
From Palm Groves to Urban Zones: Patterns and Past Trends of Urban Sprawl and Land 

Use Efficiency in Semi-Arid Context, Case of Biskra, Algeria 

Fouad Leghrib1* , Said Mazouz2 , Federico Martellozzo3

1 LACOMOFA Laboratory, Department of Architecture, Faculty of Architecture, Urbanism, Civil-Engineering and Hydraulics, 

University of Biskra, Biskra 07000, Algeria 
2 LEQUAREB Laboratory, Department of Architecture, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria 
3 Department of Economics and Management, University of Florence, Florence 50121, Italy 

Corresponding Author Email: f.leghrib@univ-biskra.dz 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsdp.201202 ABSTRACT 

Received: 20 November 2025 

Revised: 15 December 2025 

Accepted: 19 December 2025 

Available online: 31 December 2025 

Cities worldwide are experiencing rapid expansion, often leading to urban sprawl that 

encroaches on adjacent agricultural land. This phenomenon represents a significant challenge 

for sustainable urban development. In this context, the present study investigates land use 

efficiency by assessing the spatiotemporal dynamics of urban sprawl in the Biskra urban area, 

Algeria, over a twenty-year period. Using a retrospective, integrated remote sensing (RS) and 

GIS approach, multi-temporal Landsat imagery was processed via supervised classification 

using the maximum likelihood algorithm. Land use land cover changes were further analyzed 

using post-classification comparison of image pairs spanning two decades to determine the 

magnitude, direction, and nature of transformations. Findings reveal that prevailing urban 

policies have contributed to inefficient land management practices, leading to sprawling urban 

patterns and significant land-use changes. During the first decade of the 2000s, urban 

expansion accelerated sharply, with the built-up area increasing at a rate nearly four times 

higher than population growth. As a result, three previously distinct municipalities merged into 

a single, continuous urban zone, accompanied by extensive conversion of palm groves into 

built-up areas. By revealing how current planning practices have contributed to unsustainable 

land-use patterns, the findings highlight the need to align local urban management strategies 

with broader global sustainability frameworks that align with the objectives of the Sustainable 

Development Goals (SDGs). 
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1. INTRODUCTION

For centuries, cities were characterized by their compact 

form and high population density; they expanded slowly 

within their ramparts [1]. However, over the last 40 years, this 

tendency has been reversed. Nowadays, cities worldwide are 

expanding twice the rate of population growth [2], resulting in 

unprecedented and irreversible urban sprawl. Hence, 

advocates for sustainable urban development, planners, and 

policymakers are devoting greater attention to urban sprawl 

[3]. 

Based on the definition of the European Environment 

Agency (EEA), “Urban sprawl occurs when the growth rate of 

urbanized areas exceeds the population growth rate” [4]. In the 

United States, the definition is very similar to that of the EEA, 

while specifying the dominance of low-density urban areas [5, 

6], rapid expansion and random development [7]. On the 

continuum of anthropogenic actions, urbanization is the 

primary driver of urban sprawl and land use land cover 

(LULC) changes, with urban areas expanding onto prime 

agricultural land and protected areas [8-10]. In addition to 

urban sprawl, LULC change itself produces other forms of 

environmental change and often leaves a lasting legacy of 

impact on the ecological features of a landscape [11-18]. 

Urban sprawl can strain resources and compromise 

environmental quality. It presents a significant challenge for 

cities struggling to balance development with environmental 

sustainability, particularly in developing countries, where 

unplanned expansion and inefficient land use threaten their 

future. 
Despite the global advancement of RS and GIS applications 

for analyzing, monitoring, and modeling urban sprawl and 
LULC change, these approaches remain insufficiently 
explored in the Algerian context. This study addresses this gap 
by examining Land-Use Efficiency (LUE) and the 
spatiotemporal dynamics of urban sprawl in the Biskra Urban 
Area over twenty years (2000–2020). 

2. LITERATURE REVIEW

2.1 Monitoring urban sprawl through LULC change: A 

GIS-based approach 

Researchers worldwide use LULC change studies to 
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investigate urban sprawl and better understand land use 

changes over a known period of time [19]. The outcomes of 

the studies assist decision-makers in monitoring urban sprawl 

and implementing land-use policies to meet the rising land 

demand driven by population growth. Land use/cover 

terminology is frequently used interchangeably [20]. Land 

cover represents the characteristics of the earth’s surface, 

including bare soil and vegetation. Whereas land use focuses 

on the functional role of land for economic activities and the 

ways that land is used by humans, for example, built-up area 

and agriculture, etc. [21]. 

The main drivers of LULC change are natural phenomena 

and anthropogenic activities associated with human actions 

[22]. Understanding the interactions among these drivers is 

crucial for effective land management and improved decision-

making. Unfortunately, in developing countries, the 

assessment of urban sprawl and LULC changes continues to 

rely on expensive, time-consuming conventional survey 

methods [14-23]. As a result, researchers are increasingly 

interested in using Geographic Information Systems (GIS) and 

remote sensing (RS) techniques to map and monitor urban 

sprawl [24]. 

LULC change studies are based on remotely sensed data and 

GIS techniques, providing an appropriate platform for 

improved data analysis accuracy at lower cost and in less time. 

Since then, LULC mapping has become the principal 

application of RS, particularly after the emergence of higher 

resolution satellite data and more sophisticated image 

processing [25, 26]. Nevertheless, detecting LULC changes in 

the urban context, particularly in arid and semi-arid regions, 

remains a significant challenge due to the variability and 

coexistence of urban landscape elements [27]. Various LULC 

change detection methods are used to analyze past LULC 

change trends, namely Image Segmentation, object-oriented 

classification, neural networks, and conventional cross-

tabulation. Each of these approaches has its advantages and 

drawbacks; however, no single technique can fully explain the 

LULC change-detection problem [28]. 

 

2.2 Exploring urban sprawl trends: Insights from 

developing countries 

 

RS and GIS Integrated approaches have been implemented 

in countless urban sprawl studies. 

For instance, Al-Rashid et al. [10] used a combined method 

to examine urban sprawl patterns and LULC change from 

1990 to 2018 in Sialkot, Pakistan. They compared the results 

with urban development policies outlined in earlier master 

plans. The research outcomes revealed that the city is moving 

towards urban sprawl. 

Similarly, Rawat and Kumar [20] conducted a study on 

LULC changes in the Hawalbagh block, district Almora, India, 

from 1990 to 2010. They adopted the supervised classification 

methodology. The study highlighted the importance of 

satellite images and change-detection methods for quantifying 

and analyzing of landscape dynamics that traditional mapping 

procedures cannot accurately represent. 
Furthermore, Shikary and Rudra [29] applied a combined 

geospatial method using Shannon’s entropy model to measure 
urban land-use change and sprawl in Purulia District, India. 
Supervised classification was applied to investigate urban 
expansion from 1998 to 2018. The outcomes demonstrate that 
despite the compact trend of urban expansion in Purulia, urban 
areas have been progressively shrinking from the CBD to the 
periphery. 

Finally, Chettry and Surawar [30] analyzed urban sprawl in 

several Indian cities by combining GIS and remote sensing 

with a multivariable integrated urban sprawl index (USI). The 

research concluded that, despite a decline in population 

density in most cities, the analysis highlighted the dominance 

of outward expansion. 

 

2.3 GIS techniques in urban planning: A review of the 

Algerian context 

 

In Algeria, most of the literature on the use of GIS and RS 

techniques to detect and monitor LULC changes is carried out 

in the fields of biodiversity, ecology, hydrology, forestry, 

agronomy, and pedology. For example, landslide 

susceptibility [31-33], water quality [34], desertification 

sensitivity [35, 36], land degradation and soil salinization [37-

39], land suitability [40, 41], erosion sensitivity [42-44], forest 

fires [45-47], urban green spaces [48], forest cover changes 

[49], flood risk [50-52]. 

In the field of urban planning in the Algerian context, scarce 

literature exists about the topic, as observed in the study 

carried out by Leghrib et al. [53] on the advantages and 

drawbacks of urban growth models and LULC change 

detection techniques and how such tools may be applied in the 

Algerian urban planning practice. The study concluded that 

despite their massive use at the international level, the 

implementation of LULC change detection techniques in the 

process of urban planning and decision-making in Algeria is 

still lagging due to several constraints, at the forefront of them 

the lack of recent data processing equipment, unavailability of 

relevant and accurate data and the shortage of financial 

resources and trained personnel. 
Bouhata et al. [54] examined urban expansion in Biskra City 

between 1987 and 2016 using several Landsat satellite images 
and GIS techniques. Adel et al. [55] applied geomatics tools to 
detect non-compliance between conventional development 
plans (master plans) and on-the-ground reality, leading to 
excessive and uncontrolled urbanization. Nedjai et al. [56] 
used the Land Change Modeler to assess and forecast LULC 
changes in Algiers. The predictive scenario for 2030 showed 
that 80% of the city will be developed and transformed into 
built-up areas, which supports the upcoming land crisis in 
Algiers. Dechaicha et al. [57] used landscape metrics and 
multi-temporal Landsat data to highlight urban growth 
dynamics in Adrar, Algeria, from 1986 to 2016. The study 
shows the excessive loss of palm groves and the impact of 
urbanization on oasis ecosystems. Dridi et al. [58] used 
remotely sensed data to assess urban sprawl in Batna City 
between 1972 and 2013. They adopted Support Vector 
Machine (SVM) and Shannon’s Entropy to detect and monitor 
the urban sprawl phenomenon. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Study area 

 
Biskra Province (wilaya) is a key city in south-eastern 

Algeria, situated 400 km from the capital, Algiers (Figure 1). 
It is divided into 27 municipalities (33 municipalities 
previously) according to the Law No. 19-12 of December 11, 
2019, amending the territorial organization of the country, 
covering a total area of 2,150,900.00 ha (Programming and 
Budget Monitoring Department). Climatically, the study area 
enjoys a hot, dry, semi-arid environment with an average 
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rainfall of 124 mm/year and an average temperature exceeding 
23℃. 

Biskra has undergone an unprecedented urbanization trend 
in the past few decades. By 2018, the total population of Biskra 
Province was 930,580, of whom 569,013 (61,15%) were urban 

residents. In this study, we will exclusively target the Biskra 
urban area, which was designated in the 2016 Master Plan. The 
Biskra urban area covers a total of 44,600.00 ha and comrises 
three municipalities: Biskra (the capital city), Chetma, and El 
Hadjeb (Table 1). 

 

 
 

Figure 1. Case study location map 
Source: Authors 

 

Table 1. Biskra urban area statistics: Area and population 

 
Municipalities Area ha Population (2000) Population (2010) Population (2020) 

Biskra (capital city) 12,770.00 187,131 215,066 274,108 

Chetma 11,020.00 8,807 14,380 17,522 

El Hadjeb 20,810.00 8,989 10,591 13,500 

Biskra urban area 44,600.00 204,927 240,037 305,130 

 

Table 2. Landsat images characteristics 

 
No. Satellite Sensor Path/Row Bands Used Acquisition Date Spatial Resolution (m) Source 

1 Landsat 7 ETM+ 194/36 1, 2, 3, 4, 5 and 7 2000/09/22 30 USGS 

2 Landsat 5 TM 194/36 1, 2, 3, 4, 5 and 7 2010/07/08 30 USGS 

3 Landsat 8 OLI TIRS 194/36 1, 2, 3, 4, 5, 6 and 7 2020/07/19 30 USGS 

 

3.2 Data 

 

The data have been collected from several sources; three 

multispectral Landsat TM, ETM+, and OLI/TIRS satellite 

images were obtained from the United States Geological 

Survey (USGS) for the years 2000, 2010, and 2020 (Table 2). 

The demographic data was collected from the National Office 

of Statistics (ONS) and the Department of Programming and 

Budget Monitoring (DPSB). The master plans for 1998, 2008, 

and 2016 have been obtained from the Department of Urban 

Planning, Architecture and Construction (DUAC). 

 

3.3 Data preparation and image pre-processing 

 

To improve comparability across years, all images used in 

this work were collected during the same period (summer) 

under clear atmospheric conditions (cloud cover < 0.2%). The 

datasets were imported into QGIS 3.16 software for 

processing. 

Geometrically, the Landsat imagery was rectified to the 

UTM projection method (datum WGS 84, Zone 31N). The 

study area has been extracted by clipping the raster using the 

georeferenced boundary outline of the Biskra urban area 

(shapefile). Subsequently, standard image pre-processing 
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operations were performed, including radiometric and 

atmospheric corrections using the Dark Object Subtraction 1 

(DOS1) method. Georectification was implemented using a 

second-order polynomial and nearest-neighbor resampling 

technique. Furthermore, Digital Numbers (DN) of all the 

images were converted to Top of Atmosphere reflectance 

(TOA). The shadows in the Landsat images were detected, 

masked, and then filled using the method developed by Jin et 

al. [59]. 

 

3.4 Image classification 

 

In this study, a supervised classification method based on a 

maximum likelihood algorithm was applied in QGIS 3.16 

using the SCP plugin [60]. The first step consists of creating a 

false-color composite by combining three raster layers (bands) 

to serve as a background for selecting training samples (ROIs). 

Three major land use/cover classes have been identified in the 

study area: palm grove, bare soil, and built-up (Table 3). 

 

Table 3. Descriptions of LULC classes 

 

No. 
LULC 

Class 
Description 

1 Built-up 

Infrastructure (Settlements, commercial, 

industrial, Residential, transportation 

infrastructure, roads) 

2 
Palm 

grove 

Palm grove and other types of agricultural 

practices (mostly palm trees) 

3 Bare soil 
Areas with almost no trees, exposed soil and 

flooded areas, bare rock areas 

 

Training samples were generated as Regions of Interest 

(ROIs) using the SCP "ROI creation" dock. To capture the full 

spectral variability of each class, we utilized a combination of 

manual polygon digitization (for homogeneous areas) and a 

region-growing algorithm (for complex, heterogeneous 

features). The spectral signatures were inspected to ensure 

class separability before classification. 

The sample size for training was determined using the Band 

Multiplier Rule (30n), specific to parametric classifiers such 

as the MLC Classifier, as recommended by Jensen [61]. This 

ensures sufficient degrees of freedom to estimate the class 

covariance matrices accurately, preventing matrix singularity 

in the classification process. Following the guidelines set forth 

by Jensen [61], an ideal sample size of 30n pixels per class was 

targeted, where n is the number of spectral bands used. As the 

classification used six spectral bands, the required minimum 

sample size per class was calculated as 30 × 6 = 180 pixels 

(540 pixels in total). For each of the three years (2000, 2010 

and 2020), ROIs were digitized in QGIS using the SCP plugin, 

ensuring that each of the three land cover classes (Built-up, 

palm grove, and bare soil) contained at least 180 homogeneous 

pixels to satisfy the statistical requirements of the MLC. 

Samples were spatially stratified across the entire extent of 

the satellite imagery to account for intra-class spectral 

diversity. Special care was taken to avoid spatial 

autocorrelation by ensuring training and validation polygons 

were geographically distinct. 

Finally, supervised classification was performed using the 

MLC Classifier. MLC assumes that training data for each 

land-cover class follow a multivariate normal distribution. For 

each class, SCP computed the class mean vector and full 

covariance matrix. The discriminant function followed the 

standard Gaussian formulation, and pixels were assigned to the 

class with the highest posterior probability. Equal prior 

probabilities were used, and a probability threshold of 0.0001 

was applied to reject low-confidence classifications. Complete 

methodology is outlined in Figure 2. 

 

 
 

Figure 2. Research methodology flowchart 

 

3.5 Spectral separability analysis 

 

To produce the highest classification accuracy, it is essential 

to analyze the separability of the classes [62]. Therefore, we 

conducted a separability analysis of the three land cover 

classes identified in the study area. The spectral distance, or 

class separability, can be assessed using different distance 

measures. 

In this study, we used the Jeffries-Matusita distance to 

analyze spectral separability between land cover classes. JM 

distance is a widely used measure of spectral separability in 

remote sensing applications [63]. JM distance values range 

from 0 when the signatures are similar (no separability) and 2 

when the signatures are very distinct (completely separable) 

[64]. 

The pairwise-calculated JM separability of the selected 

training samples for the three images of the study area shows 
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that JM values are most consistent between palm grove and 

bare soil, and between palm grove and built-up, and least 

consistent between built-up and bare soil. The highest JM 

separability is found between palm grove and bare soil and 

between palm grove and built-up (1.999). The lowest JM 

separability is found between built-up and bare soil (1.91). 

Overall, the palm grove is the class that can be most easily 

separated from the other classes (High separability). 

However, it is important to note that built-up overlaps 

heavily with bare soil; thus, they are relatively poorly 

separated and produce some misclassification in later steps. 

Post-classification refinements were used to reduce the 

observed misclassification. 

 

3.6 Post-classification processing 

 

Post-classification refinements were used to decrease the 

observed misclassification affected by the resemblances in 

spectral signatures of specific classes, namely built-up and 

bare soil. Classification errors were corrected using ground 

truthing. 

To enhance classification accuracy, some spectral indices, 

such as the normalized difference built-up index (NDBI) [65], 

normalized difference vegetation index (NDVI) [66], and 

normalized difference bareness index (NDBaI) [67], were also 

created for post-classification refinement of the initially 

classified images. NDBI, NDVI, and NDBaI are calculated 

using Eqs. (1)-(3), respectively (Table 4). 

 

NDBI =
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)⁄  (1) 

 

NDVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)⁄  (2) 

 

NDBaI =
(𝑆𝑊𝐼𝑅 − 𝑇𝐼𝑅𝑆)

(𝑆𝑊𝐼𝑅 + 𝑇𝐼𝑅𝑆)⁄  (3) 

 

where, 

For Landsat 5 and 7: (RED = Band 3), (NIR = Band 4), 

(SWIR = Bands 5 and 7), (TIRS = Band 6). 

For Landsat 8: (RED = Band 4), (NIR = Band 5), (SWIR = 

Bands 6 and 7), (TIRS = Band 10 and 11). 

The post-classification refinement relied on a set of 

index‑based rules combining NDVI, NDBI and NDBaI to 

standardize the assignment of land‑cover classes (Table 5). 

Pixels were first evaluated for vegetation, which was retained 

where, NDVI was high (≥ 0.35) and both built‑up and bare-

soil signals were low (NDBI < 0.20 and NDBaI ≤ 0). Built‑up 

areas were then identified as pixels with a strong built‑up 

response (NDBI ≥ 0.20) but low vegetation and bareness 

(NDVI < 0.35 and NDBaI ≤ 0). Bare soil was assigned to 

pixels with a pronounced bareness signal (NDBaI > 0) and 

simultaneously low NDVI and NDBI. Finally, for each binary 

class mask, small misclassified patches were removed, and 

fragmented objects were regularized using simple 

morphological opening/closing with a 3 × 3 structuring 

element and a minimum mapping unit of 4-9 pixels, which 

reduced speckle and ensured more homogeneous class 

regions. A complete workflow schematic is provided in Figure 

3. 

The resulting maps were examined and analyzed to detect 

changes in land use and land cover in the Biskra urban area 

over the last 20 years. 

 

 
 

Figure 3. Post-classification refinement workflow 

 

Table 4. Band mapping crosswalk for NDVI, NDBI and 

NDBaI 

 
Index Formulas Band Used TM 5 ETM+7 OLI 8 

NDVI 
(NIR-Red) / 

(NIR+Red) 

NIR Band 4 Band 4 Band 5 

Red Band 3 Band 3 Band 4 

NDBI 
(SWIR-NIR) / 

(SWIR+NIR) 

SWIR Band 5 Band 5 Band 6 

NIR Band 4 Band 4 Band 5 

NDBaI 
(SWIR-TIRS) / 

(SWIR+TIRS) 

SWIR Band 5 Band 5 Band 6 

TIRS Band 6 Band 6 Band 10 

 

3.7 Land use efficiency assessment using LCRPGR 

indicator 

 

By definition, “Urban sprawl occurs when the growth rate 

of urbanized areas exceeds the population growth rate” [4]. To 

evaluate urban sprawl in a territory according to the EEA 

definition [4], it is necessary to calculate the ratio of land 

consumption to population growth. Therefore, UN-Habitat 

proposed an indicator to measure Land Use Efficiency (LUE) 

as a guideline for the Sustainable Development Goals (SDGs). 

The indicator 11.3.1 (LCRPGR) measures the ratio of the 

rate at which urban land use expands against the population 

growth [68]. The two components of this indicator, Land 

Consumption Rate (LCR) and Population Growth Rate (PGR), 

are calculated using Eqs. (4), and (5), respectively: 

  

LCR =
(𝑉𝑡1 − 𝑉𝑡0)

𝑉𝑡0
⁄ ∗ 1

𝑡⁄  (4) 

where, 

Vt1 is the total built-up area in the current year 

Vt0 is the total built-up area in the past year 

t is the number of years between Vt1 and Vt0 
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Table 5. Index thresholds and reclassification rules 

 

Class Index Thresholds Reclassification Rule (From Initial Map) 
Morphological Refinement 

(Binary Mask) 

Palm 

grove 

NDVI ≥ 0.35; NDBI < 

0.20; NDBaI ≤ 0.00 

If initial label = Vegetation AND NDVI ≥ 0.35 AND NDBI < 

0.20 AND NDBaI ≤ 0.00 ⇒ keep Vegetation; else relabel 

according to other rules. 

3 × 3 opening to remove speckle, 

then remove patches < 4 pixels. 

Built-up 
NDBI ≥ 0.20; NDVI < 

0.35; NDBaI ≤ 0.00 

If initial label = Built-up OR (non-Vegetation pixel with NDBI 

≥ 0.20 AND NDVI < 0.35 AND NDBaI ≤ 0.00) ⇒ set to 

Built-up. 

3 × 3 closing to fill small gaps, 

then remove patches < 4 pixels. 

Bare soil 
NDBaI > 0.00; NDVI 

< 0.35; NDBI < 0.20 

If pixel is not Vegetation or Built-up and NDBaI > 0.00 AND 

NDVI < 0.35 AND NDBI < 0.20 ⇒ set to Bare soil. 

3 × 3 opening, then minimum 

mapping unit of 4-9 pixels. 

 

PGR =
ln(𝑃𝑜𝑝𝑡+𝑛/𝑃𝑜𝑝𝑡)

𝑦⁄  (5) 

 

where, 

ln is the natural logarithm value 

Popt is the total population within the urban area/city in the 

past/initial year 

Popt+n is the total population within the urban area/city in 

the current/final year 

y is the number of years between the two measurement 

periods 

The ratio of land consumption rate to population growth rate 

(LCRPGR) is calculated using Eq. (6): 

 

LCRPGR = 𝐿𝐶𝑅
𝑃𝐺𝑅⁄  (6) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Accuracy assessment 

 

Classification accuracy assessment was performed for all 

output images to evaluate the extent of classification accuracy 

[69]. Validation sampling points were generated using a 

stratified sampling. An estimate of the validation sample size 

n with this sampling design is provided by Cochran [70] (Eq. 

(7)): 

 

𝑛 ≈ (
∑ 𝑊𝑖𝑆𝑖

𝑀
𝑖

𝑆(Ô)
)

2

 (7) 

 

where, Wi is class i proportion of the mapped area, the standard 

deviation of the stratum Si = √(Ui (1-Ui)) with Ui is class i 

target user accuracy. M is the number of LULC classes, and 

S(Ô) is the standard deviation of the target overall accuracy. 

We set the target S(Ô) = 0.01 and Ui between 70% and 85% 

for all classes. The resulting estimated sample sizes from Eq. 

(7) are n = 605, n = 594 and n = 600 for the years 2000, 2010, 

and 2020, respectively (Table 6). To calculate the validation 

samples for each class, a rough approximation is to take the 

mean of the equal distribution (Ni = n/M) and the weighted 

distribution (ni = n∗Wi), which is ni = (n/M+n∗Wi)/2. Table 7 

shows the estimated sample allocation for each class. 

Consequently, 1799 validation points were used for 

validating both mapping products; these were assessed and 

labelled on-screen using high-resolution imagery in Google 

Earth. Finally, we calculated the errors associated with 95% 

confidence interval (CI) for the accuracy measures and the 

estimated LULC areas, using their respective estimated 

variance equations, following the best practices outlined by 

Olofsson et al. [69]. These processes were calculated 

statistically using the area-based error matrix. of Olofsson et 

al. [69] where each element represents the estimated area 

proportion for each class (Table 8). 

 

Table 6. Estimation of the sample size (n) of the validation  

 
Class Area % Wi Si Wi*Si S(Ô) n 

Built-up 3.37 0.033 0.3 0.010 0.01  

Palm grove 5.20 0.052 0.14 0.007 0.01  

Bare soil 91.43 0.914 0.25 0.229 0.01  

Total    0.246  605 

Class Area % Wi Si Wi*Si S(Ô) n 

Built-up 6.06 0.060 0.3 0.018 0.01  

Palm grove 8.45 0.084 0.14 0.012 0.01  

Bare soil 85.48 0.854 0.25 0.214 0.01  

Total    0.244  594 

Class Area % Wi Si Wi*Si S(Ô) n 

Built-up 8.92 0.089 0.3 0.027 0.01  

Palm grove 8.57 0.085 0.14 0.012 0.01  

Bare soil 82.49 0.824 0.25 0.206 0.01  

Total    0.245  600 
Source: Authors 

 

Table 7. Allocated samples for each class for the years 2000-

2010-2020 

 

2000 

Class Weighted Equal Mean 

Built-up 20 201 112 

Palm grove 31 201 116 

Bare soil 553 201 377 

Total   605 

2010 

Class Weighted Equal Mean 

Built-up 36 198 117 

Palm grove 50 198 124 

Bare soil 508 198 353 

Total   594 

2020 

Class Weighted Equal Mean 

Built-up 54 200 127 

Palm grove 52 200 126 

Bare soil 495 200 347 

Total   600 

 

The error matrix and accuracy report have been generated 

using the SCP’s accuracy assessment utility. The report 

illustrates four different accuracy results: producer accuracy, 

user accuracy, overall accuracy and kappa hat index. In terms 

of both user and producer accuracies, the user accuracy (2000) 

exceeded 98% for all classes except the palm grove class, 

which was about 72%, while the 2010 map reached 87% for 

all classes. Similarly, the 2020 map exceeded 81% for all 

classes. In the same vein, producer accuracy across all years 

and classes topped 94%. Overall classification accuracy for all 
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years surpassed 97%. The Kappa coefficients for the 2000, 

2010, and 2020 maps are 0.91, 0.94, and 0.91, respectively. 

The accuracy assessment results for each classified satellite 

image for 2000, 2010, and 2020 have been found satisfactory, 

as shown in Table 8. 

 

Table 8. The error matrix for the years 2000, 2010 and 2020, populated with estimated proportion of area as recommended by 

good practice 

 
2000 

Class Built-Up Palm Grove Bare Soil Area Wi 

Built-up 0.0331 0 0.00057 1,502.03 0.033677969 

Palm grove 0.0019 0.0408 0.0092 2,319.77 0.052013037 

Bare soil 0 0 0.9143 40,777.98 0.914308994 

Total 0.0350 0.0408 0.9241 44,599.95 1 

Area 1,561.95 1,821.69 41,216.13 44,599.95  

SE 0.0010 0.0020 0.0019   

SE area 43.31 88.83 83.80   

95% CI area 84.90 174.12 164.25   

Producer accuracy [%] 94.76 100 98.94   

User accuracy [%] 98.28 72.29 99.99   

Overall accuracy [%] = 98.81 

Kappa hat classification = 0.91 

2010 

Class Built-Up Palm Grove Bare Soil Total Wi 

Built-up 0.0579 0 0.0027 2,702.69 0.060595061 

Palm grove 0 0.0748 0.0097 3,769.54 0.084514135 

Bare soil 0 0 0.8549 38,130.25 0.854890804 

Total 0.0579 0.0748 0.8674 44,599.86 1 

Area 2,580.84 3,335.67 38,685.69 44,599.86  

SE 0.0003 0.0005 0.0005   

SE area 11.17 21.69 24.40   

95% CI area 21.90 42.51 47.82   

Producer accuracy [%] 100 100 98.57   

User accuracy [%] 95.46 87.45 100   

Overall accuracy [%] = 98.75 

Kappa hat classification = 0.94 

2020 

Class Built-Up Palm Grove Bare Soil Area Wi 

Built-up 0.0760 0 0.0133 3,983.15 0.089288917 

Palm grove 0 0.0762 0.0096 3,826.76 0.085783175 

Bare soil 0 0 0.8249 36,799.77 0.824927908 

Total 0.0760 0.0762 0.8480 44,599.41 1 

Area 3,389.4 3,398.85 37,821.42 44,599.41  

SE 0.0006 0.0008 0.0010   

SE area 26.70 35.85 44.70   

95% CI area 52.33 70.27 87.62   

Producer accuracy [%] 99.97 100 97.35   

User accuracy [%] 81.67 88.38 99.99   

Overall accuracy [%] = 97.70 

Kappa hat classification = 0.91 

 

4.2 Land use land cover change dynamics 

 

A significant LULC transformation occurred across the 

three municipalities of the urban area due to the rapid pace of 

urbanization, particularly in the first decade (Figure 4). 

Extensive results are demonstrated in Table 9, including area-

adjusted estimates with uncertainties (95% CI). 

Between 2000 and 2010, the built-up area in Biskra 

municipality increased from 1,369.89 ha (10.72%) to 2,160.90 

ha (16.92%) by 791.01 ha (+57.74%) and the palm grove from 

837.99 ha (6.56%) to 1,034.19 ha (8.10%) by 196.20 ha 

(+23.41%). Whereas, the built-up area in Chetma municipality 

increased from 87.93 ha (0.80%) to 233.91 ha (2.12%), by 

145.98 ha (+166.02%), and the palm grove from 396.01 ha 

(3.59%) to 632.79 ha (5.74%), by 236.78 ha (+59.79%). 

Similarly, in El Hadjeb municipality, the built-up area has 

increased from 104.13 ha (0.50%) to 186.03 ha (0.89%), by 

81.90 ha (+78.65%), and the palm grove from 587.61 ha 

(2.82%) to 1668.69 ha (8.02%), by 1081.08 ha (+183.98%). 

The bare soil area exhibited a decreasing trend across all three 

municipalities. 

Overall, the built-up area in Biskra urban area has been 

extensively increased from 1,561.95 ha (3.50%) to 2,580.84 

ha (5.79%) by 1,018.89 ha (+65.23%) and the palm grove from 

1,821.69 ha (4.08%) to 3,335.67 ha (7.48%) by 1,513.98 ha 

(+83.11%). In contrast, bare soil decreased from 41,216.13 ha 

(92.41%) to 38,685.69 ha (86.73%), by -2,530.44 ha (-6.14%). 

The increasing trend sustained in the second decade from 

2010 to 2020; nevertheless, the growth rate has significantly 

decelerated. Thus, the built-up area in Biskra municipality has 

extended to 2,735.10 ha (21.41%) by 574.20 ha (+26.57%). 

While the palm grove has decreased slightly to 921.87 ha 

(7.22%), by -112.32 ha (-10.86%). In Chetma municipality, 

the built-up area has expanded to 366.12 ha (3.32%), by 

132.21 ha (+56.52%), and the palm grove to 720.27 ha 

(6.35%), by 87.48 ha (+13.82%). Similarly, in El Hadjeb 
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municipality the built-up area has increased to 288.18 ha 

(1.39%), by 102.15 ha (+54.91%), and palm grove to 1,756.71 

ha (8.44%), by 88.02 ha (+5.27%). 

 

 
 

Figure 4. Classified LULC maps for the years (A) 2000, (B) 2010, and (C) 2020
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Table 9. Area statistics (area-adjusted estimates with uncertainties 95%CI) for the years 2000, 2010 and 2020 

 
Biskra Municipality 

 Percentage % 
Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 
LULCC Change (ha) 

Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020 

Built-up 10.72 16.92 21.41 1,369.89 ± 25.04 2160.9 ± 7.51 2735.1 ± 15.02 791.01 574.2 

Palm grove 6.56 8.1 7.22 837.99 ± 50.07 1034.19 ± 10.01 921.87 ± 20.03 196.2 -112.32 

Bare soil 82.72 74.99 71.37 10,565.91 ± 47.57 9578.7 ± 12.52 911.82 ± 25.04 -987.21 -461.88 

Chetma Municipality 

 Percentage % 
Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 
LULCC Change (ha) 

Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020 

Built-up 0.8 2.12 3.32 87.93 ± 21.60 233.91 ± 6.48 366.12 ± 12.96 145.98 132.21 

Palm grove 3.59 5.74 6.53 396.01 ± 43.21 632.79 ± 8.64 720.27 ± 17.28 236.78 87.48 

Bare soil 95.61 92.14 90.14 10,538.91 ± 41.05 10,156.23 ± 10.80 9,936.54 ± 21.60 -382.68 -219.69 

El Hadjeb Municipality 

 Percentage % 
Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 
LULCC Change (ha) 

Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020 

Built-up 0.5 0.89 1.39 104.13 ± 40.77 186.03 ± 12.23 288.18 ± 24.46 81.9 102.15 

Palm grove 2.82 8.02 8.44 587.61 ± 81.55 1,668.69 ± 16.31 1756.71 ± 32.62 1,081.08 88.02 

Bare soil 96.67 91.08 90.17 20,111.31 ± 77.47 18,948.51 ± 20.39 18,758.34 ± 40.77 -1,162.8 -190.17 

Biskra Urban Area 

 Percentage % 
Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 

Area-Adjusted 

Estimates (ha) 

95% CI 

(ha) 
LULCC Change (ha) 

Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020 

Built-up 3.50 5.79 7.60 1,561.95 ± 84.90 2,580.84 ± 21.90 3,389.4 ± 52.33 1,018.89 808.56 

Palm grove 4.08 7.48 7.62 1,821.69 ± 174.12 3,335.67 ± 42.51 3,398.85 ± 70.27 1,513.98 63.18 

Bare soil 92.41 86.73 84.78 41,216.13 ± 164.25 38,685.69 ± 47.82 37,821.42 ± 87.62 -2,530.44 -864.27 

Table 10. Cross-class comparison and LULC change matrix 

 
Land Cover Change Matrix (ha) 2000-2010 

 > New Class 2010 

Reference Class 2000 Built-up Palm Grove Bare Soil Total 

Built-up 1,561.95 0 0 1,561.95 

Palm grove 195.66 1,495.89 130.14 1,821.69 

Bare soil 823.23 1,839.78 38,553.12 41,216.13 

Total 2,580.84 3,335.67 38,685.69 44,599.77 

Area change (ha) 1,018.89 1,513.98 -2,530.44  

Annual change rate (ha) 101.889 151.398 -253.044  

Land Cover Change Matrix (ha) 2010-2020 

 > New Class 2020   

Reference Class 2010 Built-up Palm Grove Bare Soil Total 

Built-up 2,580.84 0 0 2,580.84 

Palm grove 63.27 2,524.5 747.9 3,335.67 

Bare soil 745.92 874.26 37,063.71 38,685.69 

Total 3,389.4 3,398.85 37,821.42 44,600.4 

Area change (ha) 808.56 63.18 -864.27  

Annual change rate (ha) 80.856 6.318 -86.427  
Source: Authors 

 

Table 11. Land-cover transition matrix for 2000-2010 and 

2010-2020 

 

Transition 
2000-2010 2010-2020 

Area (ha) % Area (ha) % 

Built-up to Palm grove 0 0 0 0 

Built-up to Bare soil 0 0 0 0 

Palm grove to Built-up 195.66 10.75 63.27 1.89 

Bare soil to Built-up 823.23 2.06 745.92 1.96 

Bare soil to Palm grove 1,839.78 4.75 874.26 2.31 

Palm grove to Bare soil 130.14 7.06 747.9 22.69 
Source: Authors 

 

Conclusively, The Biskra urban area has experienced a 

similar increasing trend; thus, the built-up area has augmented 

to 3,389.40 ha (7.60%) by 808.56 ha (+31.33%), and the palm 

grove has slightly increased to 3,398.85ha (7.62%) by 63.18 

ha (+1.89%). Conversely, bare soil has declined to 37,821.42 

ha (84.78%) by -864.27 ha (-2.23%). 

To better understand land encroachment across land classes 

over the past two decades, a change-detection matrix was 

prepared (Tables 10 and 11). 

 

4.3 Cross-class comparison and LULC change detection 

matrix 

 

A pixel-based comparison was employed to further explore 

the LULC change pattern using the SCP plugin. The change 

matrix was created by comparing image pairs of two different 

decades using cross-tabulation in order to evaluate quantitative 

and qualitative characteristics of LULC change as well as 

gains and losses in each class for the periods 2000 to 2010 and 

2010 to 2020 (Table 10, Figure 5). Several critical change 

areas were identified after assessing and analyzing the amount, 

location, and nature of change in the study area. 

Figure 4 shows that most of the change across all LULC 

classes and municipalities occurred in the first period, from 

2000 to 2010 (Figure 5). During this period, the built-up area 

has gained 1,018.89 ha (+65.23%), with an annual growth rate 

of 101.88 ha/year (Table 10). 195.66 ha were transformed 

from palm groves (Table 11), located mainly to the south of 

Biskra Municipality (ancient town), a fact that can be 

explained by the properties’ private nature. 

Due to rising land values and growing demand, palm grove 

owners chose to convert their properties to urban land. 

Conversely, in the second period from 2010 to 2020 (Figure 

5), the growth rate has significantly declined. The built-up area 

has increased only by 808.56 ha (+31.33%), with an annual 

change rate of 80.85 ha/year, including 63.27 ha converted 

from palm grove (Table 11). This period was severely affected 

by the economic crisis (2008). Consequently, the majority of 
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construction projects, housing and urban development 

operations were cancelled. 

Palm tree cultivation is the main agricultural activity in the 

Biskra urban area, particularly in the municipalities of Chetma 

and El Hadjeb. The livelihood of the majority of rural residents 

relies largely on it. Consequently, the percentage of palm 

groves has been gradually expanding from 2000 to 2020. 

 

 
 

Figure 5. LULC change patterns, (A) 2000-2010 and (B) 2010-2020 
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The highest increase in the percentage of palm groves (and 

thus decreasing of bare soil) has been noticed between the 

years of 2000 and 2010 by 1,513.98 ha (+83.11%) mainly 

occurred in El Hadjeb by 1,081.08 ha (+183.98%) with an 

annual change rate of 151.39 ha/year (Table 10, Figure 5), 

which can be explained by the rise of small-scale farming 

following the inauguration of the agricultural support program 

by the Algerian government in 2000. 

It is worth noting that despite the increase in the proportion 

of palm grove over the years, it lost 325.80 ha of its area 

between 2000 and 2010, including 195.66 ha converted to 

built-up area and 130.14 ha to bare soil (Table 11). On the 

other hand, from 2010 to 2020, the rate of growth of the palm 

grove area has sharply decreased from 83.11% to 1.89%, with 

an annual growth rate of 6.31 ha/year. Therefore, during this 

period, the palm grove has lost 811.17 ha (-24.31%) of its area, 

with 63.27 ha converted to built-up and 747.90 ha converted 

to bare soil (Table 11). 

Spatially, these changes occurred at different locations, 

mainly in the south zone of Biskra (ancient town), along the 

RN 03, as well as on the eastern shore of Oued Biskra 

(Feliache agglomeration). Also, considerable change occurred 

in El Hadjeb toward RN 46. Furthermore, a substantial change 

was noticed to the east of Chetma municipality (Figure 5). The 

location of these changes can be explained by the influence of 

two driving forces: on one hand, the impact of main roads and 

on the other hand, the proximity to an urbanized area. These 

two factors increase land value, thereby encouraging palm 

grove owners seeking higher profits to convert their properties 

to urban land and prepare them for future urbanization. 

Bare soil is the main land cover class in the study area. 

However, the results indicate a progressive decline in its 

proportion since it has been converted to other land use classes 

(Tables 10 and 11). During 2000-2010, a total of 823.23 ha 

was converted to built-up areas, and 1,839.78 ha was 

transformed into palm groves. Similarly, between 2010 and 

2020, 745.92 ha were converted to built-up areas, and 874.26 

ha to palm groves. The annual change rate was estimated at -

253 ha/year (-6.14%) and -86.42 ha/year (-2.23%) during the 

periods 2000-2010 and 2010-2020, respectively (Table 10). 

The regression in bare soil area is principally attributed to the 

increasing rate of urbanization and the growing demand for 

cultivated land. 

 

4.4 Urban sprawl, land use efficiency and sustainability 

 

The results revealed that the Biskra urban area has evolved 

along several primary directions due to the influence of main 

roads, expanding further beyond the municipal boundary: 

eastward and westward (along RN 31 and RN 46), generating 

coalescence (conurbation) with Chetma and El Hadjeb, 

respectively. South-eastward (along RN 83) toward Feliache 

Agglomeration. Furthermore, toward the south (ancient town), 

where built-up areas are taking place on prime agricultural 

land and palm grove. Finally, and more recently, toward the 

north (along RN 03) (Figure 5). 

The research indicated that, in addition to socio-economic 

drivers, land tenure (ownership) plays an important role in 

LULC change, as the majority of palm groves converted to 

built-up and bare soil were private properties. Therefore, 

landowners seeking higher profits are reluctant to contribute 

to palm grove conservation, leading to inappropriate land use 

and unsustainable land management practices that produce 

urban sprawl. 

Furthermore, by comparing the Land Consumption Rate 

(LCR) with the Population Growth Rate (PGR), we assessed 

how efficiently the Biskra urban area utilizes land (Figure 6). 

The results obtained for the period 2000-2010 reveal that the 

LCR in Biskra, Chetma, El Hadjeb and overall Biskra urban 

area increased by 5.77%, 16.60%, 7.87% and 6.52% per year, 

respectively, while the PGR grew by 1.39%, 4.90%, 1.64% 

and 1.58% per year, respectively. The LCRPGR ratios 

obtained are clearly greater than one: 4.15, 3.39, 4.80, and 

4.13, respectively (Figure 6), indicating that land consumption 

is growing four times faster than the population. 

 

 
 

Figure 6. Ratio of land consumption rate to population 

growth rate (LCRPGR) 

 

In 2010-2020, the ratios of LCRPGR obtained in Biskra, 

Chetma, El Hadjeb and overall Biskra urban area have 

considerably decreased to 1.11 (LCR = 2.66%, PGR = 2.4%), 

2.85 (LCR = 5.65%, PGR = 1.98%), 2.26 (LCR = 5.49%, PGR 

= 2.43%) and 1.30 (LCR = 3.13%, PGR = 2.4%), respectively 

(Figure 5). Conclusively, the LCRPGR values imply that the 

Biskra urban area has experienced an uncontrolled urban 

sprawl mainly between 2000 and 2010, the sprawling trend 

sustained (LCPPGR > 1) between 2010 and 2020 with 

significant regression compared to the previous decade. 

The results revealed the failure of current urban policies, 

land-use regulations, and master plans to monitor, control, and 

prevent urban sprawl. Hence, more sustainable land use 

policies are required. 

 

4.5 Linking local urban sprawl dynamics to global trends 

 

The urban expansion dynamics observed in the Biskra urban 

area closely reflect the global patterns identified by Seto et al. 

[8], particularly the systematic divergence between urban 

population growth and urban land consumption (Figure 6). 

Their global meta-analysis demonstrates that, across all 

regions, urban land expansion has consistently outpaced 

population growth, leading to declining LUE worldwide. The 

results obtained for Biskra clearly corroborate this trend. The 

calculated LCRPGR values remain persistently greater than 

one, especially after 2000, indicating that urban land 

expansion has progressed at a substantially faster rate than 

demographic growth (Figure 6). This confirms that the 

expansive growth pattern observed in Biskra is not exceptional 

but rather consistent with dominant global urbanization 

trajectories. 
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Seto et al. [8] further emphasized that, in developing 

regions, particularly in Africa, urban expansion is primarily 

driven by demographic growth rather than by economic 

performance alone. This interpretation aligns closely with the 

Biskra case, where rapid population growth and housing 

demand have been the principal drivers of spatial expansion, 

despite relatively moderate economic growth. The resulting 

urban form is characterized by outward expansion, reinforcing 

the global tendency toward inefficient land consumption 

documented by Seto et al. [8]. Spatially, the expansion in 

Biskra has followed principal transport axes and peri-urban 

fringes (Figure 5), illustrating the role of accessibility and 

infrastructure in shaping urban growth, as highlighted in the 

global literature. 

Importantly, Seto et al. [8] note that a significant share of 

urban expansion cannot be fully explained by population and 

economic variables alone, underscoring the importance of 

local institutional and regulatory conditions. The findings 

from Biskra provide empirical support for this argument. 

Weak enforcement of planning regulations, fragmented land 

tenure, and the conversion of agricultural and oasis lands into 

urban plots have significantly facilitated uncontrolled 

expansion. These locally specific drivers correspond to the 

“unobserved factors” identified by Seto et al. [8] as critical 

determinants of urban growth outcomes. Consequently, the 

Biskra urban area case study not only confirms the global 

conclusions of Seto et al. [8] but also demonstrates how global 

urban expansion drivers are mediated through local socio-

institutional dynamics in semi-arid cities. 

 

 

5. CONCLUSIONS 

 

The results show that the Biskra urban area experienced a 

massive, uncontrolled growth between 2000 and 2020. The 

study area witnessed aggressive urban sprawl, particularly in 

the first decade of the 21st century, as the built-up area grew 

four times faster than the population. Hence, the three distinct 

municipalities with distinct urban boundaries coalesced into a 

broad urban area where bare soils and palm groves were 

massively transformed into built-up areas to satisfy increasing 

housing and infrastructure demands. 

Nevertheless, the urban sprawl trend of the 2000–2010 

epoch has significantly decelerated in the last decade. This 

period was severely affected by the economic crisis (2008). 

Consequently, the majority of construction projects, housing 

and urban development operations were cancelled. Spatially, 

the built-up area stretched eastward and westward along the 

major roads linking the three municipalities (RN 31 and RN 

46), extending beyond municipal boundaries. Moreover, the 

majority of the recently developed areas in the southern part 

of the study area (ancient town) are replacing palm groves that 

were once considered fertile and productive, creating a serious 

environmental issue. 

Current urban policies have led to unsustainable, inefficient 

land management practices, resulting in a sprawled pattern of 

urbanization and significant land-use change. There is no 

evidence that this trend will change soon unless appropriate 

corrective actions are taken. From this perspective, local 

authorities and decision makers should devote more 

consideration to the issue of land use management and urban 

sprawl monitoring, starting with the implementation of an 

RS/GIS integrated approach to understand the past, present 

and future dynamics and trends of LULC change, to evaluate 

upcoming requirements, and to take actions to guarantee the 

suitability of future land supply. 

GIS and remote sensing are powerful tools for monitoring 

and measuring urban sprawl. However, this study may have 

limitations in distinguishing built-up areas from bare land, 

which is among the most challenging tasks in land use land 

cover classification, particularly in arid and semi-arid 

contexts, as these regions have different spectral 

characteristics and a high degree of land homogeneity. Thus, 

more investigation into the application of different urban 

remote sensing indices is required. 
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NOMENCLATURE 

 

LULC land use land cover 

GIS geographic information system 

RS remote sensing 

SDGs Sustainable Development Goals 

LUE land-use efficiency 

EEA European Environmental Agency 

CBD central business district 

USI urban sprawl index 

TM thematic mapper (landsat) 

ETM+ enhanced thematic mapper (landsat) 

OLI operational land imager (landsat) 

USGS United States Geological Survey 

DPSB department of Programming and Budget 

Monitoring 

DUAC Department of Urban Planning, Architecture 

and Construction 

ONS national office of statistics 

DOS1 dark object subtraction 1 method 

DN digital numbers 

TOA top of atmosphere reflectance 

SCP semi-automatic classification plugin 

ROIs regions of interest 

JM Jeffries-Matusita distance 

NDBI normalized difference built-up index 

NDVI normalized difference vegetation index 

NDBaI normalized difference bareness index 

NIR near-infra-red 

SWIR short wave infra-red 

TIRS thermal infra-red sensor 

LCR land consumption rate 

PGR population growth rate 

LCRPGR ratio of land consumption rate to population 

growth rate indicator 

ha hectare 

RN national road 
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