioned DRL-based MARL as a

cornerstone paradigm for distributed coordination in domains

such as swarm robotics, autonomous driving, and

collaborative multi-robot systems.

In this context, the pursuit-evasion problem has emerged as

a canonical benchmark for evaluating coordination under

decentralization. In this task, a team of pursuers must

cooperate to capture one or more evaders in discrete or

continuous environments, typically without centralized

supervision [8-24]. The challenge lies in the simultaneous

requirements for adaptation under uncertainty, cooperative

strategy formation and emergent role differentiation. Although

traditional solutions rooted in control theory, game-theoretic

models, or heuristic rules [13], Shoham and Leyton-Brown [5]

offered interpretable baselines, they lack the flexibility and

scalability required in dynamic and high-dimensional settings.

Despite the successes of DRL-based MARL and the

development of strategies such as Centralized Training with

Decentralized Execution (CTDE) [8], selective parameter

sharing [9], and emergent communication [10], a critical

limitation persists: most DRL policies behave as opaque black

boxes. They often achieve state-of-the-art performance in

UAV swarms or multi-robot systems but provide little insight

into why specific coordination patterns or roles emerge,

thereby hindering trust, debugging, and safe deployment [14].

Among existing DRL algorithms, the Deep Deterministic

Policy Gradient (DDPG) [12] has been widely applied to

continuous control owing to its sample efficiency and actor-

critic structure. However, its monolithic design maps

observations directly to single actions, resulting in slow

convergence, high sensitivity to hyperparameters, and a lack

of mechanisms for role differentiation and self-organization

[8, 21].

To overcome these limitations, we introduce a Multi-Head

DDPG architecture that explicitly decomposes the actor’s

policy into three interpretable behavioral primitives—pursuit,

cohesion, and separation—each represented as a force-based

component. Unlike the monolithic DDPG, the final action is

computed as an adaptive weighted combination of these

primitives, thereby producing a modular and transparent

control policy. This formulation not only enhances

performance but also enables emergent self-organization, as

agents autonomously specialize in complementary roles

without central supervision. This work makes three main

Ingénierie des Systèmes d’Information
Vol. 30, No. 12, December, 2025, pp. 3117-3130

Journal homepage: http://iieta.org/journals/isi

3117

https://orcid.org/0009-0002-2850-2929
https://orcid.org/0009-0006-7578-768X
https://orcid.org/0000-0002-1986-7590
https://orcid.org/0000-0002-6994-307X
https://orcid.org/0000-0002-7417-317X
https://orcid.org/0000-0003-0075-7436
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301204&domain=pdf

contributions. First, we propose a structural innovation in the

form of a Multi-Head Actor architecture that decomposes

continuous control into interpretable force-based behavioral

primitives, improving policy transparency and modularity in

decentralized MARL. Second, we introduce a mechanistic

innovation based on adaptive and context-aware weighting of

these primitives, enabling dynamic role specialization and

self-organized coordination during learning. Third, we provide

a comprehensive empirical validation of decentralized

pursuit–evasion benchmarks. The results show that the

proposed structural and mechanistic designs jointly yield

superior performance, faster convergence, and improved

generalization compared to DQN, PPO, and standard DDPG.

An interpretability analysis of the learned behavioral

weights further illustrates how coordinated strategies and role

differentiation emerge from this framework.

The remainder of this paper is organized as follows: Section

2 reviews the related work on MARL, pursuit-evasion, and

interpretable control. Section 3 formalizes the problem.

Section 4 introduces the proposed Multi-Head DDPG

framework. Section 5 presents the experimental evaluations,

including comparative benchmarks and interpretability

analysis. Finally, Section 6 concludes with the key findings

and future research directions.

2. RELATED WORK

The pursuit-evasion problem has long served as a

benchmark for studying coordination in MARL because it

naturally requires decentralized control, adaptability, and

emergent teamwork [3]. Existing approaches can be broadly

categorized along a spectrum between interpretable but limited

methods and scalable but opaque methods.

Early approaches. Heuristics, fuzzy control, and game-

theoretic models, such as Nash equilibria or rule-based

behavioral controllers inspired by collective motion models

[25-36], provide transparent and explainable policies. Their

interpretability makes them useful for understanding

coordination mechanisms; however, their handcrafted nature

limits their scalability to high-dimensional or stochastic

environments. These methods highlight the trade-off between

interpretability and adaptability, which is a limitation that

motivated the adoption of learning-based approaches.

DRL-based approaches. With the advent of DRL, agents

can learn policies directly from raw or high-dimensional

inputs, enabling scalable coordination strategies [6, 12]. State-

of-the-art performance has been demonstrated in complex

multi-agent tasks [1, 2]. However, the resulting policies

typically behave as black-box models, offering limited

interpretability. Thus, while DRL methods provide scalability

and robustness, they exacerbate the lack of transparency

regarding internal decision-making processes.

Communication and CTDE. Another research line has

focused on improving coordination through communication

learning and centralized training methods. Foerster et al. [10]

introduced Reinforced Inter-Agent Learning (RIAL) and

Differentiable Inter-Agent Learning (DIAL), showing that

agents can autonomously develop communication protocols.

Building on this, the now-dominant CTDE paradigm allows

leveraging global information during training while retaining

distributed autonomy at execution [20, 21]. These approaches

achieve strong performance, particularly in UAV

coordination, but the internal reasoning processes remain

opaque. Thus, they maximize scalability but further reduce the

interpretability.

Interpretable MARL and behavior-based

decomposition. Recent work in MARL has increasingly

emphasized interpretability, motivated by the need for

transparency, debugging, and trustworthy deployment in

safety-critical multi-robot systems [11, 14]. Explainable AI

studies have highlighted that high-performing deep policies

often lack explicit causal structure, hindering decision

justification and failure diagnosis in multi-agent settings [1, 2].

To address this, behavioral decomposition and hierarchical

reinforcement learning represent policies as compositions of

reusable primitives or options rather than monolithic

mappings, improving both learning efficiency and

interpretability [22, 29]. However, such abstractions are often

detached from physically meaningful interaction mechanisms.

In parallel, swarm robotics and multi-agent navigation have

long relied on attractive–repulsive interaction rules, including

artificial potential fields and social-force models, to encode

goal attraction, collision avoidance, and group dynamics [4,

26]. Boids models and flocking theory further formalize

cohesion, separation, and alignment as decentralized

coordination primitives [27, 36]. Several DRL approaches

implicitly incorporate these interaction priors, for example

through socially aware reward shaping or interaction features,

demonstrating improved coordination and navigation

performance [17, 18, 32]. Nevertheless, in most existing

works, force-based components remain handcrafted or

auxiliary, and learned policies do not provide an explicit,

interpretable decomposition of behavioral roles. Importantly,

these interaction models are rarely integrated as first-class

components of the policy representation itself.

Emergent coordination without communication. A

complementary direction emphasizes self-organization

without explicit communication between the agents. Sun et al.

[16] proposed fuzzy self-organization for subgroup formation,

Christianos et al. [9] leveraged selective parameter sharing to

enhance scalability, and Hüttenrauch et al. [18] introduced

mean feature embeddings to enhance local spatial awareness.

In pursuit-evasion tasks, De Souza et al. [17] combined DRL

with curriculum learning to balance group and individual

incentives, whereas Yu et al. [19] extended Double-DQN and

Duelling-DQN to stabilize cooperative pursuits under partial

observability. These methods demonstrate that scalable

emergent teamwork is possible; however, because policies

remain opaque, role differentiation and self-organization

emerge implicitly rather than being explicitly modelled.

Our contribution. The proposed Multi-Head DDPG

addresses this gap by explicitly decomposing agent control

into three interpretable behavioral primitives: pursuit,

cohesion, and separation. Unlike existing DRL methods, our

approach maintains scalability while directly exposing the

modulation of behavior using adaptive weights. This not only

improves quantitative performance but also enables emergent

self-organization and transparent role differentiation,

reconciling the tension between performance and

interpretability of the model.

3. FORMULATION OF THE PURSUIT-EVASION

DILEMMA

The multi-agent pursuit-evasion (PE) problem serves as a

long-standing benchmark for cooperative and adversarial

3118

decision-making, particularly in the field of MARL. It

involves two classes of agents, pursuers and evaders,

interacting in a shared environment characterized by

decentralization and partial observability. Pursuers aim to

coordinate their efforts to capture evaders, whereas evaders

seek to maximize their survival by avoiding detection and

confinement. This dilemma encapsulates fundamental

challenges of distributed perception, decentralized control,

and emergent self-organization [1, 2].

In this study, we adopt a grid-based discrete environment of

size M × N, which is a widely used abstraction in pursuit-

evasion research that balances tractability with the ability to

model realistic multi-agent dynamics [19, 22, 23]. Each agent

occupies a single grid cell and evolves in discrete time steps t

= 0, 1, 2, … At each step, an agent may move to one of the

four cardinal neighboring cells (up, down, left, right) or remain

stationary, subject to the grid boundaries and occupancy

constraints. Formally, let P = {p₁, p₂, …, pₙₚ} denote the set of

pursuers and E = {e₁, e₂, …, eₙₑ} the set of evaders, with 𝐴 =
𝑃 ∪ 𝐸 representing the complete population of agents. The

position of agent 𝑎 ∈ 𝐴 at time 𝑡 is denoted 𝑝𝑜𝑠𝑎
𝑡 ∈ ℤ², and its

discrete action space is given by: 𝒜𝑎 = {up, down, left, right,

stay} with valid transitions restricted to:

𝑝𝑜𝑠𝑎
𝑡+1 ∈ 𝒩(𝑝𝑜𝑠𝑎

𝑡)
= {𝑝𝑜𝑠𝑎

𝑡 , 𝑝𝑜𝑠𝑎
𝑡 + (0,1), 𝑝𝑜𝑠𝑎

𝑡

− (0,1), 𝑝𝑜𝑠𝑎
𝑡 + (1,0), 𝑝𝑜𝑠𝑎

𝑡

− (1,0)}

(1)

where, 𝒩(𝑝𝑜𝑠𝑎
𝑡) denotes the Von Neumann neighborhood of

the agent’s position. This neighborhood includes the four

orthogonally adjacent cells along the cardinal axes, while

excluding diagonal cells. The Von Neumann neighborhood is

extensively employed in grid-based multi-agent environments

because it provides a simple yet realistic model of local

connectivity, facilitating efficient interaction dynamics and

collision handling [28].

The pursuit-evasion task is formally modeled as a Partially

Observable Markov Game (POMG) [24], defined by the tuple

𝐺 = ⟨𝒜, 𝑆, {𝒪𝑎}𝑎∈𝒜 , {𝒜𝑎}𝑎∈𝒜 , 𝑇,{ℛ𝑎}𝑎∈𝒜 , ρ⟩ (2)

where, S is the global state space of agent configurations, 𝒪𝑎

is the local observation space for agent 𝑎, 𝑇 is the stochastic

transition function, ℛ𝑎 is the agent-specific reward, and 𝜌 ∈
[0, 1] is the discount factor.

Observability is egocentric, meaning that each agent

perceives the relative positions of other agents within a fixed

sensing radius 𝑟𝑠.

The local observation set of agent 𝑎 at time 𝑡 is therefore

defined as:

𝑂𝑎
𝑡 = {𝑝𝑜𝑠𝑗

𝑡 − 𝑝𝑜𝑠𝑎
𝑡 | 𝑗

∈ 𝓐 ∧ ‖𝑝𝑜𝑠𝑗
𝑡 − 𝑝𝑜𝑠𝑎

𝑡‖ 2 ≤ 𝑟𝑠}
(3)

This egocentric design ensures translational invariance,

scalability to varying numbers of agents, and adaptability to

different grid sizes while reducing the input dimensionality by

retaining only spatially local motion cues. By excluding

environmental obstacles, we further isolate the intrinsic

coordination phenomena that emerge from agent-agent

interactions, making this formulation a robust testbed for

investigating emergent self-organization and cooperative

strategies in decentralized multi-agent systems [8, 21].

3.1 Definition of capture

A capture event occurs when an evader is fully surrounded

by pursuers such that all adjacent cells are simultaneously

occupied. Let the position of evader 𝑒𝑗 ∈ 𝐸 at time 𝑡 be

𝑝𝑜𝑠𝑒𝑗
𝑡 ∈ 𝑍2. Its neighborhood is defined as:

()
() ()  

() () () () 

2, , ,

0,1 , 0, 1 , 1,0 , 1,0

j

j

t

et

e

x y x y pos
pos





   + 
=  
  − − 

 (4)

An evader is captured at time t if at least k of the cells in its

Von Neumann neighborhood 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡) are simultaneously

occupied by distinct pursuer agents 𝑝𝑖 ∈ 𝑃:

|(𝑥, 𝑦) ∈ 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡) |∃𝑝𝑖 ∈ 𝑃 ∶ 𝑝𝑜𝑠𝑝𝑖

𝑡 = (𝑥, 𝑦) | ≥ k (5)

Here, the neighborhood 𝒩 (𝑝𝑜𝑠𝑒𝑗
𝑡) contains at most four

orthogonally adjacent cells. Therefore, parameter k ≤ 4

denotes a capture threshold, corresponding to the minimum

number of neighboring cells that must be occupied for a

capture event to occur. Setting k = 4 enforces strict

encirclement, requiring full occupation of the neighborhood,

whereas smaller values (e.g., k = 2) relax this constraint and

reduce the level of coordination required among pursuers.

This parameterization allows the task difficulty to be

systematically adjusted, ranging from partial containment to

complete encirclement, and enables controlled evaluation of

MARL algorithms under varying cooperation demands. Such

capture criteria naturally promote coordinated behaviors, such

as flanking, blocking, and convergence, fostering emergent

role differentiation and self-organization [18].

3.2 Reward and learning objectives

The objective of pursuers is to maximize the total number

of successful captures through decentralized coordination.

Following standard MARL formulations [9, 17], we employ a

sparse, event-driven reward structure. For each pursuer 𝑝𝑖 ∈
𝑃, the immediate reward at time t is defined as:

𝑟𝑖
𝑡 =

{
+𝑅𝑐 , if agent i contributes to a capture at time t
−𝑟𝑚 , if agent i makes an invalid or redundant move
0, otherwise

(6)

where, R𝑐 > 0 is the cooperative capture reward and 𝑟𝑚 > 0 is a

penalty for inefficiency. Each agent aims to optimize its

discounted return within a finite time horizon T, which is

defined as:

𝑅𝑖 = ∑𝜌𝑡𝑟𝑖
𝑡

𝑇

𝑡=0

 (7)

with 𝜌 ∈ [0, 1] as the discount factor. This design ensures that

captures can only be achieved through collective effort, while

discouraging selfish or redundant actions. Meanwhile, evaders

follow reactive strategies aimed at maximizing their distance

3119

from nearby pursuers, thus exerting adversarial pressure and

promoting the development of robust pursuit policies.

3.3 Significance for self-organization

The pursuit-evasion paradigm extends beyond theoretical

interest: it models practical scenarios in robotic surveillance,

UAV swarms, and wildlife monitoring where agents operate

under strict communication and sensing constraints [25-27].

Its decentralized formulation, absence of global state

information, and reliance on local interactions make it a

natural benchmark for studying emergent coordination and

interpretable self-organization. By analyzing how global

strategies, such as encirclement or flanking, arise from local

force-based rules, this framework provides valuable insights

into the design of scalable, robust, and explainable MARL

systems.

4. BACKGROUND AND PROPOSED MULTI-HEAD

ARCHITECTURE

4.1 Deep Deterministic Policy Gradient: Limitations and

Multi-Head enhancement

The DDPG algorithm, introduced by Lillicrap et al. [12], is

an off-policy actor-critic method designed for continuous

action spaces. It combines the Deterministic Policy Gradient

(DPG) [7] with deep neural networks to approximate both the

policy and value function, while employing replay buffers and

target networks to improve training stability. DDPG has been

successfully applied in robotics [31], navigation [32], and

multi-agent learning [8].

Figure 1. Structure of the Deep Deterministic Policy

Gradient (DDPG) algorithm

As illustrated in Figure 1, the standard DDPG consists of

four neural networks: an online actor, an online critic, and their

respective target networks. The actor maps the states to

continuous actions, whereas the critic evaluates these actions

using the Q-function. Target networks stabilize training

through soft updates, and the replay buffer enables efficient

off-policy learning.

Despite these strengths, the standard DDPG exhibits key

limitations in multi-agent settings. Its monolithic architecture

maps observations directly to single actions, which (i) slows

convergence and increases sensitivity to hyperparameters, (ii)

produces opaque policies that hinder interpretability, and (iii)

prevents role differentiation, thereby limiting the emergence

of complex cooperative behaviors such as encirclement.

To overcome these shortcomings, we introduce a Multi-

Head DDPG actor that decomposes the control signal into

three interpretable primitives—pursuit, cohesion, and

separation—weighted adaptively at each time step. This

modular design preserves the stability and sample efficiency

of the DDPG while enhancing policy transparency and

enabling emergent self-organization in decentralized pursuit-

evasion tasks.

4.2 Multi-Head Actor with force modulation

4.2.1 Architectural overview

The proposed Multi-Head Actor architecture constitutes a

substantial extension of the conventional DDPG framework

[12], introducing explicit behavioral modularity that promotes

emergent coordination in decentralized pursuit-evasion tasks.

Unlike the monolithic policy outputs of standard DDPG, our

actor decomposes decision-making into three interpretable

control primitives inspired by swarm intelligence [35], bio-

inspired collective behavior [26], and modular reinforcement

learning [29]: pursuit (𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), cohesion (𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗), and separation

(𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗). This architecture is illustrated in Figure 2.

Figure 2. Multi-Head Actor architecture

The network design begins with a shared feature extractor,

realized as a multilayer perceptron, which encodes the agent’s

local observation 𝑂𝑎
𝑡 into a latent representation. This common

backbone ensures that all behavioral components operate with

a unified semantic understanding of the environment. From

this latent representation, three parallel output heads compute

their respective continuous force vectors.

In parallel, a dynamic role-weighting module, implemented

as a separate branch with a softmax activation, generates a

triplet of normalized behavioral weights (𝛼𝑡,𝛽t,𝛾𝑡)∈ [0, 1]3,

subject to the convexity constraint: 𝛼𝑡 + 𝛽t + 𝛾𝑡 = 1. These

weights adaptively modulate the relative influence of each

control primitive based on the agent’s local context, thereby

supporting dynamic role allocation. The final continuous

control vector is then obtained as follows:

total t goal t coh t sepF F F F  = + + (8)

Since the pursuit-evasion environment operates on a

discrete grid, 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is discretized into one of the available

movement actions A = {up, down, left, right, stay} using a

nearest-direction mapping.

This architectural choice offers three core advantages: (i)

3120

interpretability, as the learned role weights can be directly

inspected over time, revealing the agent’s decision-making

process; (ii) context-sensitive coordination, allowing agents to

autonomously adapt their behavioral emphasis to situational

demands; and (iii) robustness and generalization, since

modular primitives can be dynamically recombined to handle

unseen or evolving scenarios.

By embedding these behavioral priors into the policy, the

Multi-Head Actor bridges the gap between high-performance

DRL [12] and explainable self-organization [11]. This results

in scalable, interpretable, and emergent group behaviors in

fully decentralized multi-agent systems.

4.2.2 Behavioral decomposition: Force-based modulation

The proposed Multi-Head Actor architecture aims to

achieve interpretable and modular control by decomposing the

policy into three fundamental behavioral primitives: pursuit,

cohesion, and separation. Consider an agent a ∈ Pa, which

represents a pursuer located at position 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎 at time step t.

Based on its local perception 𝑂𝑎
𝑡 , the agent calculates three

normalized force vectors, each corresponding to a distinct

behavioral primitive. These primitives function as modular

components within the control policy, facilitating interpretable

and adaptive multi-agent coordination.

Pursuit Force(𝑭𝐠𝐨𝐚𝐥
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗): Generates a force vector oriented

toward the nearest target, enabling direct interception

behavior.

𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑒 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎
‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑒 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖2

 (9)

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑒 = arg min
𝑝 𝑗∈(𝐸∩𝑄𝑎

𝑡)
‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖2

 (10)

Here, 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝒆 denotes the position of the closest evader within

the sensing range of the agent. The resulting vector is unit-

normalized to preserve directionality while removing

magnitude scaling. From a behavioral perspective, a high

modulation coefficient 𝛼𝑡 indicates an aggressive pursuit

strategy whereby the agent prioritizes rapid engagement with

its target.

Cohesion Force (𝑭𝒄𝒐𝒉
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗): Produces a force vector that drives

the agent toward the centroid of its teammates within a fixed

radius 𝑟𝑠 [27] and outside a repulsion zone 𝑟𝑟𝑒𝑝 (to avoid

conflict with separation), thereby enhancing spatial

coordination.

𝑁𝑎 = {𝑗 ∈ 𝑃 ∶ |𝑟𝑟𝑒𝑝 < ‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖2
≤ 𝑟𝑠} (11)

𝐹𝑐𝑜ℎ
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

1

|𝑁𝑎|
∑

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎

‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖2𝑗∈𝑁𝑎

 (12)

The neighbour set 𝑁𝑎 consists of all pursuers in the annular

region 𝑟𝑟𝑒𝑝 <𝑑 ≤ 𝑟𝑠. Each direction vector toward a teammate

was normalized, and the resulting mean vector points toward

the centroid of the group. A high value of 𝛽𝑡 reflects

formation-preserving behavior, promoting coordinated

movement and group cohesion, which can improve

encirclement strategies (Figure 3).

Separation Force (𝑭𝒔𝒆𝒑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗): Outputs a force vector that repels

the agent from nearby pursuers to prevent overcrowding and

collisions [27].

𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = − ∑

𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎

‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖2

2

𝑗∈𝑁𝑎
′

 (13)

𝑁𝑎
′ = {𝑗 ∈ (𝑃 ∪ 𝐸) |‖𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑗 − 𝑝𝑜𝑠⃗⃗⃗⃗⃗⃗ ⃗𝑎‖ 2 ≤ 𝑟𝑟𝑒𝑝 } (14)

The set 𝑁𝑎
′ includes all agents within a predefined repulsion

radius 𝑟𝑟𝑒𝑝. Inverse-square distance weighting ensures that the

repulsion strength increases significantly in close proximity.

Behaviorally, a high coefficient 𝛾𝑡 corresponds to collision-

avoidance prioritization, which is a critical factor in dense

formations or confined environments.

Each force vector is calculated locally based on the

geometric relationships within the grid. All forces are

normalized to ensure stability and proper orientation. These

normalized forces are then combined to form the final motion

vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

Figure 3. Illustration of force-based modulation around an

agent

4.2.3 Theoretical foundation and behavioral primitives

Within the proposed Multi-Head DDPG framework, the

actor’s decision-making process is realized through a context-

dependent weighted integration of three behavioral primitives:

pursuit, cohesion, and separation. Unlike standard DDPG

architectures that output a single continuous action [12], this

formulation introduces behavioral modularity and implicit role

differentiation using force-based heads. The design of these

primitives is directly inspired by the principles of swarm

intelligence [3] and bio-inspired collective behavior models

[35], where complex group dynamics emerge from simple

local interaction rules.

The choice of pursuit, cohesion, and separation as the core

set of primitives is based on both theoretical and empirical

evidence. In the classical boids model of Reynolds [36],

similar rules (attraction, alignment, and separation) were

shown to be sufficient to generate flocking, swarming, and

encirclement canonical patterns of distributed self-

organization. Pursuit dynamics extend this foundation by

explicitly modeling predator-prey interactions [36], making

the triplet a minimal yet expressive basis for coordinating

agents in pursuit evasion. From a control-theoretic

perspective, pursuit drives goal-directedness, cohesion

maintains group integrity, and separation ensures collision

avoidance and spatial safety of the flock. Together, these

forces span the exploration-exploitation trade-off at the

collective level: aggressive engagement versus cooperative

stability.

4.2.4 Weighted combination and policy output

Formally, each agent receives a local observation 𝑂𝑎
𝑡 ∈𝑅𝑑,

which is processed by a multilayer perceptron (MLP). The

3121

MLP applies successive affine transformations interleaved

with nonlinear activations, mapping the raw input into a

compact latent embedding 𝑧𝑡∈ 𝑅𝑘. This latent representation

encodes the salient spatial and relational features of the

environment while attenuating irrelevant noise. Crucially, it

serves as a shared backbone for all behavioral primitives,

ensuring that pursuit, cohesion, and separation are grounded in

a unified perceptual representation while still allowing each to

specialize modularly [8, 10].

From this latent representation, three parallel output heads

compute unnormalized scalar activations (𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃), each

corresponding to one behavioral primitive:

[𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃] = 𝐴𝑐𝑡𝑜𝑟𝐻𝑒𝑎𝑑𝑠(𝑧𝑡) (15)

To guarantee interpretability and stability, these activations

are normalized using a softmax transformation, producing a

triplet of adaptive behavioral weights:

[𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃]) (16)

with the explicit formulation:

𝛼𝑡 =
𝑒𝑥𝑝𝛼𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)

𝛽𝑡 =
𝑒𝑥𝑝𝛽𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)

𝛾𝑡 =
𝑒𝑥𝑝𝛾𝑡̃

(𝑒𝑥𝑝𝛼𝑡̃ + 𝑒𝑥𝑝𝛽𝑡̃ + 𝑒𝑥𝑝𝛾𝑡̃)

(17)

This formulation guarantees that: (𝛼,𝛽,𝛾)∈[0, 1]3 and 𝛼 +
𝛽 + 𝛾 = 1 , allowing a probabilistic interpretation of role

allocation. At each time step, the model dynamically adjusts

the emphasis on pursuit, cohesion, or separation according to

the agent’s local context.

The final continuous control vector is obtained through a

convex combination of the pre-computed force vectors, as

defined in Eq. (8):

total t goal t coh t sepF F F F  = + + (18)

The resultant vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ constitutes an optimal synthesis

of behavioral primitives, as it preserves the directional

information from pursuit, cohesion, and separation while

adaptively weighting them according to the agent’s local

context. Unlike the selection of a single primitive, this convex

combination ensures continuity of behavior, robustness to

dynamic environments, and faithful preservation of the

underlying strategic intent when mapped onto a discrete action

space.

4.2.5 Direction discretization via angular mapping

Although the pursuit-evasion environment is defined over a

discrete action space, we deliberately adopted a continuous

control algorithm (DDPG) as the foundation of our proposed

framework. The motivation stems from the fact that the

underlying decision process is inherently continuous: agents

interact through force-based primitives (pursuit, cohesion, and

separation), which are naturally expressed as continuous

motion vectors in R2. Similar continuous-to-discrete control

strategies have been explored in prior reinforcement learning

and robotics literature, where continuous policy learning is

combined with discretized action execution to preserve

expressiveness during optimization [7, 12, 30, 32, 34, 37, 38].

Directly modeling these interactions in discrete space obscures

directional nuances and restricts the expressivity of emergent

coordination. In contrast, continuous policies allow the actor

network to modulate the relative weights (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) smoothly,

ensuring richer behavioral diversity and more precise

adaptations to local contexts before discretization.

To execute actions in the grid-based environment, the

continuous control vector 𝐹𝑡𝑜𝑡𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (Eq. (8)) is projected into the

discrete action space via angular mapping. Specifically, the

orientation angle is computed as:

()2 ,y xarctan F F = (19)

where, arctan2(.) ensures quadrant disambiguation and robust

handling of directional signs [33]. The angle 𝜃 is then

compared with the canonical direction angles corresponding

to the five discrete moves, and the action minimizing the

angular distance is selected (Table 1).

Table 1. Definition of cardinal target direction

Discrete Action at
Direction

Vector (dx,dy)

Angular Range

(Degrees)

Up (0, +1) [45∘,135∘]

Down (0, -1) [225∘,315∘]

Left (-1, 0) [135∘,225∘]

Right (+1, 0) [-45∘,45∘]

Stay (No

movement)
(0, 0) N/A

Figure 4. Mapping resultant vector to discrete action

This nearest-direction projection guarantees that the chosen

discrete action remains the closest approximation of the

intended continuous force, thus preserving the strategic intent

of the policy (Figure 4). Importantly, no major loss of

information occurs because the grid constraints inherently

restrict the expressivity to five moves; hence, any control

architecture, whether continuous or discrete, must eventually

map to this finite set. The advantage of the continuous

formulation lies in its intermediate flexibility: two continuous

vectors pointing in slightly different directions but mapped to

the same discrete move still influence the learning process

differently, as they produce distinct gradients during the actor-

critic optimization. This ensures that the training signal

preserves fine-grained information even if the final executed

action is discrete.

Such discretization strategies have long been adopted in

robotics and multi-agent navigation, where continuous

velocity commands are transformed into grid-aligned

primitives for path planning and cooperative behaviors [25,

30]. The use of arctan2(⋅) further provides a deterministic

3122

resolution in ambiguous cases (e.g., diagonal forces), ensuring

consistency across agents and stability in swarm dynamics

[33].

The algorithm of the Multi-Head Actor Network has been

presented in Algorithm 1.

Algorithm 1. Multi-Head Actor Network with Force-

Based Modulation

Initialize the actor network 𝜇(𝑂𝑎
𝑡; θ𝜇) with a shared

backbone and three behavioral heads (pursuit, cohesion,

separation) producing raw outputs (𝛼̃, 𝛽, 𝛾̃).

Initialize the critic network 𝑄(𝑠, 𝑎; θ𝑄).

Create target networks by deep-copying parameters:

𝜃𝜇′←θ𝜇 and 𝜃𝑄′←θ𝑄.

Initialize an empty replay buffer B of capacity D.

Initialize the exploration noise process 𝒩𝑡 .

Begin

For episode = 1 to M:

a. Reset environment E and receive initial local

 observations 𝑂𝑎
𝑡 for all agents

b. For t = 0 to T:

i. Forward pass through the actor to compute

 (𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃) using Eq. (15)

ii. Apply softmax to obtain normalized weights

 (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) using Eq. (16)

iii. Compute forces vectors 𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗

 using Eqs. (9)-(14)

iv. Form weighted action 𝑎𝑡
𝑐𝑜𝑛𝑡 using Eq. (20) and

 add exploration noise: 𝑎𝑡
𝑛𝑜𝑖𝑠𝑦

 using Eq. (21)

 v. Discretize 𝑎𝑡
𝑑𝑖𝑠𝑐 using Eq. (19)

 vi. Execute action 𝑎𝑡
𝑑𝑖𝑠𝑐 in E, and

 observe (𝑂𝑎
𝑡+1, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡)

 Store (𝑠𝑡 , 𝑂𝑎
𝑡 , 𝑎𝑡

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) in B

vii. Sample a mini-batch (𝑠𝑗 , 𝑂𝑎
𝑗
, 𝑎𝑗

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑗 , 𝑠𝑗+1, 𝑑𝑜𝑛𝑒𝑗)

 from B

viii. Critic update:

compute target action: 𝑎𝑗
′ = 𝜇′(𝑂𝑎

𝑗+1
; 𝜃𝜇′) compute

target value:

𝑦𝑗 = 𝑟𝑗 + (1 − 𝑑𝑜𝑛𝑒𝑗)𝛾𝑄′(𝑠𝑗+1, 𝑎𝑗
′|𝜃𝑄′)

Minimize critic loss:

𝐿𝑄 =
1

𝑁
∑[𝑦𝑗 − 𝑄(𝑠𝑗,

𝑁

𝑗=1

𝑎𝑗
𝑛𝑜𝑖𝑠𝑦

|𝜃𝑄)]2

Update critic 𝜃𝑄 ← 𝜃𝑄− ηcritic ∇𝜃𝑄𝐿𝑄

ix. Actor update: compute policy gradient ∇𝜃𝜇
𝐽 using

 Eq. (24) and update actor 𝜃𝜇← 𝜃𝜇+ ηactor ∇𝜃𝜇
𝐽

x. Soft-update target using Eq. (25)

End for (timestep loop)

End for (episode loop)

The proposed angular mapping bridges the gap between

continuous force-based reasoning and discrete-action

execution. This enables our Multi-Head DDPG to exploit the

expressive power of continuous control during learning while

maintaining compatibility with the grid-based pursuit-evasion

task. This design choice ensures that the emergent behaviors

are strategically optimal, interpretable, and robust.

4.3 Training procedure of the Multi-Head Actor network

The proposed Multi-Head Actor Network is trained under

the CTDE paradigm, ensuring that each agent operates solely

on local observations during execution while exploiting global

information during centralized training via a shared replay

buffer. This paradigm has been shown to be effective in

MARL in cooperative and competitive environments [8]. The

optimization builds upon the DDPG framework [12], which is

adapted here to incorporate the force-based action

representation and dynamic role-weighting mechanism

described in Section 4.2.

Let μ (𝑂𝑎
𝑡 ;θμ) denote the deterministic actor network

parameterized by 𝜃𝜇, mapping the local observation 𝑂𝑎
𝑡 to a

continuous control vector 𝑎𝑡
𝑐𝑜𝑢𝑛𝑡 ∈ R2. The network

architecture consists of a shared backbone (MLP) that encodes

𝑂𝑎
𝑡 into a latent vector 𝑧𝑡, which is then processed by three

behavioral heads (pursuit, cohesion, separation). These heads

produce raw activations (𝛼𝑡̃ , 𝛽𝑡̃ , 𝛾𝑡̃), which are normalized via

the softmax function into adaptive weights (𝛼𝑡, 𝛽𝑡, 𝛾𝑡) as in Eq.

(16). Based on the encoded observation, three behavioral

forces 𝐹goal
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐹𝑐𝑜ℎ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and 𝐹𝑠𝑒𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗ are computed (Eqs. (9)-(14)). The

actor’s continuous control action is then obtained as the

weighted combination.

cont

t goal coh sepa F F F  = + + (20)

Exploration noise 𝒩𝑡 (e.g., Gaussian noise [37]) is added in

the continuous space before discretization:

noisy cont

t t ta a= + (21)

and mapped to the discrete action space A = {up, down, left,

right, stay} via nearest-direction mapping to produce 𝑎𝑡
𝑑𝑖𝑠𝑐

(using Eq. (19)) for environment execution. Transitions

(𝑠𝑡 , 𝑂𝑎
𝑡 , 𝑎𝑡

𝑛𝑜𝑖𝑠𝑦
, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) are stored in the replay buffer B

[6], where donet ∈ {0,1}denotes the done flag indicating

whether the episode terminates at step t (𝑑𝑜𝑛𝑒𝑡 = 1) or

continues (𝑑𝑜𝑛𝑒𝑡 = 0). This signal is crucial for learning

because it prevents the critic from propagating future value

estimates beyond terminal states. The critic 𝑄(𝑠, 𝑎; θ𝑄) is then

updated by minimizing the temporal-difference loss as

follows:

𝐿𝑄(𝜃𝑄) =
1

𝑁
∑[𝑦𝑗 − 𝑄(𝑠𝑗,

𝑁

𝑗=1

𝑎𝑗
𝑛𝑜𝑖𝑠𝑦

|𝜃𝑄)]2 (22)

with target values:

()()1

1(1) , j

j j j j a Q
y r done Q s O


    

  +

+= + − (23)

where, 𝜇′ are target networks with parameters 𝜃𝜇′ and 𝜃𝑄′ .

The actor parameters are updated using the deterministic

policy gradient [7]:

() ()(), (;)
1

1
() t

a

N
t

a j Q aa O
j

J Q s a O
N 

    
    

=
=

    (24)

followed by Polyak averaging:

𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ ,

𝜃𝜇′

← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(25)

3123

4.4 Interpretable role allocation and emergent self-

organization

The Multi-Head DDPG architecture provides

interpretability by explicitly representing each agent's decision

as a weighted combination of three forces: pursuit, cohesion,

and separation. The agent's real-time priorities are revealed by

a triplet of normalized weights (α, β, γ), which can be directly

inspected during execution.

This formulation facilitates emergent role differentiation, as

agents are not constrained to preassigned static strategies. For

example, in open environments, an agent's policy tends to

prioritize pursuit (α), whereas in crowded spaces, it

increasingly emphasizes cohesion (β) and separation (γ). This

dynamic specialization (e.g. as a chaser or blocker) arises

naturally from local observations without requiring central

control or explicit communication.

This mechanism constitutes a form of distributed self-

organization that echoes the collective intelligence observed

in biological swarms [27, 36]. It illustrates how complex

global strategies, such as encirclement, can emerge from

simple, interpretable local rules. The ability to monitor the

force weights transforms the model from a mere control

system into a diagnostic and explanatory tool, bridging the gap

between reinforcement learning and explainable artificial

intelligence (XAI) [11]. As a result, the system becomes more

scalable, robust, and resilient for real-world deployment.

5. EXPERIMENTAL SETUP AND RESULTS

This section presents the empirical evaluation of the

proposed Multi-Head DDPG architecture in a decentralized

multi-agent pursuit–evasion scenario. The analysis is

organized around four core dimensions: (i) quantitative

performance, (ii) learning stability and behavioral dynamics,

(iii) generalization and robustness, and (iv) interpretability

through emergent self-organization. Additionally, we

benchmarked the proposed method against established

baselines and provided a dedicated analysis of weighted force

coupling and control vector construction. Figures 5-10 jointly

illustrate how learning dynamics, interpretability, and

emergent self-organization arise from the proposed modular

actor design.

5.1 Experimental setup

To assess the performance and robustness of our approach,

we implemented a 2D grid-based pursuit-evasion simulation

environment with fixed dimensions of N × N. The

environment consists of ten cooperative pursuer agents and

two evading targets, where agents must coordinate to intercept

all evaders as quickly and efficiently as possible (see Figure 5

for an illustration of the environment).

Algorithm-specific hyperparameters (e.g., network

architecture, learning rates, replay buffer size, and target

update coefficients) are summarized in Table 2.

Each agent operates under a partially observable

decentralized framework and receives a local observation

vector at each time step t. The agents can choose a discrete

movement action from the set A = {up, down, left, right, stay}.

A capture event is registered when the Euclidean distance

between the pursuer and evader satisfies ||posp−pose||2 ≤ dcap

with dcap = 1, corresponding to the pursuer being in the same

or an immediately adjacent cell in the Von Neumann

neighborhood (no diagonals).

Figure 5. Pursuit-evasion environment (20 × 20 Grid)

Table 2. Hyperparameter configuration for baseline

algorithms

Parameter DQN PPO DDPG
Multi-Head

DDPG

Network

architecture

2 × 128

MLP

2 × 128

MLP

2 × 128

MLP

Shared 2 ×

128 MLP + 3

heads

Actor learning

rate
— 3e−4 1e−4 1e−4

Critic learning

rate
1e−4 3e−4 1e−3 1e−3

Replay buffer

size
1e5 — 1e5 1e5

Target update

τ
— — 0.005 0.005

To ensure a fair and reproducible comparison across the

learning algorithms, the following experimental conditions

were uniformly applied:

 Agent configuration: 10 pursuers and 2 evaders.

 Grid size: 20 × 20 cells.

 Training duration: 1,000 episodes, with each episode

capped at 100 times steps.

 Discount factor: All models used γ = 0.95.

 Batch size: 128.

 Optimizer: Adam for all neural networks [1].

Exploration strategies followed standard algorithm-specific

practices. DQN employed an epsilon-greedy strategy with

linear annealing, PPO relied on stochastic policy sampling,

and actor–critic methods (standard DDPG and Multi-Head

DDPG) used additive Gaussian noise N(0, σ²) [34, 37].

Additional experiments using Ornstein–Uhlenbeck noise [12]

confirmed the robustness of the results with respect to the

choice of exploration process.

To mitigate stochasticity and initialization variance, each

algorithm was trained and evaluated over ten independent runs

with different random seeds. All reported metrics are

presented as mean ± standard deviation after convergence.

All experiments were conducted on a workstation equipped

with an Intel Core i9-12900K CPU (3.2 GHz), 64 GB RAM,

and an NVIDIA RTX 3090 GPU (24 GB VRAM), running

Windows 11 with PyTorch 2.0.

3124

Algorithm-specific hyperparameters (e.g., network

architecture, learning rates, replay buffer size, and target

update coefficients) are summarized in Table 2.

5.2 Comparative methods

To rigorously validate the contribution of our approach, we

compared the proposed architecture with three representative

and widely recognized RL baselines:

Deep Q-Network (DQN): A value-based RL algorithm

effective for discrete action spaces [6]. This serves as a

fundamental baseline for measuring the benefits of

continuous-action extensions.

Proximal Policy Optimization (PPO): A robust and sample-

efficient policy-gradient method considered a state-of-the-art

baseline for policy optimization in multi-agent systems [15].

DDPG (Standard): A continuous-action actor-critic method

[12], that serves as a direct baseline to isolate the effects of our

behavioral decomposition and modular actor.

Multi-Head DDPG (Proposed): Our extension of the DDPG

introduces a modular actor with three behavioral heads

(pursuit, cohesion, and separation). These heads are

dynamically weighted to form a force-based control vector

that enables interpretable and adaptive decision-making.

This spectrum of baselines allows us to evaluate the

performance across discrete versus continuous action spaces,

monolithic versus modular architectures, and value-based

versus policy-gradient paradigms.

5.3 Quantitative results

To quantitatively assess our method, we conducted ten

independent training runs with different random seeds to

mitigate stochastic variance. Upon convergence, each trained

policy was evaluated over 1,000 noise-free episodes to obtain

stable and unbiased performance estimates. Evaluation was

based on three key metrics: Success Rate (percentage of

episodes in which all evaders were captured), Average Reward

(mean cumulative return per episode, reflecting both

efficiency and success), and Steps to Capture (mean number

of timesteps required to capture the final evader). The findings

are presented in Table 3. Importantly, the reward values

reported here correspond to normalized evaluation rewards,

ensuring comparability across methods.

To assess the statistical significance of the observed

performance differences, we conducted pairwise Welch’s t-

tests between the proposed Multi-Head DDPG and each

baseline across the 10 independent runs. For all three

evaluation metrics (success rate, average reward, and steps to

capture), the improvements achieved by the proposed method

were found to be statistically significant (p < 0.05).

Relative to the standard DDPG baseline, the proposed

Multi-Head DDPG achieves a +12.6% absolute improvement

in success rate, a +2.7 point increase in average reward, and a

−10.8 timestep reduction in capture time. Compared to PPO,

it yields a +17.8% absolute success rate gain, a +4.4 point

reward increase, and a −15.3 timestep reduction. Against

DQN, improvements are even more pronounced, with a

+24.0% absolute success rate gain, a +5.2 point reward

increase, and a −19.6 timestep reduction.

These consistent improvements across baselines validate

our hypothesis that explicit behavioral decomposition into

pursuit, cohesion, and separation forces, modulated by

adaptive role weights, enables superior coordination under

partial observability. Shorter capture times indicate more

decisive and coordinated pursuit maneuvers, whereas higher

rewards reflect greater robustness and generalization.

Table 3. Final performance comparison on the pursuit-

evasion task (10 Runs, Mean ± Standard Deviation)

Algorithm
Success

Rate

Avg

Reward

Steps to

Capture

Multi-Head DDPG

(Ours)
85.2 ± 2.1 14.5 ± 0.9 28.9 ± 2.3

DDPG (Standard) 72.6 ± 3.4 11.8 ± 1.3 39.7 ± 2.6

PPO 67.4 ± 2.2 10.1 ± 1.1 44.2 ± 2.9

DQN 61.2 ± 2.7 9.3 ± 1.5 48.5 ± 3.1

5.4 Learning curves and convergence behavior

To investigate stability and sample efficiency, we

monitored the evolution of raw average episodic reward

during training for all four algorithms (DQN, PPO, DDPG,

Multi-Head DDPG) over 1,000 episodes (10 runs averaged).

This comparison is visually summarized in Figure. 6. Unlike

the normalized metrics reported in Table 3, these learning

curves illustrate the unnormalized reward dynamics

throughout training.

Figure 6. Training curves of the raw (non-normalized)

average episodic reward for DQN, PPO, standard DDPG, and

the proposed Multi-Head DDPG, averaged over 10

independent runs

The curves illustrate learning stability, convergence speed,

and asymptotic performance; normalized rewards are reported

separately in Table 3.

Because DDPG was originally designed for continuous

spaces [12], its outputs were projected onto discrete directions

via force-based angular mapping. This ensures a fair

comparison with the DQN and PPO, which natively operate in

discrete domains.

The proposed Multi-Head DDPG exhibited the most

favorable learning dynamics, achieving rapid convergence

within the first 100 episodes and maintaining the highest

asymptotic reward (~180-190). In contrast, the standard

DDPG plateaus at approximately 150 with a higher variance,

indicating sensitivity to exploration noise and

hyperparameters. PPO demonstrated slower and unstable

convergence, ultimately yielding a near-zero average reward,

whereas DQN failed to progress beyond negative to near-zero

values, confirming the inadequacy of value-based methods in

this setting.

These results highlight three main findings: (i) accelerated

3125

convergence and superior asymptotic performance of the

Multi-Head DDPG relative to all baselines; (ii) reduced

variance across runs, evidencing robustness against non-

stationarity; and (iii) clear limitations of monolithic or value-

based approaches, which lack the representational flexibility

required for fine-grained coordination. Overall, this analysis

confirms that modular behavioral decomposition with

adaptive weighting substantially enhances both learning

efficiency and reliability in decentralized multi-agent pursuit-

evasion tasks.

5.5 Behavioral role differentiation and interpretability

A distinctive advantage of the proposed Multi-Head DDPG

lies in its interpretable actor design, where each action is

parameterized by a triplet of role weights (α, β, γ)

corresponding to the pursuit, cohesion, and separation forces,

respectively. This explicit decomposition transforms latent

policy modulations into observable quantities, thereby

providing a direct window into the decision-making process of

agents. Figure 7 illustrates the temporal evolution of the role

weights across 1,000 steps for all ten pursuers, whereas Figure

8 summarizes their mean profiles over the entire horizon. After

an initial transient phase (~150-200 steps), the majority of

agents converge to stable yet heterogeneous configurations,

reflecting emergent specialization. For instance, Agent 2

predominantly acts as a pursuit specialist (mean α ≈ 0.94),

Agent 3 emphasizes cohesion (β ≈ 0.97), and Agent 1 adopts

a separation-dominant strategy (γ ≈ 0.96) with a reduced

pursuit. Conversely, Agent 7 exhibited high pursuit and

cohesion but persistently low separation, corresponding to a

risk-taking chaser. In contrast, several agents (e.g. Agents 0,

4, 5, 8, and 9) maintained balanced weight distributions (α, β,

γ ≈ 0.95-0.98), consistent with more generalist and adaptable

behaviors.

Figure 7. Temporal evolution of role weights (α, β, γ) for each pursuer

The heatmap in Figure 8 quantitatively confirms these

trends by distinguishing between specialized and balanced

roles without any pre-assignment or external coordination.

Such differentiation arises end-to-end from decentralized

learning dynamics under partial observability, thereby

validating the self-organizing capacity of the architecture.

3126

Figure 8. Heatmap of mean role weights (α, β, γ) per agent

Importantly, the ability to monitor (α, β, γ) over time not

only enhances interpretability but also facilitates human-in-

the-loop supervision, systematic diagnosis of emergent

behaviors, and more reliable deployment in safety-critical

multi-agent scenarios.

5.6 Weighted force coupling and control vector

construction

To elucidate the internal decision-making process of the

proposed architecture, the control vector at each time step is

expressed as a weighted linear combination of three

interpretable primitive forces—pursuit, cohesion, and

separation—as formalized in Eq. (8). Figures 8 and 9 provide

complementary perspectives: the trajectories of the adaptive

role weights (α, β, γ) for all agents and the corresponding force

magnitudes ||F_goal||, ||F_coh||, ||F_sep||, together with the

resultant ||F_total||.

Three salient observations emerge from this analysis. First,

separation consistently accounted for the largest share of the

force budget. As illustrated by the recurrent peaks of ||F_sep||

(often in the range of 3-4) for Agents 5-9, collision avoidance

dominated when the agents operated in congested

configurations. In contrast, ||F_goal|| and ||F_coh|| remained

comparatively smaller (typically below 1.5), except during

sparse regimes or post-dispersion phases. Second, despite the

high variability in the primitive forces, the resultant ||F_total||

exhibits smooth temporal evolution, demonstrating that the

weighted coupling acts as a stabilizing mechanism. This

effectively ensures coherent motion policies and mitigates the

risk of erratic behavior. Third, the modulation of role weights

directly reflects context-sensitive adaptation: pursuit forces

weaken when agents close in on targets, whereas cohesion and

separation forces increase under high-density interactions,

consistent with transient rises in β and γ.

Overall, these findings highlight the operational

transparency of the proposed architecture. The explicit

mapping between role weights and force magnitudes provides

an interpretable bridge between internal policy modulation and

observable control signals, thereby reinforcing both the

robustness and explainability of the emergent behaviors of the

agent.

5.7 Generalization and robustness

To evaluate the generalization ability and robustness of the

learned policies beyond their training distribution, we

designed a set of out-of-distribution (OOD) scenarios that

reflect the practical challenges of real-world multi-agent

coordination. Specifically, we considered three settings:

Increased Agent Density — 15 agents instead of 10, leading

to greater interaction complexity and collision potential.

Faster Evaders — evaders move more rapidly, making

pursuit and interception more difficult to achieve.

Presence of Dynamic Obstacles — introduces

environmental unpredictability, requiring enhanced situational

awareness.

The success rates across these settings are reported in Table

4, which compares the performance of four algorithms: DQN,

PPO, standard DDPG, and our proposed Multi-Head DDPG.

Several key observations emerge from this evaluation.

Superior generalization of Multi-Head DDPG: In all three

scenarios, our method achieved the highest success rate, with

margins of over 10% compared to the next best baseline. This

consistent superiority indicates that the learned policy does not

overfit the training conditions and adapts effectively to novel

dynamics and spatial configurations.

Table 4. Success rates in out-of-distribution scenarios

Scenario DQN PPO
DDPG

Std

Multi-Head

DDPG

Dense Swarm

(15 agents)
54.3% 61.8% 67.1% 81.7%

Faster Evaders 45.6% 52.0% 60.4% 75.3%

With Obstacles 40.1% 49.2% 57.3% 69.8%

Impact of modular force-based decomposition. The strength

of the proposed architecture lies in its decomposition of

control into interpretable behavioral forces (pursuit, cohesion,

and separation) with adaptive weighting. This modular

representation allows the policy to generalize its behavioral

response, even when facing previously unseen variations in the

agent’s behavior or environmental structure.

Limitations of value-based and monolithic approaches.

DQN, which lack continuous modulation capabilities, suffer

the most across all settings. PPO and standard DDPG

performed moderately better but still lacked the flexibility of

our Multi-Head modulation strategy when exposed to high-

density or nonstationary environments.

In summary, these results confirm that the Multi-Head

DDPG offers both robust performance and strong

generalization capacity, reinforcing the hypothesis that

modular policy structures are more suitable for scalable real-

world multi-agent coordination.

5.8 Emergent self-organization

We assessed whether the proposed Multi-Head DDPG

facilitates emergent self-organization through both individual

and collective analyses. At the agent level, the temporal

trajectories of role weights (α, β, γ) indicated heterogeneous

specialization, with some agents consistently prioritizing

pursuit, while others emphasized cohesion or separation.

Crucially, these roles are not predefined but emerge

autonomously from decentralized interactions under partial

observability.

This demonstrates the ability of the architecture to induce

role differentiation without external supervision.

At the collective level, coordination metrics demonstrated

structured group behaviors, including reduced collision rates,

compact clustering around evaders, and spontaneous

3127

emergence of encirclement and blocking formations. These

dynamics are exemplified in Figure 10, Multi-agent simulation

demonstrating emergent cooperative coordination and

encirclement of evaders, which visually depicts how agents

self-organize into cohesive formations to contain the targets.

Such patterns were absent in the DQN, PPO, and standard

DDPG, underscoring the distinct advantages of the proposed

architecture.

Overall, these results show that Multi-Head DDPG does

more than improve task performance; it induces interpretable

emergent coordination grounded in local decision-making.

This capacity to monitor and quantify emergent dynamics

strengthens the link between reinforcement learning and

explainable multi-agent control, enhancing the scalability and

robustness of decentralized systems.

Figure 9. Coupling between adaptive role weights and corresponding force magnitudes

3128

Figure 10. Pursuit-evasion episode illustrating emergent self-organization

6. CONCLUSION

This study introduces a novel extension of the DDPG

algorithm for decentralized multi-agent coordination,

leveraging a Multi-Head Actor architecture that adaptively

balances three interpretable behavioral primitives—pursuit,

cohesion, and separation— dynamically modulated weights

(α, β, γ).

Extensive empirical evaluation against strong baselines

(DQN, PPO, standard DDPG) shows that the proposed

approach achieves consistent improvements across four

dimensions: (i) superior task performance and efficiency, (ii)

accelerated convergence with enhanced stability, (iii)

interpretability through role-specific weight trajectories, and

(iv) robust generalization to out-of-distribution scenarios

involving denser swarms, faster evaders, and cluttered

environments. Further coupling analysis confirm that

emergent macroscopic behaviors arise coherently from

modular force decomposition, offering both transparency and

reliability in collective decision-making.

Beyond performance, this study underscores the potential of

modular policy structures to bridge reinforcement learning

with explainable multi-agent control. Future research

directions include hierarchical role coordination, human-in-

the-loop guidance, hardware deployment in robotic swarms,

and theoretical analyses of convergence and stability

guarantees.

In conclusion, the Multi-Head DDPG framework provides

a scalable, interpretable, and high-performance foundation for

cooperative autonomy, with direct applicability to swarm

robotics, surveillance, and multi-agent search-and-rescue

missions.

ACKNOWLEDGMENT

We are grateful to our colleagues and laboratories for

supporting this research. Special thanks are extended to Drs.

Wahid Chergui, Mohammed El Habib Souidi and Abdelaali

Bekhouche for their valuable help and advice.

REFERENCES

[1] Wong, A., Bäck, T., Kononova, A.V., Plaat, A. (2023).

Deep multiagent reinforcement learning: Challenges and

directions. Artificial Intelligence Review, 56(6): 5023-

5056. https://doi.org/10.1007/s10462-022-10299-x

[2] Gronauer, S., Diepold, K. (2022). Multi-agent deep

reinforcement learning: A survey. Artificial Intelligence

Review, 55(2): 895-943. https://doi.org/10.1007/s10462-

021-09996-w

[3] Ye, D., Zhang, M., Vasilakos, A.V. (2016). A survey of

self-organization mechanisms in multiagent systems.

IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 47(3): 441-461.

https://doi.org/10.1109/TSMC.2015.2504350

[4] Liu, H., Long, X., Li, Y., Yan, J., et al. (2025). Adaptive

multi-UAV cooperative path planning based on novel

rotation artificial potential fields. Knowledge-Based

Systems, 317: 113429.

https://doi.org/10.1016/j.knosys.2025.113429

[5] Shoham, Y., Leyton-Brown, K. (2008). Multiagent

Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press.

https://doi.org/10.1017/CBO9780511811654

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al.

(2015). Human-level control through deep reinforcement

learning. Nature, 518(7540): 529-533.

https://doi.org/10.1038/nature14236

[7] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,

Riedmiller, M. (2014). Deterministic policy gradient

algorithms. In International Conference on Machine

Learning, pp. 387-395.

[8] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P.,

Mordatch, I. (2017). Multi-agent actor-critic for mixed

3129

cooperative-competitive environments. arXiv preprint

arXiv:1706.02275.

https://doi.org/10.48550/arxiv.1706.02275

[9] Christianos, F., Papoudakis, G., Rahman, M.A.,

Albrecht, S.V. (2021). Scaling multi-agent reinforcement

learning with selective parameter sharing. In Proceedings

of the 38th International Conference on Machine

Learning, pp. 1989-1998.

[10] Foerster, J., Assael, I.A., De Freitas, N., Whiteson, S.

(2016). Learning to communicate with deep multi-agent

reinforcement learning. Advances in Neural Information

Processing Systems, 29.

[11] Gunning, D., Aha, D. (2019). DARPA’S explainable

artificial intelligence (XAI) program. AI Magazine,

40(2): 44-58. https://doi.org/10.1609/aimag.v40i2.2850

[12] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., et al.

(2015). Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971.

https://doi.org/10.48550/arXiv.1509.02971

[13] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet,

O. (1995). Novel type of phase transition in a system of

self-driven particles. Physical Review Letters, 75(6):

1226. https://doi.org/10.1103/PhysRevLett.75.1226

[14] Doshi-Velez, F., Kim, B. (2017). Towards a rigorous

science of interpretable machine learning. arXiv preprint

arXiv:1702.08608.

https://doi.org/10.48550/arXiv.1702.08608

[15] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

Klimov, O. (2017). Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347.

https://doi.org/10.48550/arxiv.1707.06347

[16] Sun, L., Chang, Y.C., Lyu, C., Shi, Y., Shi, Y., Lin, C.T.

(2023). Toward multi-target self-organizing pursuit in a

partially observable Markov game. Information

Sciences, 648: 119475.

https://doi.org/10.1016/j.ins.2023.119475

[17] De Souza, C., Newbury, R., Cosgun, A., Castillo, P.,

Vidolov, B., Kulić, D. (2021). Decentralized multi-agent

pursuit using deep reinforcement learning. IEEE

Robotics and Automation Letters, 6(3): 4552-4559.

https://doi.org/10.1109/LRA.2021.3068952

[18] Hüttenrauch, M., Šošić, A., Neumann, G. (2019). Deep

reinforcement learning for swarm systems. Journal of

Machine Learning Research, 20(54): 1-31.

[19] Yu, C., Dong, Y., Li, Y., Chen, Y. (2020). Distributed

multi-agent deep reinforcement learning for cooperative

multi-robot pursuit. The Journal of Engineering,

2020(13): 499-504.

https://doi.org/10.1049/joe.2019.1200

[20] Park, C., Lee, H., Yun, W. J., Jung, S., Kim, J. (2022).

Coordinated multi-agent reinforcement learning for

unmanned aerial vehicle swarms in autonomous mobile

access applications. arXiv preprint arXiv:2304.08493.

https://doi.org/10.48550/arxiv.2304.08493

[21] Azzam, R., Boiko, I., Zweiri, Y. (2023). Swarm

cooperative navigation using centralized training and

decentralized execution. Drones, 7(3): 193.

https://doi.org/10.3390/drones7030193

[22] Stone, P., Veloso, M. (1999). Task decomposition,

dynamic role assignment, and low-bandwidth

communication for real-time strategic teamwork.

Artificial Intelligence, 110(2): 241-273.

https://doi.org/10.1016/S0004-3702(99)00025-9

[23] Chen, Y., Shi, Y., Dai, X., Meng, Q., Yu, T. (2025).

Pursuit-evasion game with online planning using deep

reinforcement learning. Applied Intelligence, 55(6): 1-

17. https://doi.org/10.1007/s10489-025-06396-3

[24] Hansen, E.A., Bernstein, D.S., Zilberstein, S. (2004).

Dynamic programming for partially observable

stochastic games. In Proceedings of the AAAI

Conference on Artificial Intelligence, pp. 709-715.

[25] Şahin, E. (2004). Swarm robotics: From sources of

inspiration to domains of application. In International

Workshop on Swarm Robotics, pp. 10-20.

https://doi.org/10.1007/978-3-540-30552-1_2

[26] Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.

(2005). Effective leadership and decision-making in

animal groups on the move. Nature, 433(7025): 513-516.

https://doi.org/10.1038/nature03236

[27] Olfati-Saber, R. (2006). Flocking for multi-agent

dynamic systems: Algorithms and theory. IEEE

Transactions on Automatic Control, 51(3): 401-420.

https://doi.org/10.1109/TAC.2005.864190

[28] Von Neumann, J., Burks, A.W. (1966). Theory of self-

reproducing automata.

[29] Doya, K., Samejima, K., Katagiri, K.I., Kawato, M.

(2002). Multiple model-based reinforcement learning.

Neural Computation, 14(6): 1347-1369.

https://doi.org/10.1162/089976602753712972

[30] LaValle, S.M. (2006). Planning Algorithms. Cambridge

University Press.

https://doi.org/10.1017/CBO9780511546877

[31] Gu, S., Holly, E., Lillicrap, T., Levine, S. (2017). Deep

reinforcement learning for robotic manipulation with

asynchronous off-policy updates. In 2017 IEEE

International Conference on Robotics and Automation

(ICRA), Singapore, pp. 3389-3396.

https://doi.org/10.1109/ICRA.2017.7989385

[32] Chen, Y.F., Everett, M., Liu, M., How, J.P. (2017).

Socially aware motion planning with deep reinforcement

learning. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1343-1350.

https://doi.org/10.1109/IROS.2017.8202312

[33] Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D. (2011).

Introduction to Autonomous Mobile Robots. MIT Press.

[34] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. (2018).

Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor. arXiv

preprint arXiv:1801.01290.

https://doi.org/10.48550/arXiv.1801.0129

[35] Kennedy, J., Eberhart, R. (1995). Particle swarm

optimization. In Proceedings of ICNN'95-International

Conference on Neural Networks, Perth, WA, Australia,

pp. 1942-1948.

https://doi.org/10.1109/ICNN.1995.488968

[36] Reynolds, C.W. (1987). Flocks, herds and schools: A

distributed behavioral model. In Proceedings of the 14th

Annual Conference on Computer Graphics and

Interactive Techniques, pp. 25-34.

https://doi.org/10.1145/37402.37406

[37] Fujimoto, S., van Hoof, H., Meger, D. (2018).

Addressing function approximation error in actor-critic

methods. arXiv preprint arXiv:1802.09477.

https://doi.org/10.48550/arXiv.1802.09477

[38] Tang, Y., Agrawal, S. (2020). Discretizing continuous

action space for on-policy optimization. In Proceedings

of the AAAI Conference on Artificial Intelligence, pp.

5981-5988. https://doi.org/10.1609/aaai.v34i04.6059

3130

