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Cities worldwide are experiencing rapid expansion, often leading to urban sprawl that
encroaches on adjacent agricultural land. This phenomenon represents a significant challenge
for sustainable urban development. In this context, the present study investigates land use
efficiency by assessing the spatiotemporal dynamics of urban sprawl in the Biskra urban area,
Algeria, over a twenty-year period. Using a retrospective, integrated remote sensing (RS) and
GIS approach, multi-temporal Landsat imagery was processed via supervised classification
using the maximum likelihood algorithm. Land use land cover changes were further analyzed
using post-classification comparison of image pairs spanning two decades to determine the
magnitude, direction, and nature of transformations. Findings reveal that prevailing urban
policies have contributed to inefficient land management practices, leading to sprawling urban
patterns and significant land-use changes. During the first decade of the 2000s, urban
expansion accelerated sharply, with the built-up area increasing at a rate nearly four times
higher than population growth. As a result, three previously distinct municipalities merged into
a single, continuous urban zone, accompanied by extensive conversion of palm groves into
built-up areas. By revealing how current planning practices have contributed to unsustainable
land-use patterns, the findings highlight the need to align local urban management strategies
with broader global sustainability frameworks that align with the objectives of the Sustainable

Development Goals (SDGs).

1. INTRODUCTION

For centuries, cities were characterized by their compact
form and high population density; they expanded slowly
within their ramparts [1]. However, over the last 40 years, this
tendency has been reversed. Nowadays, cities worldwide are
expanding twice the rate of population growth [2], resulting in
unprecedented and irreversible urban sprawl. Hence,
advocates for sustainable urban development, planners, and
policymakers are devoting greater attention to urban sprawl
[31.

Based on the definition of the European Environment
Agency (EEA), “Urban sprawl occurs when the growth rate of
urbanized areas exceeds the population growth rate” [4]. In the
United States, the definition is very similar to that of the EEA,
while specifying the dominance of low-density urban areas [5,
6], rapid expansion and random development [7]. On the
continuum of anthropogenic actions, urbanization is the
primary driver of urban sprawl and land use land cover
(LULC) changes, with urban areas expanding onto prime
agricultural land and protected areas [8-10]. In addition to
urban sprawl, LULC change itself produces other forms of
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environmental change and often leaves a lasting legacy of
impact on the ecological features of a landscape [11-18].

Urban sprawl can strain resources and compromise
environmental quality. It presents a significant challenge for
cities struggling to balance development with environmental
sustainability, particularly in developing countries, where
unplanned expansion and inefficient land use threaten their
future.

Despite the global advancement of RS and GIS applications
for analyzing, monitoring, and modeling urban sprawl and
LULC change, these approaches remain insufficiently
explored in the Algerian context. This study addresses this gap
by examining Land-Use Efficiency (LUE) and the
spatiotemporal dynamics of urban sprawl in the Biskra Urban
Area over twenty years (2000—-2020).

2. LITERATURE REVIEW

2.1 Monitoring urban sprawl through LULC change: A
GIS-based approach

Researchers worldwide use LULC change studies to


https://orcid.org/0000-0002-2123-5074
https://orcid.org/0000-0002-0832-3504
https://orcid.org/0000-0002-3142-2543
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsdp.201202&domain=pdf

investigate urban sprawl and better understand land use
changes over a known period of time [19]. The outcomes of
the studies assist decision-makers in monitoring urban sprawl
and implementing land-use policies to meet the rising land
demand driven by population growth. Land use/cover
terminology is frequently used interchangeably [20]. Land
cover represents the characteristics of the earth’s surface,
including bare soil and vegetation. Whereas land use focuses
on the functional role of land for economic activities and the
ways that land is used by humans, for example, built-up area
and agriculture, etc. [21].

The main drivers of LULC change are natural phenomena
and anthropogenic activities associated with human actions
[22]. Understanding the interactions among these drivers is
crucial for effective land management and improved decision-
making. Unfortunately, in developing countries, the
assessment of urban sprawl and LULC changes continues to
rely on expensive, time-consuming conventional survey
methods [14-23]. As a result, researchers are increasingly
interested in using Geographic Information Systems (GIS) and
remote sensing (RS) techniques to map and monitor urban
sprawl [24].

LULC change studies are based on remotely sensed data and
GIS techniques, providing an appropriate platform for
improved data analysis accuracy at lower cost and in less time.
Since then, LULC mapping has become the principal
application of RS, particularly after the emergence of higher
resolution satellite data and more sophisticated image
processing [25, 26]. Nevertheless, detecting LULC changes in
the urban context, particularly in arid and semi-arid regions,
remains a significant challenge due to the variability and
coexistence of urban landscape elements [27]. Various LULC
change detection methods are used to analyze past LULC
change trends, namely Image Segmentation, object-oriented
classification, neural networks, and conventional cross-
tabulation. Each of these approaches has its advantages and
drawbacks; however, no single technique can fully explain the
LULC change-detection problem [28].

2.2 Exploring urban sprawl trends:
developing countries

Insights from

RS and GIS Integrated approaches have been implemented
in countless urban sprawl studies.

For instance, Al-Rashid et al. [10] used a combined method
to examine urban sprawl patterns and LULC change from
1990 to 2018 in Sialkot, Pakistan. They compared the results
with urban development policies outlined in earlier master
plans. The research outcomes revealed that the city is moving
towards urban sprawl.

Similarly, Rawat and Kumar [20] conducted a study on
LULC changes in the Hawalbagh block, district Almora, India,
from 1990 to 2010. They adopted the supervised classification
methodology. The study highlighted the importance of
satellite images and change-detection methods for quantifying
and analyzing of landscape dynamics that traditional mapping
procedures cannot accurately represent.

Furthermore, Shikary and Rudra [29] applied a combined
geospatial method using Shannon’s entropy model to measure
urban land-use change and sprawl in Purulia District, India.
Supervised classification was applied to investigate urban
expansion from 1998 to 2018. The outcomes demonstrate that
despite the compact trend of urban expansion in Purulia, urban
areas have been progressively shrinking from the CBD to the

periphery.
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Finally, Chettry and Surawar [30] analyzed urban sprawl in
several Indian cities by combining GIS and remote sensing
with a multivariable integrated urban sprawl index (USI). The
research concluded that, despite a decline in population
density in most cities, the analysis highlighted the dominance
of outward expansion.

2.3 GIS techniques in urban planning: A review of the
Algerian context

In Algeria, most of the literature on the use of GIS and RS
techniques to detect and monitor LULC changes is carried out
in the fields of biodiversity, ecology, hydrology, forestry,
agronomy, and pedology. For example, landslide
susceptibility [31-33], water quality [34], desertification
sensitivity [35, 36], land degradation and soil salinization [37-
39], land suitability [40, 41], erosion sensitivity [42-44], forest
fires [45-47], urban green spaces [48], forest cover changes
[49], flood risk [50-52].

In the field of urban planning in the Algerian context, scarce
literature exists about the topic, as observed in the study
carried out by Leghrib et al. [53] on the advantages and
drawbacks of urban growth models and LULC change
detection techniques and how such tools may be applied in the
Algerian urban planning practice. The study concluded that
despite their massive use at the international level, the
implementation of LULC change detection techniques in the
process of urban planning and decision-making in Algeria is
still lagging due to several constraints, at the forefront of them
the lack of recent data processing equipment, unavailability of
relevant and accurate data and the shortage of financial
resources and trained personnel.

Boubhata et al. [54] examined urban expansion in Biskra City
between 1987 and 2016 using several Landsat satellite images
and GIS techniques. Adel et al. [55] applied geomatics tools to
detect non-compliance between conventional development
plans (master plans) and on-the-ground reality, leading to
excessive and uncontrolled urbanization. Nedjai et al. [56]
used the Land Change Modeler to assess and forecast LULC
changes in Algiers. The predictive scenario for 2030 showed
that 80% of the city will be developed and transformed into
built-up areas, which supports the upcoming land crisis in
Algiers. Dechaicha et al. [57] used landscape metrics and
multi-temporal Landsat data to highlight urban growth
dynamics in Adrar, Algeria, from 1986 to 2016. The study
shows the excessive loss of palm groves and the impact of
urbanization on oasis ecosystems. Dridi et al. [58] used
remotely sensed data to assess urban sprawl in Batna City
between 1972 and 2013. They adopted Support Vector
Machine (SVM) and Shannon’s Entropy to detect and monitor
the urban sprawl phenomenon.

3. MATERIALS AND METHODS
3.1 Study area

Biskra Province (wilaya) is a key city in south-eastern
Algeria, situated 400 km from the capital, Algiers (Figure 1).
It is divided into 27 municipalities (33 municipalities
previously) according to the Law No. 19-12 of December 11,
2019, amending the territorial organization of the country,
covering a total area of 2,150,900.00 ha (Programming and
Budget Monitoring Department). Climatically, the study area
enjoys a hot, dry, semi-arid environment with an average



rainfall of 124 mm/year and an average temperature exceeding
23°C.

Biskra has undergone an unprecedented urbanization trend
in the past few decades. By 2018, the total population of Biskra
Province was 930,580, of whom 569,013 (61,15%) were urban

residents. In this study, we will exclusively target the Biskra
urban area, which was designated in the 2016 Master Plan. The
Biskra urban area covers a total of 44,600.00 ha and comrises
three municipalities: Biskra (the capital city), Chetma, and El
Hadjeb (Table 1).

[ Biskra Province (wilaya)

Figure 1. Case study location map
Source: Authors

Table 1. Biskra urban area statistics: Area and population

Municipalities Area ha Population (2000) Population (2010) Population (2020)

Biskra (capital city) 12,770.00 187,131 215,066 274,108

Chetma 11,020.00 8,807 14,380 17,522

El Hadjeb 20,810.00 8,989 10,591 13,500

Biskra urban area 44.600.00 204,927 240,037 305,130

Table 2. Landsat images characteristics
No. Satellite Sensor Path/Row Bands Used Acquisition Date Spatial Resolution (m) Source
1 Landsat7 ETM+ 194/36 1,2,3,4,5and 7 2000/09/22 30 USGS
2 lLandsat5 ™ 194/36 1,2,3,4,5and 7 2010/07/08 30 USGS
3 lLandsat8  OLITIRS 194/36 1,2,3,4,56and7 2020/07/19 30 USGS
3.2 Data 3.3 Data preparation and image pre-processing

The data have been collected from several sources; three
multispectral Landsat TM, ETM+, and OLI/TIRS satellite
images were obtained from the United States Geological
Survey (USGS) for the years 2000, 2010, and 2020 (Table 2).
The demographic data was collected from the National Office
of Statistics (ONS) and the Department of Programming and
Budget Monitoring (DPSB). The master plans for 1998, 2008,
and 2016 have been obtained from the Department of Urban
Planning, Architecture and Construction (DUAC).
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To improve comparability across years, all images used in
this work were collected during the same period (summer)
under clear atmospheric conditions (cloud cover < 0.2%). The
datasets were imported into QGIS 3.16 software for
processing.

Geometrically, the Landsat imagery was rectified to the
UTM projection method (datum WGS 84, Zone 31N). The
study area has been extracted by clipping the raster using the
georeferenced boundary outline of the Biskra urban area
(shapefile). Subsequently, standard image pre-processing



operations were performed, including radiometric and
atmospheric corrections using the Dark Object Subtraction 1
(DOS1) method. Georectification was implemented using a
second-order polynomial and nearest-neighbor resampling
technique. Furthermore, Digital Numbers (DN) of all the
images were converted to Top of Atmosphere reflectance
(TOA). The shadows in the Landsat images were detected,
masked, and then filled using the method developed by Jin et
al. [59].

3.4 Image classification

In this study, a supervised classification method based on a
maximum likelihood algorithm was applied in QGIS 3.16
using the SCP plugin [60]. The first step consists of creating a
false-color composite by combining three raster layers (bands)
to serve as a background for selecting training samples (ROIs).
Three major land use/cover classes have been identified in the
study area: palm grove, bare soil, and built-up (Table 3).

Table 3. Descriptions of LULC classes

No. Iéig‘sg Description
Infrastructure (Settlements, commercial,
1 Built-up industrial, Residential, transportation
infrastructure, roads)
Palm Palm grove and other types of agricultural
grove practices (mostly palm trees)
. Areas with almost no trees, exposed soil and

3 Bare soil

flooded areas, bare rock areas

Training samples were generated as Regions of Interest
(ROIs) using the SCP "ROI creation" dock. To capture the full
spectral variability of each class, we utilized a combination of
manual polygon digitization (for homogeneous areas) and a
region-growing algorithm (for complex, heterogeneous
features). The spectral signatures were inspected to ensure
class separability before classification.

The sample size for training was determined using the Band
Multiplier Rule (30n), specific to parametric classifiers such
as the MLC Classifier, as recommended by Jensen [61]. This
ensures sufficient degrees of freedom to estimate the class
covariance matrices accurately, preventing matrix singularity
in the classification process. Following the guidelines set forth
by Jensen [61], an ideal sample size of 30n pixels per class was
targeted, where n is the number of spectral bands used. As the
classification used six spectral bands, the required minimum
sample size per class was calculated as 30 x 6 = 180 pixels
(540 pixels in total). For each of the three years (2000, 2010
and 2020), ROIs were digitized in QGIS using the SCP plugin,
ensuring that each of the three land cover classes (Built-up,
palm grove, and bare soil) contained at least 180 homogeneous
pixels to satisfy the statistical requirements of the MLC.

Samples were spatially stratified across the entire extent of
the satellite imagery to account for intra-class spectral
diversity. Special care was taken to avoid spatial
autocorrelation by ensuring training and validation polygons
were geographically distinct.

Finally, supervised classification was performed using the
MLC Classifier. MLC assumes that training data for each
land-cover class follow a multivariate normal distribution. For
each class, SCP computed the class mean vector and full
covariance matrix. The discriminant function followed the
standard Gaussian formulation, and pixels were assigned to the
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class with the highest posterior probability. Equal prior
probabilities were used, and a probability threshold of 0.0001
was applied to reject low-confidence classifications. Complete
methodology is outlined in Figure 2.

Remote Sensing Data
Landsat 5 TM Images (2010)
Landsat 7 ETM+ Image (2000)

Landsat 8 OLl Image (2020)

Image Pre-processing
Clip/ TOA conversion/ Geometric
and Radiometric correction

Image classification
Semi Automatic
Supervised Classification

Training Data Collection

I

[

[

I

I

I

: Classification : Maximurm likelihood
: Algorithm
I

I

[

[

I
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Classification Corrections,
Ground Truthing

_| Accuracy Assessment : Error Matrix
. Kappa Coefficlent

Land Use Land Cover Maps
2000/2010/2020

Classification reports
2000201042020

Spatio-temporal Land use land cover
change detection 2000-2010 / 2010-2020
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'ITI'

Ration of Land Consumption Rate to
Population Growth Rate (LCRPGR)

| Land use efficiency |

Figure 2. Research methodology flowchart
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data

I——b

Land
Consumption
Rate [LCR)
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Growth Rate
(PGR)

3.5 Spectral separability analysis

To produce the highest classification accuracy, it is essential
to analyze the separability of the classes [62]. Therefore, we
conducted a separability analysis of the three land cover
classes identified in the study area. The spectral distance, or
class separability, can be assessed using different distance
measures.

In this study, we used the Jeffries-Matusita distance to
analyze spectral separability between land cover classes. JM
distance is a widely used measure of spectral separability in
remote sensing applications [63]. JM distance values range
from 0 when the signatures are similar (no separability) and 2
when the signatures are very distinct (completely separable)
[64].

The pairwise-calculated JM separability of the selected
training samples for the three images of the study area shows



that JM values are most consistent between palm grove and
bare soil, and between palm grove and built-up, and least
consistent between built-up and bare soil. The highest JM
separability is found between palm grove and bare soil and
between palm grove and built-up (1.999). The lowest JM
separability is found between built-up and bare soil (1.91).
Overall, the palm grove is the class that can be most easily
separated from the other classes (High separability).

However, it is important to note that built-up overlaps
heavily with bare soil; thus, they are relatively poorly
separated and produce some misclassification in later steps.
Post-classification refinements were used to reduce the
observed misclassification.

3.6 Post-classification processing

Post-classification refinements were used to decrease the
observed misclassification affected by the resemblances in
spectral signatures of specific classes, namely built-up and
bare soil. Classification errors were corrected using ground
truthing.

To enhance classification accuracy, some spectral indices,
such as the normalized difference built-up index (NDBI) [65],
normalized difference vegetation index (NDVI) [66], and
normalized difference bareness index (NDBal) [67], were also
created for post-classification refinement of the initially
classified images. NDBI, NDVI, and NDBal are calculated
using Eqgs. (1)-(3), respectively (Table 4).

SWIR — NIR
NDBI = ¢ )/(SWIR + NIR) M
npv = (VIR = RED)/ (NIR + RED) )
SWIR — TIRS
NDBal = ¢ iswir + irs) ®)

where,

For Landsat 5 and 7: (RED = Band 3), (NIR = Band 4),
(SWIR =Bands 5 and 7), (TIRS = Band 6).

For Landsat 8: (RED = Band 4), (NIR = Band 5), (SWIR =
Bands 6 and 7), (TIRS = Band 10 and 11).

The post-classification refinement relied on a set of
index-based rules combining NDVI, NDBI and NDBal to
standardize the assignment of land-cover classes (Table 5).
Pixels were first evaluated for vegetation, which was retained
where, NDVI was high (> 0.35) and both built-up and bare-
soil signals were low (NDBI < 0.20 and NDBal < 0). Built-up
areas were then identified as pixels with a strong built-up
response (NDBI > 0.20) but low vegetation and bareness
(NDVI < 0.35 and NDBal < 0). Bare soil was assigned to
pixels with a pronounced bareness signal (NDBal > 0) and
simultaneously low NDVI and NDBI. Finally, for each binary
class mask, small misclassified patches were removed, and
fragmented objects were regularized using simple
morphological opening/closing with a 3 X% 3 structuring
element and a minimum mapping unit of 4-9 pixels, which
reduced speckle and ensured more homogeneous class
regions. A complete workflow schematic is provided in Figure
3.

The resulting maps were examined and analyzed to detect
changes in land use and land cover in the Biskra urban area
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over the last 20 years.

Post-classification
refinement

!

Initial MLC Classification
(Built-up / Palm Grove / Bare Soil)

. : L

2000 2020

Spectral Index Computation
NDVI, NDBI, NDBal

{

| Threshold Optimization l

| Rule-Based Reclassification l

I Reassign mixed pixels ]

'

I Morphological Filtering l

\ 4
Final LULC Maps
2000-2010-2020

Figure 3. Post-classification refinement workflow

Table 4. Band mapping crosswalk for NDVI, NDBI and

NDBal

Index Formulas BandUsed TM5 ETM+7 OLIS8
NDVI (NIR-Red) / NIR Band4 Band4 Band5
(NIR+Red) Red Band3 Band3 Band4

NDBI (SWIR-NIR)/ SWIR Band5 Band5 Band6
(SWIR+NIR) NIR Band4 Band4 Band5

NDBal (SWIR-TIRS)/ SWIR Band5 Band5 Band6
(SWIR+TIRS) TIRS Band6 Band6 Band 10

3.7 Land use efficiency assessment using LCRPGR
indicator

By definition, “Urban sprawl occurs when the growth rate
of urbanized areas exceeds the population growth rate” [4]. To
evaluate urban sprawl in a territory according to the EEA
definition [4], it is necessary to calculate the ratio of land
consumption to population growth. Therefore, UN-Habitat
proposed an indicator to measure Land Use Efficiency (LUE)
as a guideline for the Sustainable Development Goals (SDGs).

The indicator 11.3.1 (LCRPGR) measures the ratio of the
rate at which urban land use expands against the population
growth [68]. The two components of this indicator, Land
Consumption Rate (LCR) and Population Growth Rate (PGR),
are calculated using Egs. (4), and (5), respectively:

LCR = (Ver — Vto)/Vt0 " 1/t @)

where,
V; is the total built-up area in the current year
V4 is the total built-up area in the past year
t is the number of years between V; and V



Table 5. Index thresholds and reclassification rules

Morphological Refinement

Class Index Thresholds Reclassification Rule (From Initial Map) -
(Binary Mask)
. If initial label = Vegetation AND NDVI > 0.35 AND NDBI < .
Palm NDVI, = 0.35; NDBI < 0.20 AND NDBal < 0.00 = keep Vegetation; else relabel 3 >3 opening to remove sp_eckle,
grove 0.20; NDBal <0.00 - then remove patches < 4 pixels.
according to other rules.
. If initial label = Built-up OR (non-Vegetation pixel with NDBI . .

o NDBI > 0.20; NDVI < 3 %3 closing to fill small gaps,
Built-up 0.35: NDBal < 0.00 >0.20 AND NDVI < o.gi ﬁr_\:g NDBal < 0.00) = set to then remove patches < 4 pixels.
Bare soil NDBal > 0.00; NDVI If pixel is not Vegetation or Built-up and NDBal > 0.00 AND 3 %3 opening, then minimum

<0.35; NDBI <0.20 NDVI < 0.35 AND NDBI < 0.20 = set to Bare soil. mapping unit of 4-9 pixels.
PGR = In(Popsyn/Pop;) / (5) statistically using the area-based error matrix. of Olofsson et
Y al. [69] where each element represents the estimated area
proportion for each class (Table 8).
where,

In is the natural logarithm value

Pop;, is the total population within the urban area/city in the
past/initial year

Pop;+, is the total population within the urban area/city in
the current/final year

y is the number of years between the two measurement
periods

The ratio of land consumption rate to population growth rate
(LCRPGR) is calculated using Eq. (6):

LCRPGR = LCR/, o (6)

4. RESULTS AND DISCUSSION
4.1 Accuracy assessment

Classification accuracy assessment was performed for all
output images to evaluate the extent of classification accuracy
[69]. Validation sampling points were generated using a
stratified sampling. An estimate of the validation sample size
n with this sampling design is provided by Cochran [70] (Eq.
(N):

(2{-” Wisi>2
nx|— @)
$(0)

where, W; is class i proportion of the mapped area, the standard
deviation of the stratum S; = V(U; (1-U,)) with U; is class i
target user accuracy. M is the number of LULC classes, and
S(0) is the standard deviation of the target overall accuracy.
We set the target S(O) = 0.01 and U; between 70% and 85%
for all classes. The resulting estimated sample sizes from Eq.
(7) are n =605, n = 594 and n = 600 for the years 2000, 2010,
and 2020, respectively (Table 6). To calculate the validation
samples for each class, a rough approximation is to take the
mean of the equal distribution (N; = n/M) and the weighted
distribution (n; = nxW;), which is n; = (n/M+n*W;)/2. Table 7
shows the estimated sample allocation for each class.
Consequently, 1799 validation points were used for
validating both mapping products; these were assessed and
labelled on-screen using high-resolution imagery in Google
Earth. Finally, we calculated the errors associated with 95%
confidence interval (CI) for the accuracy measures and the
estimated LULC areas, using their respective estimated
variance equations, following the best practices outlined by
Olofsson et al. [69]. These processes were calculated
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Table 6. Estimation of the sample size (n) of the validation

Class Area% Wi  Si W#Si S(O) n
Built-up 3.37 0.033 0.3 0.010 0.01
Palm grove 5.20 0.052 0.14 0.007 0.01
Bare soil 91.43 0.914 0.25 0.229 0.01
Total 0.246 605
Class Area % Wi Si WS S©O) n
Built-up 6.06 0.060 0.3 0.018 0.01
Palm grove 8.45 0.084 0.14 0.012 0.01
Bare soil 85.48 0.854 0.25 0.214 0.01
Total 0.244 594
Class Area% Wi Si WS S(O) n
Built-up 8.92 0.089 0.3 0.027 0.01
Palm grove 8.57 0.085 0.14 0.012 0.01
Bare soil 82.49 0.824 0.25 0.206 0.01
Total 0.245 600

Source: Authors

Table 7. Allocated samples for each class for the years 2000-

2010-2020
2000
Class Weighted Equal Mean
Built-up 20 201 112
Palm grove 31 201 116
Bare soil 553 201 377
Total 605
2010
Class Weighted Equal Mean
Built-up 36 198 117
Palm grove 50 198 124
Bare soil 508 198 353
Total 594
2020
Class Weighted Equal Mean
Built-up 54 200 127
Palm grove 52 200 126
Bare soil 495 200 347
Total 600

The error matrix and accuracy report have been generated
using the SCP’s accuracy assessment utility. The report
illustrates four different accuracy results: producer accuracy,
user accuracy, overall accuracy and kappa hat index. In terms
of both user and producer accuracies, the user accuracy (2000)
exceeded 98% for all classes except the palm grove class,
which was about 72%, while the 2010 map reached 87% for
all classes. Similarly, the 2020 map exceeded 81% for all
classes. In the same vein, producer accuracy across all years
and classes topped 94%. Overall classification accuracy for all



years surpassed 97%. The Kappa coefficients for the 2000,
2010, and 2020 maps are 0.91, 0.94, and 0.91, respectively.
The accuracy assessment results for each classified satellite

image for 2000, 2010, and 2020 have been found satisfactory,
as shown in Table 8.

Table 8. The error matrix for the years 2000, 2010 and 2020, populated with estimated proportion of area as recommended by

good practice
2000
Class Built-Up Palm Grove Bare Soil Area Wi
Built-up 0.0331 0 0.00057 1,502.03 0.033677969
Palm grove 0.0019 0.0408 0.0092 2,319.77 0.052013037
Bare soil 0 0 0.9143 40,777.98 0.914308994
Total 0.0350 0.0408 0.9241 44,599.95 1
Area 1,561.95 1,821.69 41,216.13 44,599.95
SE 0.0010 0.0020 0.0019
SE area 43.31 88.83 83.80
95% Cl area 84.90 174.12 164.25
Producer accuracy [%] 94.76 100 98.94
User accuracy [%] 98.28 72.29 99.99
Overall accuracy [%] = 98.81
Kappa hat classification = 0.91
2010
Class Built-Up Palm Grove Bare Soil Total Wi
Built-up 0.0579 0 0.0027 2,702.69 0.060595061
Palm grove 0 0.0748 0.0097 3,769.54 0.084514135
Bare soil 0 0 0.8549 38,130.25 0.854890804
Total 0.0579 0.0748 0.8674 44,599.86 1
Area 2,580.84 3,335.67 38,685.69 44,599.86
SE 0.0003 0.0005 0.0005
SE area 11.17 21.69 24.40
95% Cl area 21.90 4251 47.82
Producer accuracy [%] 100 100 98.57
User accuracy [%] 95.46 87.45 100
Overall accuracy [%] = 98.75
Kappa hat classification = 0.94
2020
Class Built-Up Palm Grove Bare Soil Area Wi
Built-up 0.0760 0 0.0133 3,983.15 0.089288917
Palm grove 0 0.0762 0.0096 3,826.76 0.085783175
Bare soil 0 0 0.8249 36,799.77 0.824927908
Total 0.0760 0.0762 0.8480 44,599.41 1
Area 3,389.4 3,398.85 37,821.42 44,599.41
SE 0.0006 0.0008 0.0010
SE area 26.70 35.85 44.70
95% Cl area 52.33 70.27 87.62
Producer accuracy [%] 99.97 100 97.35
User accuracy [%] 81.67 88.38 99.99

Overall accuracy [%] = 97.70
Kappa hat classification = 0.91

4.2 Land use land cover change dynamics

A significant LULC transformation occurred across the
three municipalities of the urban area due to the rapid pace of
urbanization, particularly in the first decade (Figure 4).
Extensive results are demonstrated in Table 9, including area-
adjusted estimates with uncertainties (95% CI).

Between 2000 and 2010, the built-up area in Biskra
municipality increased from 1,369.89 ha (10.72%) to 2,160.90
ha (16.92%) by 791.01 ha (+57.74%) and the palm grove from
837.99 ha (6.56%) to 1,034.19 ha (8.10%) by 196.20 ha
(+23.41%). Whereas, the built-up area in Chetma municipality
increased from 87.93 ha (0.80%) to 233.91 ha (2.12%), by
145.98 ha (+166.02%), and the palm grove from 396.01 ha
(3.59%) to 632.79 ha (5.74%), by 236.78 ha (+59.79%).
Similarly, in El Hadjeb municipality, the built-up area has
increased from 104.13 ha (0.50%) to 186.03 ha (0.89%), by
81.90 ha (+78.65%), and the palm grove from 587.61 ha
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(2.82%) to 1668.69 ha (8.02%), by 1081.08 ha (+183.98%).
The bare soil area exhibited a decreasing trend across all three
municipalities.

Overall, the built-up area in Biskra urban area has been
extensively increased from 1,561.95 ha (3.50%) to 2,580.84
ha (5.79%) by 1,018.89 ha (+65.23%) and the palm grove from
1,821.69 ha (4.08%) to 3,335.67 ha (7.48%) by 1,513.98 ha
(+83.11%). In contrast, bare soil decreased from 41,216.13 ha
(92.41%) to 38,685.69 ha (86.73%), by -2,530.44 ha (-6.14%).

The increasing trend sustained in the second decade from
2010 to 2020; nevertheless, the growth rate has significantly
decelerated. Thus, the built-up area in Biskra municipality has
extended to 2,735.10 ha (21.41%) by 574.20 ha (+26.57%).
While the palm grove has decreased slightly to 921.87 ha
(7.22%), by -112.32 ha (-10.86%). In Chetma municipality,
the built-up area has expanded to 366.12 ha (3.32%), by
132.21 ha (+56.52%), and the palm grove to 720.27 ha
(6.35%), by 87.48 ha (+13.82%). Similarly, in El Hadjeb



municipality the built-up area has increased to 288.18 ha ha (8.44%), by 88.02 ha (+5.27%).
(1.39%), by 102.15 ha (+54.91%), and palm grove to 1,756.71

TI0000E FOO00E 750000 7€0000€

Figure 4. Classified LULC maps for the years (A) 2000, (B) 2010, and (C) 2020
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Table 9. Area statistics (area-adjusted estimates with uncertainties 95%CI) for the years 2000, 2010 and 2020

Biskra Municipality

Area-Adjusted 95% CI Area-Adjusted 95% Cl Area-Adjusted 95% CI
Percentage % Estimates (ha)  (ha) Estimates (ha) (ha) Estimates (ha) (ha) LULCC Change (ha)
Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020
Built-up  10.72 16.92 21.41 1,369.89 +25.04 2160.9 +7.51 2735.1 +15.02  791.01 574.2
Palmgrove 6.56 8.1 7.22 837.99 +50.07 1034.19 +10.01 921.87 +20.03 196.2 -112.32
Bare soil 82.72 74.99 71.37 10,565.91 +47.57 9578.7 +12.52 911.82 +25.04 -987.21 -461.88
Chetma Municipality
Area-Adjusted 95% CI Area-Adjusted 95% Cl Area-Adjusted 95% CI
Percentage % Estimates (ha)  (ha) Estimates (ha) (ha) Estimates (ha) (ha) LULCC Change (ha)
Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020
Built-up 0.8 212 3.32 87.93 +21.60 233.91 +6.48 366.12 +12.96  145.98 132.21
Palm grove 3.59 5.74 6.53 396.01 +43.21 632.79 +8.64 720.27 +17.28 236.78 87.48
Bare soil 95.61 92.14 90.14 10,538.91 +41.05 10,156.23 +10.80 9,936.54 +21.60 -382.68 -219.69
El Hadjeb Municipality
Area-Adjusted 95% CIl Area-Adjusted 95% Cl Area-Adjusted 95% CI
Percentage % Estimates (ha)  (ha) Estimates (ha) (ha) Estimates (ha) (ha) LULCC Change (ha)
Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020
Built-up 0.5 0.89 1.39 104.13 +40.77 186.03 +12.23 288.18 +24.46 81.9 102.15
Palm grove 2.82 8.02 8.44 587.61 +81.55 1,668.69 +16.31 1756.71 +32.62 1,081.08 88.02
Bare soil 96.67 91.08 90.17 20,111.31 +77.47 18,948.51 +20.39 18,758.34 +40.77 -1,162.8 -190.17
Biskra Urban Area
Area-Adjusted 95% CIl Area-Adjusted 95% Cl Area-Adjusted 95% CI
Percentage % Estimates (ha)  (ha) Estimates (ha) (ha) Estimates (ha) (ha) LULCC Change (ha)
Class 2000 2010 2020 2000 2010 2020 2000/2010 2010/2020
Built-up 350 5.79 7.60 1,561.95 +84.90 2,580.84 +21.90 3,389.4 +52.33 1,018.89 808.56
Palm grove 4.08 7.48 7.62 1,821.69 +174.12 3,335.67 +4251 3,398.85 +70.27 1,513.98 63.18
Bare soil 92.41 86.73 84.78 41,216.13 +164.25 38,685.69 +47.82 37,821.42 +87.62 -2530.44  -864.27

Table 10. Cross-class comparison and LULC change matrix

Land Cover Change Matrix (ha) 2000-2010
> New Class 2010

grove has slightly increased to 3,398.85ha (7.62%) by 63.18
ha (+1.89%). Conversely, bare soil has declined to 37,821.42
ha (84.78%) by -864.27 ha (-2.23%).

To better understand land encroachment across land classes
over the past two decades, a change-detection matrix was
prepared (Tables 10 and 11).

4.3 Cross-class comparison and LULC change detection

Reference Class 2000 Built-upPalm GroveBare Soil Total
Built-up 1,561.95 0 0 1,561.95
Palm grove 195.66 1,495.89 130.14 1,821.69
Bare soil 823.23 1,839.78 38,553.1241,216.13
Total 2,580.84 3,335.67 38,685.6944,599.77 i
Area change (ha) 1,018.89 1,513.98 -2,530.44 matrix
Annual change rate (ha) 101.889 151.398 -253.044

Land Cover Change Matrix (ha) 2010-2020
> New Class 2020

Reference Class 2010 Built-upPalm GroveBare Soil Total
Built-up 2,580.84 0 0 2,580.84
Palm grove 63.27 2,524.5 7479 3,335.67
Bare soil 745.92 874.26 37,063.7138,685.69
Total 3,389.4 3,398.85 37,821.4244,600.4
Area change (ha) 808.56 63.18 -864.27
Annual change rate (ha) 80.856 6.318 -86.427

Source: Authors

Table 11. Land-cover transition matrix for 2000-2010 and

2010-2020
Transition 2000-2010 2010-2020

Area(ha) % Area(ha) %

Built-up to Palm grove 0 0 0 0

Built-up to Bare soil 0 0 0 0
Palm grove to Built-up 195.66 10.75 63.27 1.89
Bare soil to Built-up 82323 206 74592 1.96
Bare soil to Palm grove 1,839.78 4.75 87426 231
Palm grove to Bare soil 130.14  7.06 7479  22.69

Source: Authors

Conclusively, The Biskra urban area has experienced a
similar increasing trend; thus, the built-up area has augmented
to 3,389.40 ha (7.60%) by 808.56 ha (+31.33%), and the palm
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A pixel-based comparison was employed to further explore
the LULC change pattern using the SCP plugin. The change
matrix was created by comparing image pairs of two different
decades using cross-tabulation in order to evaluate quantitative
and qualitative characteristics of LULC change as well as
gains and losses in each class for the periods 2000 to 2010 and
2010 to 2020 (Table 10, Figure 5). Several critical change
areas were identified after assessing and analyzing the amount,
location, and nature of change in the study area.

Figure 4 shows that most of the change across all LULC
classes and municipalities occurred in the first period, from
2000 to 2010 (Figure 5). During this period, the built-up area
has gained 1,018.89 ha (+65.23%), with an annual growth rate
of 101.88 ha/year (Table 10). 195.66 ha were transformed
from palm groves (Table 11), located mainly to the south of
Biskra Municipality (ancient town), a fact that can be
explained by the properties’ private nature.

Due to rising land values and growing demand, palm grove
owners chose to convert their properties to urban land.

Conversely, in the second period from 2010 to 2020 (Figure
5), the growth rate has significantly declined. The built-up area
has increased only by 808.56 ha (+31.33%), with an annual
change rate of 80.85 ha/year, including 63.27 ha converted
from palm grove (Table 11). This period was severely affected
by the economic crisis (2008). Consequently, the majority of



construction projects, housing and urban development
operations were cancelled.

Palm tree cultivation is the main agricultural activity in the
Biskra urban area, particularly in the municipalities of Chetma

and El Hadjeb. The livelihood of the majority of rural residents
relies largely on it. Consequently, the percentage of palm
groves has been gradually expanding from 2000 to 2020.

Figure 5. LULC change patterns, (A) 2000-2010 and (B) 2010-2020
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The highest increase in the percentage of palm groves (and
thus decreasing of bare soil) has been noticed between the
years of 2000 and 2010 by 1,513.98 ha (+83.11%) mainly
occurred in El Hadjeb by 1,081.08 ha (+183.98%) with an
annual change rate of 151.39 ha/year (Table 10, Figure 5),
which can be explained by the rise of small-scale farming
following the inauguration of the agricultural support program
by the Algerian government in 2000.

It is worth noting that despite the increase in the proportion
of palm grove over the years, it lost 325.80 ha of its area
between 2000 and 2010, including 195.66 ha converted to
built-up area and 130.14 ha to bare soil (Table 11). On the
other hand, from 2010 to 2020, the rate of growth of the palm
grove area has sharply decreased from 83.11% to 1.89%, with
an annual growth rate of 6.31 ha/year. Therefore, during this
period, the palm grove has lost 811.17 ha (-24.31%) of its area,
with 63.27 ha converted to built-up and 747.90 ha converted
to bare soil (Table 11).

Spatially, these changes occurred at different locations,
mainly in the south zone of Biskra (ancient town), along the
RN 03, as well as on the eastern shore of Oued Biskra
(Feliache agglomeration). Also, considerable change occurred
in El Hadjeb toward RN 46. Furthermore, a substantial change
was noticed to the east of Chetma municipality (Figure 5). The
location of these changes can be explained by the influence of
two driving forces: on one hand, the impact of main roads and
on the other hand, the proximity to an urbanized area. These
two factors increase land value, thereby encouraging palm
grove owners seeking higher profits to convert their properties
to urban land and prepare them for future urbanization.

Bare soil is the main land cover class in the study area.
However, the results indicate a progressive decline in its
proportion since it has been converted to other land use classes
(Tables 10 and 11). During 2000-2010, a total of 823.23 ha
was converted to built-up areas, and 1,839.78 ha was
transformed into palm groves. Similarly, between 2010 and
2020, 745.92 ha were converted to built-up areas, and 874.26
ha to palm groves. The annual change rate was estimated at -
253 ha/year (-6.14%) and -86.42 ha/year (-2.23%) during the
periods 2000-2010 and 2010-2020, respectively (Table 10).
The regression in bare soil area is principally attributed to the
increasing rate of urbanization and the growing demand for
cultivated land.

4.4 Urban sprawl, land use efficiency and sustainability

The results revealed that the Biskra urban area has evolved
along several primary directions due to the influence of main
roads, expanding further beyond the municipal boundary:
eastward and westward (along RN 31 and RN 46), generating
coalescence (conurbation) with Chetma and El Hadjeb,
respectively. South-eastward (along RN 83) toward Feliache
Agglomeration. Furthermore, toward the south (ancient town),
where built-up areas are taking place on prime agricultural
land and palm grove. Finally, and more recently, toward the
north (along RN 03) (Figure 5).

The research indicated that, in addition to socio-economic
drivers, land tenure (ownership) plays an important role in
LULC change, as the majority of palm groves converted to
built-up and bare soil were private properties. Therefore,
landowners seeking higher profits are reluctant to contribute
to palm grove conservation, leading to inappropriate land use
and unsustainable land management practices that produce
urban sprawl.
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Furthermore, by comparing the Land Consumption Rate
(LCR) with the Population Growth Rate (PGR), we assessed
how efficiently the Biskra urban area utilizes land (Figure 6).
The results obtained for the period 2000-2010 reveal that the
LCR in Biskra, Chetma, El Hadjeb and overall Biskra urban
area increased by 5.77%, 16.60%, 7.87% and 6.52% per year,
respectively, while the PGR grew by 1.39%, 4.90%, 1.64%
and 1.58% per year, respectively. The LCRPGR ratios
obtained are clearly greater than one: 4.15, 3.39, 4.80, and
4.13, respectively (Figure 6), indicating that land consumption
is growing four times faster than the population.

Biskra urban area [ HESON ——

Elhadjeb

h

Chetma |25 R on

Biskra [ 5o

0.00 1.00 2.00 3.00 4.00 5.00 6.00

2010-2020 m2000-2010

Figure 6. Ratio of land consumption rate to population
growth rate (LCRPGR)

In 2010-2020, the ratios of LCRPGR obtained in Biskra,
Chetma, El Hadjeb and overall Biskra urban area have
considerably decreased to 1.11 (LCR = 2.66%, PGR = 2.4%),
2.85 (LCR =5.65%, PGR =1.98%), 2.26 (LCR =5.49%, PGR
=2.43%) and 1.30 (LCR = 3.13%, PGR = 2.4%), respectively
(Figure 5). Conclusively, the LCRPGR values imply that the
Biskra urban area has experienced an uncontrolled urban
sprawl mainly between 2000 and 2010, the sprawling trend
sustained (LCPPGR > 1) between 2010 and 2020 with
significant regression compared to the previous decade.

The results revealed the failure of current urban policies,
land-use regulations, and master plans to monitor, control, and
prevent urban sprawl. Hence, more sustainable land use
policies are required.

4.5 Linking local urban sprawl dynamics to global trends

The urban expansion dynamics observed in the Biskra urban
area closely reflect the global patterns identified by Seto et al.
[8], particularly the systematic divergence between urban
population growth and urban land consumption (Figure 6).
Their global meta-analysis demonstrates that, across all
regions, urban land expansion has consistently outpaced
population growth, leading to declining LUE worldwide. The
results obtained for Biskra clearly corroborate this trend. The
calculated LCRPGR values remain persistently greater than
one, especially after 2000, indicating that urban land
expansion has progressed at a substantially faster rate than
demographic growth (Figure 6). This confirms that the
expansive growth pattern observed in Biskra is not exceptional
but rather consistent with dominant global urbanization
trajectories.



Seto et al. [8] further emphasized that, in developing
regions, particularly in Africa, urban expansion is primarily
driven by demographic growth rather than by economic
performance alone. This interpretation aligns closely with the
Biskra case, where rapid population growth and housing
demand have been the principal drivers of spatial expansion,
despite relatively moderate economic growth. The resulting
urban form is characterized by outward expansion, reinforcing
the global tendency toward inefficient land consumption
documented by Seto et al. [8]. Spatially, the expansion in
Biskra has followed principal transport axes and peri-urban
fringes (Figure 5), illustrating the role of accessibility and
infrastructure in shaping urban growth, as highlighted in the
global literature.

Importantly, Seto et al. [8] note that a significant share of
urban expansion cannot be fully explained by population and
economic variables alone, underscoring the importance of
local institutional and regulatory conditions. The findings
from Biskra provide empirical support for this argument.
Weak enforcement of planning regulations, fragmented land
tenure, and the conversion of agricultural and oasis lands into
urban plots have significantly facilitated uncontrolled
expansion. These locally specific drivers correspond to the
“unobserved factors” identified by Seto et al. [8] as critical
determinants of urban growth outcomes. Consequently, the
Biskra urban area case study not only confirms the global
conclusions of Seto et al. [8] but also demonstrates how global
urban expansion drivers are mediated through local socio-
institutional dynamics in semi-arid cities.

5. CONCLUSIONS

The results show that the Biskra urban area experienced a
massive, uncontrolled growth between 2000 and 2020. The
study area witnessed aggressive urban sprawl, particularly in
the first decade of the 21st century, as the built-up area grew
four times faster than the population. Hence, the three distinct
municipalities with distinct urban boundaries coalesced into a
broad urban area where bare soils and palm groves were
massively transformed into built-up areas to satisfy increasing
housing and infrastructure demands.

Nevertheless, the urban sprawl trend of the 2000-2010
epoch has significantly decelerated in the last decade. This
period was severely affected by the economic crisis (2008).
Consequently, the majority of construction projects, housing
and urban development operations were cancelled. Spatially,
the built-up area stretched eastward and westward along the
major roads linking the three municipalities (RN 31 and RN
46), extending beyond municipal boundaries. Moreover, the
majority of the recently developed areas in the southern part
of the study area (ancient town) are replacing palm groves that
were once considered fertile and productive, creating a serious
environmental issue.

Current urban policies have led to unsustainable, inefficient
land management practices, resulting in a sprawled pattern of
urbanization and significant land-use change. There is no
evidence that this trend will change soon unless appropriate
corrective actions are taken. From this perspective, local
authorities and decision makers should devote more
consideration to the issue of land use management and urban
sprawl monitoring, starting with the implementation of an
RS/GIS integrated approach to understand the past, present
and future dynamics and trends of LULC change, to evaluate
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upcoming requirements, and to take actions to guarantee the
suitability of future land supply.

GIS and remote sensing are powerful tools for monitoring
and measuring urban sprawl. However, this study may have
limitations in distinguishing built-up areas from bare land,
which is among the most challenging tasks in land use land
cover classification, particularly in arid and semi-arid
contexts, as these regions have different spectral
characteristics and a high degree of land homogeneity. Thus,
more investigation into the application of different urban
remote sensing indices is required.
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NOMENCLATURE

LULC land use land cover

GIS geographic information system

RS remote sensing

SDGs Sustainable Development Goals

LUE land-use efficiency

EEA European Environmental Agency

CBD central business district

USI urban sprawl index

™ thematic mapper (landsat)

ETM+ enhanced thematic mapper (landsat)

OLI operational land imager (landsat)

USGS United States Geological Survey

DPSB department of Programming and Budget
Monitoring

DUAC Department of Urban Planning, Architecture
and Construction

ONS national office of statistics

DOS1 dark object subtraction 1 method

DN digital numbers

TOA top of atmosphere reflectance

SCP semi-automatic classification plugin

ROIs regions of interest

M Jeffries-Matusita distance

NDBI normalized difference built-up index

NDVI normalized difference vegetation index

NDBal normalized difference bareness index

NIR near-infra-red

SWIR short wave infra-red

TIRS thermal infra-red sensor

LCR land consumption rate

PGR population growth rate

LCRPGR ratio of land consumption rate to population
growth rate indicator

ha hectare

RN national road





