Z‘ I El' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 10, October, 2025, pp. 2571-2581

Journal homepage: http://iieta.org/journals/isi

Darknet Traffic and Application Classification Using Heterogeneous Graph Neural Network |

Abdelhak Etchiali?"® Wafaa Ferhi®**, Mohammed M’hamedi?®®, Mourad Hadjila3*(,

Check for
updates

Mohammed Merzoug*?%2, Mohammed Hicham Hachemi*®

! Department of Computer Science, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria

2LRIT Laboratory, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria

3 Department of Telecommunication, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria

4STIC Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria

> Department of Second Cycle, Ecole Supé&ieure en Sciences Appliquées de Tlemcen ESSAT, Tlemcen 13000, Algeria

¢ Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran-Mohamed

Boudiaf, Oran 31000, Algeria

Corresponding Author Email: abdelhak.etchiali@univ-tlemcen.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301005

ABSTRACT

Received: 14 June 2025

Revised: 16 September 2025
Accepted: 24 September 2025
Available online: 31 October 2025

Keywords:

Graph Neural Network, Heterogeneous
Graph Neural Network, Darknet, VPN, TOR,
classification, network traffic analysis, CIC-
Darknet

The proliferation of Virtual Private Networks (VPNs) and The Onion Router (TOR) has
both benefits and drawbacks for individuals and organisations. These technologies offer
enhanced privacy and security online, but can also facilitate illegal or harmful behaviour by
masking users’ identities. Therefore, it is crucial to develop reliable methods for identifying
and monitoring VPN and TOR traffic to mitigate potential risks and ensure online safety.
In this paper, we propose a Darknet Heterogeneous Graph Neural Network (DHGNN)
model to address the challenge of detecting traffic and applications in the Darknet. Our
approach utilizes the CIC-Darknet2020 dataset, a large collection of openly available
network traffic data, to train and evaluate our DHGNN classifier. The dataset is
systematically explored to identify the most informative features and preprocessed into a
clean tabular format. This tabular data is then converted into a graph structure suitable for
the DHGNN classifier. Experimental results show that the proposed model achieves 99.80%
accuracy in traffic classification and 98.80% accuracy in application classification,
outperforming existing methods in Darknet classification. This approach demonstrates the
effectiveness of integrating feature-driven preprocessing with graph-based neural network

modeling for robust and accurate classification.

1. INTRODUCTION

The internet is a global system that links millions of
computers and digital devices together, enabling
communication and information exchange across the world. A
key service on the internet is the World Wide Web, which is a
vast collection of interconnected pages containing text,
images, and videos, accessed online. The Web relies on key
components: web pages (documents written in a special code),
hyperlinks (which enable navigation between pages), and web
servers (computers that host and deliver these pages). In
contrast, the Deep Web is a hidden part of the internet that
standard search engines like Google cannot access, containing
private data such as bank records, medical history, and
government files not intended for public viewing [1].

In contrast, the Dark Web constitutes a part of the internet
accessible solely through specialized software like the Tor
browser, characterized by its anonymity. Infamous for its
association with illicit activities, it serves as a marketplace for
illegal transactions, including drugs, weaponry, and stolen
data, and facilitates the exchange of prohibited information
and materials [2]. The proliferation of encrypted and

2571

anonymized network traffic, largely driven by the widespread
use of privacy-enhancing technologies (PETs) like Tor and
VPNs, has created a formidable challenge for modern
cybersecurity operations [3, 4]. While these technologies serve
legitimate privacy needs, their infrastructure also forms the
backbone of Darknets, which are increasingly exploited for
illicit activities such as coordinated hacking campaigns,
espionage, and the deployment of advanced persistent threats
(APTs). Consequently, the accurate and efficient classification
of Darknet traffic has become a critical imperative for enabling
proactive cyber threat intelligence and strengthening national
and organizational security postures.

The expansion of the Internet has transformed global
communication, enabling individuals to interact across
borders with an Internet connection. The Tor network is a
technology that provides users with privacy and anonymity
online. It was developed by a team of mathematicians and
computer experts based at the Naval Research Laboratory
(NRL) in response to concerns about privacy and anonymity
during the early stages of the Internet’s development [5].

The Tor network uses a technique called onion routing to
route traffic through multiple servers and encrypts it, making

https://orcid.org/0009-0008-0790-3022
https://orcid.org/0009-0005-7574-8368
https://orcid.org/0009-0003-7899-2185
https://orcid.org/0000-0002-6554-3925
https://orcid.org/0000-0002-0426-1668
https://orcid.org/0000-0003-3967-6609
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301005&domain=pdf

it nearly impossible for anyone to trace the user’s online
activities [3, 6]. Despite its importance, the task of Darknet
traffic classification is fraught with inherent difficulties. The
very nature of anonymity tools is to obfuscate traffic patterns
and payload content, rendering traditional deep packet
inspection (DPI) methods ineffective. While machine learning
(ML) approaches that rely on flow-based statistical features
have shown more promise, they often exhibit critical
limitations [7, 8]. These methods typically treat traffic flows
as independent, isolated instances, failing to capture the
complex relational structures and temporal dependencies that
exist between communication nodes in a network [9]. This
inability to model the underlying graph-like nature of network
data, where connections between IP addresses, sessions, and
protocols contain vital discriminative information, results in
suboptimal accuracy, limited generalizability, and poor
scalability to the vast volumes of traffic generated in real-
world Darknet environments [10].

To bridge this gap, we propose a Darknet Heterogeneous
Graph Neural Network (DHGNN) framework. The core
innovation of our approach is the reformulation of the traffic
classification problem from a tabular learning task to a graph
learning task. By constructing a heterogeneous graph that
represents various network entities (e.g., hosts, packets,
services) and the rich relationships between them, our
DHGNN model can directly learn from the topological
structure of the network traffic. This allows the model to
discern subtle, relational fingerprints of different applications
and services that are invisible to conventional classifiers [11,
12]. The proposed method offers significant advantages,
including enhanced classification accuracy by leveraging
multi-relational data, inherent scalability for large-scale
network analysis, and a more nuanced understanding of
network behavior.

To validate our approach, we utilize the comprehensive
CIC-Darknet2020 dataset [13], a benchmark containing
labeled traffic from Tor, VPN, and non-VPN applications. Our
methodology involves a rigorous feature analysis to inform the
graph construction process, followed by a data preprocessing
pipeline that transforms raw tabular traffic data into a
structured heterogeneous graph. The experimental results
demonstrate that our DHGNN classifier achieves superior
performance, outperforming previous state-of-the-art traffic
classifiers and confirming the efficacy of graph-based learning
for tackling the complexities of Darknet traffic analysis.

The rest of this paper is organized as follows: Section II
provides a summary of the relevant literature and prior
research in the field. Section III covers the basics of
Heterogeneous Graph Neural Networks, such as graph data
construction, heterogeneous message passing, and model
architecture. Section IV presents the proposed methodology,
encompassing the description of the CIC-Darknet2020
dataset, data exploration and preprocessing, as well as the
model design. Section V provides the experimental results for
both traffic and application classification scenarios. Following
this, Section VI is dedicated to the conclusion and suggestions
for future research directions.

2. RELATED WORK

Recent research shows that many scientists now prefer to
use Graph Neural Networks (GNNs) instead of traditional
machine learning methods. GNNs are especially good at

2572

understanding relationships between data points when the data
can be represented as a graph. This strength is very useful in
areas such as social network analysis, protein—protein
interaction modelling, and anomaly detection—tasks where
older methods often struggle to capture the connections
between features.

The study by Kisanga et al. [14] introduces a new approach
to network security by building activity and event networks
with GNNs. This method aims to better handle both large-
scale attacks and long-term threats. The authors tested their
approach on two datasets, TOR-nonTOR and a DDoS dataset,
and achieved accuracy scores of 78% and 88%.

In another study, Purnama et al. [15] explore how GNNs
can improve modern Intrusion Detection Systems (IDS). They
use E-GraphSAGE, a variant of the GraphSAGE algorithm, to
efficiently gather and use information from neighbouring
nodes in graph-structured data. This approach helps capture
the complex patterns that appear in network traffic, which is
essential for correctly identifying and classifying malicious
activity. A related investigation [16] applies GNNs to malware
detection and classification. Using the CIC-AndMal2017
dataset, which contains a wide range of Android malware
samples, the researchers evaluate how well GNN models can
detect and classify different malware types. They test the
models using accuracy, precision, recall, and ROC curves.
Their results show that GNNs are a strong option for
improving malware detection.

An interesting survey [17] reviews how graph
representation learning can be used for network- and host-
based intrusion detection. It provides an overview of different
GNN models, explains how these models are built, and
discusses examples from published research. The survey also
looks at how robust these methods are against adversarial
attacks. In the end, the authors summarise the strengths and
weaknesses of GNN-based intrusion detection and suggest
directions for future research.

Another survey [18] examines graph adversarial attacks and
defence methods. It highlights that although GNNs work very
well in many tasks, they can be vulnerable to such attacks. The
study reviews key algorithms, comparing their strategies,
benefits, and drawbacks, and offers benchmark results that
show the ongoing challenge of making GNNs more robust
while addressing their security weaknesses.

In the study by Habibi Lashkari et al. [13], a CNN-based
model was proposed for binary traffic classification, where
Tor/VPN traffic was labelled as “Darknet” and non-Tor/non-
VPN traffic as “clearnet.” The model reached 94% accuracy
in distinguishing between benign and Darknet traffic. It also
achieved 86% accuracy in identifying the type of application
generating the traffic, classifying them into categories such as
video streaming, audio streaming, VoIP, browsing, chat,
email, file transfer, and P2P downloads. Similarly, Sarkar et
al. [19] used a Deep Neural Network (DNN) to differentiate
between Tor and non-Tor traffic, using the UNB-CIC (ISCX
Tor-2016) dataset [20]. They designed two models: a three-
layer DNN-A and a five-layer DNN-B. DNN-A achieved
98.81% accuracy, while DNN-B performed even better with
99.89%.

The study [21] focused on analysing traffic types using a
standard dataset and several machine learning classifiers. They
grouped the data into benign and Darknet classes and also
considered four traffic types for multi-class classification
(Tor/non-Tor or VPN/non-VPN). Their results showed that the
Random Forest classifier performed the best, achieving an F1

score of 98.61% in the multi-class setting.

Demertzis et al. [22] extended the application types into 11
subcategories and employed the WANN classifier architecture
(Weighted Agnostic Neural Networks). Unlike regular
Artificial Neural Networks (ANNs), WANNSs neither adjust
the weights of neurons; instead, they modify their neural
network architecture incrementally. The WANN methodology
first evaluates candidate structures based on performance and
design complexity, and then uses the best-performing
architecture to construct new layers. Their leading WANN
classifier achieved an accuracy rate of 92.68% in application-
layer classification.

The research detailed in the study by Sarwar et al. [23]
focused on classifying traffic and application types using
Convolutional Neural Networks (CNNs), as well as two
alternative approaches based on Long Short Term Memory
(LSTM) and Gated Recurrent Units (GRU). Initially, they
selected 20 features based on three methods: Decision Trees
(DT), Principal Component Analysis (PCA), and Extreme
Gradient Boosting (XGBoost), followed by the
implementation of hybrid architectures such as CNN/LSTM
and CNN/GRU. In this framework, the CNN layer was
responsible for feature extraction, while LSTM and GRU were
employed for time-series prediction based on these input
features. Notably, CNN/LSTM combined with XGBoost for
feature selection demonstrated the highest F1-scores,
achieving 96% accuracy in traffic type classification and 89%
accuracy in application type classification.

Marim et al. [24] studied and classified real Darknet traffic
using the CIC-Darknet2020 dataset. They used feature
extraction and applied an n-gram technique to group potential
subnets. They also evaluated the importance of the most
relevant features using Recursive Feature Elimination. Their
results show that simple models such as Decision Trees and
Random Forests can achieve more than 99% accuracy in
classifying traffic. Overall, their method provides up to a 13%

approaches.

Alimoradi et al. [25] developed a new decision support
system for detecting Tor and VPN traffic. Their system
classifies Darknet data into four categories: Tor, non-Tor,
VPN, and non-VPN. The model uses a DNN with 79 neurons
in the input layer and 6 neurons in the hidden layers to capture
the complex nonlinear patterns found in real darknet traffic.
They tested their approach on the DIDarknet benchmark
dataset, achieving an accuracy of 96%. Impressively, these
strong results were obtained without any preprocessing steps
such as feature extraction, data balancing, or data cleaning.
This highlights the ability of their model to handle raw
Darknet traffic effectively.

Zhu et al. [26] introduced the Darknet Traffic Graph (DTG),
an interactive graph that visualizes connections between
source and destination nodes (servers and clients) in Darknet
traffic. Based on DTG, they combined Graph Neural Networks
with an attention mechanism to create Darknet Graph Neural
Networks (DGNNs). This model makes effective use of both
benign and Darknet traffic characteristics. When evaluated on
the CIC-Darknet2020 dataset, DGNNs achieved excellent
accuracy scores: 98.52% for traffic classification and 99.06%
for application classification, outperforming other existing
classifiers.

Even with the state-of-the-art use of deep learning models
such as CNNs, RNNs, and Transformers for traffic
classification, there is still a serious problem. These models
ignore the intricate graph relationships between hosts and
services, treating traffic as discrete tabular or sequential data
[11]. As a result, they are unaware of the critical topological
fingerprints of applications. In Darknet environments such as
Tor and VPNs, where these structural patterns are the main
observable feature, this limitation significantly reduces their
efficacy in categorizing encrypted traffic.

Table 1 is included to explicitly contrast tabular and graph-
based approaches, thereby emphasizing the distinctive

improvement compared with current state-of-the-art strengths of DHGNN [25].
Table 1. Tabular vs. Graph-based methods: Emphasizing DHGNN strengths
Study/Method Core Approach Repnla)s?:;ia tion Key Limitation/Gap DHGNN Improvement
Statistical Methods Feature Tabular/Vector Ignores inherent relationships, ~ Leverages all relational data directly
(SVM, Naive Bayes) Engineering sensitive to feature selection. via the graph structure.

Deep Packet Signature Payload Data Fails with encryption (Tor, Operates on metadata and topology,
Inspection (DPI) Matching VPN), violates privacy. inherently robust against encryption.
State-of-the-Art Automated Ca}nqot cialpturimter-er;(tlty Reformulates to Graph Learning to

ML/DL Classifiers Feature Tabular/Sequential e aF1on.s 'S (host-pac .et- capture subtle, multi-relational
(CNN, RNN) Extraction service); mlsses.topologlcal fingerprints.
fingerprints.
Enhanced accuracy through
Proposed Method Heterogeneous Heterogeneous N/A topological structure learning;
(DHGNN) Graph NN Graph inherent scalability, nuanced

understanding of Darknet behavior.

3. HETEROGENEOUS GRAPH NEURAL NETWORK

Heterogeneous Graph Neural Networks (HGNNs) are
designed to process graph-structured data consisting of
multiple node and edge types, allowing the model to capture
complex relational semantics across diverse entities [27]. The
presence of such heterogeneous node and edge categories is
what distinguishes heterogeneous graphs from their
homogeneous counterparts [28].

The HeteroGNN algorithm effectively captures the complex

2573

and rich relationships present in such data [29], making it
useful for various tasks like node-level classification, link
prediction, and graph-level classification across various
domains, including social networks, knowledge graphs, and
malware detection [30].

3.1 Graph data construction

This phase is foundational, involving the translation of raw
network traffic data into a format that a GNN can process.

Consider a heterogeneous graph G = (V, E), where V denotes
the set of nodes and £ denotes the set of edges [31].

*The node set V is categorized into two subsets, V =V, U
Ve, with V;, being the host nodes and Vythe flow nodes.

*Host nodes have feature X}, €, and flow nodes have feature
matrix X € RUrlxas) \where d and drrepresent the feature
dimensions for host and flow nodes, respectively. These
features serve as the input to the HGNN [29].

eIdentify the relationships or connections between nodes
that will be represented as edges. We consider that the edge set
E is divided into two different types of flow and host E = E}, U
Ef, where Ejy are edges from host to flow nodes, and Ej, are
edges from flow to host nodes. This distinction is crucial for
heterogeneous graphs where different types of nodes and
edges may encode distinct kinds of information and
relationships.

3.2 Heterogeneous message passing

The core of the HGNN algorithm is the heterogeneous
message passing mechanism, which updates node embeddings
by aggregating information from neighboring nodes across
different types [31, 32]. This can be formalized as follows for
a two-node-type system using Heterogeneous Graph
Convolution (HConv).

For Ejredges, the update rule for flow node features is:

HI = o (W - AGG ({1 v(v, v,)eE,)] ()
For Ejp, edges, the update rule for host node features is:
HO® = a(Wf(h') - AGG({n0 v (v,.v,) €E,, })) @

Here, H;Hl) and H,EZH) denote the embeddings for flow
and host nodes at layer 1.
Whgp and ngll) are the learnable weights for each edge type,

o represents a non-linear activation function, and AGG
denotes an aggregation function, and their role in combining
information from a node’s neighborhood:

(1) Mean Aggregation:

AGG,,,, = mean(H V], (v(vi vy)e E)) 3)
(2) Sum Aggregation:
AGG,,, = sum(H [vi],(v(vi WV,) € E)) (4)

3.3 Model architecture

The model consists of L HConv layers, where the node
embeddings are iteratively updated [31, 33]. Initially:

H® =X, and H® = X, (5)

After L layers, the embeddings for flow nodes, H}EL), are
used in a linear prediction layer:

2574

Y =W,

out

L
HP +b,,

(6)

Y € RIVs*C represents the logits for C classes for each flow
node, with W, and b, being learnable parameters.

The multi-layer structure with L HConv layers allows for
progressively complex feature extraction and representation
learning. The transition from initial node features to final
embeddings capable of supporting classification tasks
illustrates the model’s capability to transform raw data into
actionable insights. Finally, the model is optimized via
supervised learning, minimizing the cross-entropy loss
between the predicted scores Y and the true labels Yz.:

L :—iz ZY « -log(Y,) (7)

Here, I index over flow nodes, and ¢ over classes.

W]'cgll), W;,;l), and b,..) are optimized to
minimize L using gradient-based optimization techniques such
as Adam, Adamax, AdaGrad, and RMSProp.

The model consists of 7 HeteroGNN layers with a hidden
dimension of 64. Host node features Xh and flow node features
Xf are embedded into 32 and 11 dimensions, respectively.
Each HeteroGNN layer uses SAGEConv with mean
aggregation and LeakyReLU activation. The final flow node
embeddings are passed through a linear output layer with
softmax activation for classification.

The parameters (Wour,

4. METHODOLOGY
4.1 Dataset description

Released in 2020 by the Canadian Institute for
Cybersecurity [34], the CIC-Darknet2020 dataset aggregates
network traffic from a range of simulation environments,
capturing both normal background patterns and malicious
behaviors. Its purpose is to provide researchers and
practitioners with a comprehensive collection of data on
network traffic analysis to support the advancement,
assessment, and experimentation of cybersecurity methods.
The dataset is structured into two levels. The first level
employs a dual-layered strategy to create benign and Darknet
network traffic.

The second tier encompasses various traffic scenarios such
as Browsing, P2P, Audio-Stream, Transfer, Chat, Email,
Video-Stream, and VoIP within the Darknet traffic. To ensure
representativeness, the dataset combines previous datasets like
ISCXTor-2016 and ISCXVPN-2016. The VPN and Tor traffic
is to be merged into the relevant Darknet categories [19].

4.2 Data exploration and preprocessing

*There are a few interesting features we can use for our
DHGNN model:

The timestamp we can process to extract information about
the day of the week and the time of day. In general, network
traffic is seasonal, and connections that occur at night or on
unusual days are suspicious.

*Processing IP addresses like 192.168.200.4 can be
challenging due to their non-numeric nature and adherence to
complex rules. One approach could involve categorizing them
into a few groups based on knowledge of our local network

configuration. Alternatively, a widely used and more
adaptable solution involves converting them into binary
representation, where ’192° would be represented
as ’11000000°.

*Flow Duration, the number of packets, and the number of
bytes are features that usually display heavy-tailed
distributions. Therefore, they will require special processing if
that is the case.

The CIC-Darknet2020 dataset contains a diverse set of
feature types, including numerical attributes (e.g., flow
duration), categorical variables such as Label or Label 1,
which serve as the target class and additional data elements
like timestamps and IP addresses.

To prepare these heterogeneous features for downstream
analysis and model training, we apply a series of
representation strategies informed by domain knowledge.

*First, temporal information embedded in the timestamp is
used to extract the week of data collection. This feature is
subsequently one-hot encoded, and the resulting indicator
variables are renamed to enhance interpretability.

*Second, we derive the time of day from each timestamp
and apply min—max normalization to scale this value between
0 and 1, ensuring consistency with other continuous inputs.

*Both source and destination IP addresses are transformed
using binary encoding. Instead of encoding all 32 bits of each
IPv4 address, we retain only the least significant 16 bits, as
these carry the most relevant variability for our context. The
most significant 16 bits are typically constant commonly
representing the internal network prefix 192.168 and therefore
contribute limited discriminative value.

*We establish a train/validation/test split using ratios of
80/10/10.

*Finally, we need to address the scaling of three features:
flow duration, the number of packets, and the number of bytes.
We use PowerTransformer() from scikit-learn to modify
their distributions.

Table 2 presents the node features utilized in the DHGNN
model.

Table 2. DHGNN model node features

Feature Type Feature Description
Host Source IP (ipsrc_1 to ipsrc_16)
Host Destination IP (ipdst 1 to ipdst 16)
Flow Daytime
Flow Day of the Week (Monday to Friday)
Flow Flow Duration
Flow Flow Packets/s
Flow Flow Bytes/s
Flow FIN Flag Count
Flow SYN Flag Count
Flow RST Flag Count
Flow Protocol

4.3 Design model

The design of our model is depicted in Figure 1. The model
consists of 7 HeteroGNN layers with a hidden dimension of
64. Host and flow node features are passed through embedding
layers, then processed via SAGEConv-based aggregation
(mean) and LeakyReLU activation. Separate projection
matrices (Whf, Wth) transform aggregated features. Final flow
node embeddings are passed through a linear layer and
softmax for classification.

H) H1)

AGGy ¢

CONCAT

|
Heh

AGG4,

Xn Xs

Embedding Layer

!

Hy® H©

Hhe

Non-Iinearity
o (RelLuU,
LeakyRelU, ...

)

Node Embedding
Initialization

Heterogeneous
GraphSAGE Convolution

Output Predictions
Y

HfiLl Cross-Entropy Loss
|
True Labels

Wout ‘

Yiue

Linear i
Layer vy

Loss Function
Softmax L

(Backprop 1
& Optimization

(Adam) J

v

flodel Parameters
(Wngs Wens
Mouts bout)

FUtPUt Predictions
Y

and Optimization

Figure 1. Model design process of the proposed DHGNN

The input features for host nodes X; and flow nodes Xy are
passed through an embedding layer to obtain initial node

embeddings H,(lo) and Hf(o). For host nodes, X; includes

network-specific features such as source and destination IP
address bits. For flow nodes, X; incorporates temporal and
statistical features including daytime, weekday, flow duration,
total bytes and packets transmitted, TCP flag counts, and
protocol information. These embedded representations serve

2575

as the foundation for subsequent graph neural network
processing.

At each HeteroGNN layer /, the node embeddings from the
previous layer (H,Sl)and H]SD) are processed through distinct
aggregation functions (4 GGirand AGGp). The AGGjyfunction
aggregates features from neighboring flow nodes to update
host node embeddings, while AGGp performs the
complementary operation by aggregating host node features to

update flow node embeddings. These aggregation functions
are implemented as SAGEConv (GraphSAGE) layers, which
compute a weighted combination of neighboring node features
processed by a Nonlinear activation function. This architecture
enables effective information propagation between the two
node types while maintaining their distinct feature spaces.

The aggregated embeddings from AGG) and AGGy, are
concatenated to form a joint representation. This combined
embedding is subsequently transformed through two separate
learnable projection matrices, W, and Wy, which
independently process the host-to-flow and flow-to-host
aggregated features, respectively. These methods allows the
model to learn different patterns from each direction of the
relationship. At the same time, it carefully preserves the
important network structure and connections that were
identified during the earlier combining step.

The projected embeddings are then passed through a non-
linear activation function o (typically ReLU or LeakyReLU)
to introduce non-linearity into the transformations. This

produces the updated node embeddings H. ,(lHl) and H}Hl) that

will serve as input to the next HeteroGNN layer. After
processing through all seven HeteroGNN layers, the final flow

node embeddings Hf(L) undergo a linear projection via the

output weight matrix W, to generate the model’s predictions.
The complete layer-wise transformation ensures both local
neighborhood information and global graph structure are
effectively captured in the final representations.

The projected embeddings are transformed through a final
linear layer to produce the output logits. These logits are then
normalized using a softmax activation function o(z); =

Z—Ke Lezj to obtain the model’s final predictions Y. This yields a
j=1

probability distribution over the K target classes, where each
element y; €Y represents the predicted probability for class i,
enabling probabilistic interpretation of the model’s outputs.
The model’s output predictions, called Y are evaluated against
the ground truth labels Yi... We use a special formula to
measure how wrong the predictions are; this formula is called
the cross-entropy loss function or L. The formula is L =
— K YVirueilog(y;). Here, K is the number of classes we are
trying to predict. This loss L calculates the difference between
the predicted probability distribution and the correct class
distribution, with the computed loss value L serving as the

optimization objective during model training. The cross-
entropy formulation is particularly suitable for classification
tasks as it penalizes confident incorrect predictions more
heavily while remaining computationally efficient.

The computed loss L is backpropagated through the entire
network to obtain gradients with respect to all trainable
parameters, including the weight matrices (Wy; Wp, Wou) and
their corresponding bias terms. These gradients are then used
by an optimization algorithm (typically Adam) to update the
model parameters through gradient descent. This entire
process is repeated for 100 epochs. One epoch means the
model has seen all the training data once. With each epoch, the
model's parameters are slowly refined to reduce the
classification error. This repeated training helps the model
learn better and more discriminative features, which improves
its ability to make correct predictions.

Therefore, the theoretical AGG is practically instantiated
using SAGEConv with mean aggregation for aggregating
neighbor information within each relation type in the
heterogeneous graph.

5. EXPERIMENT RESULTS

In the DHGNN classifier, we’ll set up four or eight layers
of SAGEConv with LeakyRELU for each node type (four
layers in the case of traffic classification and eight layers in the
case of application classification). Then, a linear layer will
produce a four or eight-dimensional vector, with each
dimension representing a class. Additionally, we’ll train this
model in a supervised manner utilizing cross-entropy loss and
the Adam optimizer. Next, we specify the heterogeneous
GNN, incorporating three parameters: the count of hidden
dimensions, the count of output dimensions, and the number
of layers.

Hyperparameters optimization for GNN classifiers is
crucial, given that it directly affects the model’s classification
accuracy. Our experiments, detailed in Table 3, thoroughly
explore key parameters, assessing accuracy within defined
ranges. We find that a network depth of seven layers, trained
over 100 epochs with the Adam optimizer and the LeakyReLU
activation function, is the ideal configuration.

In the following subsections, we will present results for both
traffic classification and application classification scenarios.

Table 3. DHGNN model hyperparameters and exploration range

Hyperparameter Value Interval O\I/);lll::l Description
Device - Dynamic Computed based on CUDA availability; 'cuda’ or 'cpu'.
Number of Layers [3.4.5,6,7] 7 The number of layers in the model indicates the depth of the
network.
Dlmensf;yif Hidden 64 64 Fixed dimensionality of the hidden layers in the model.
Output Dimension 3 and 4 3 and 4 The dimensionality of the output layer is fixed at 8 and 4 for
this model.
Activation Function [Tanh, Relu, LeakyRelu] LeakyRelu Activation functions are consu.iered, with LeakyReLU chosen
for the optimal model.
. [0.001, 0.002, 0.003, 0.004, Range of learning rates explored, with 0.004 selected as the
Learning Rate (LR) 0.005, 0.006] 0.004 optimal rate.
. [Adam, AdamW, RMSprop, Different optimization algorithms were considered, with Adam
Optimizer Adam .
Adamax] chosen for the optimal model.
. Cross The loss function used for training was not varied in this
Loss Function Cross Entropy . :
Entropy experimentation.
Total Epochs [50, 100, 150, 200] 100 Total epochs explored with 101 chosen for the optimal training

duration.

2576

5.1 Traffic classification (case of 4 classes)

Our focus was primarily on the initial layer of the CIC-
Darknet2020 dataset, which included two primary classes,
VPN/Tor Darknet traffic and Non-VPN/Non-Tor benign
traffic. The four classes are represented by the pie chart shown
in Figure 2, where the counts of each value are as follows:
“Non-Tor”: 93309, “Non-VPN”: 23861, “VPN”: 22919, and
“Tor”: 1392 occurrences. We assess the performance of the
proposed approach using Precision, Recall, Fl-score, and
Accuracy evaluation metrics.

In traffic classification, the accuracy of our DHGNN model
is 99.80%, indicating a very high level of correct predictions.
A plot of training loss and validation loss while training the
model is shown in Figure 3.

Non-Tor

Tor

VPN

NonVPN

Figure 2. Proportion of each class in the CIC-Darknet2020
dataset — Traffic case

Model loss

0.351 —— Train

—— Validation
0.30 -
0.25 4

0.201

Loss

0.154

0.101

0.05 1

0.00 1

4‘0 6‘0 8‘0 1 L:ID

Epoch

Figure 3. Model’s loss as a function of an epoch during the
training process — Traffic case

A plot of the proportion of misclassified samples is given in
Figure 4. If we compare this pie chart to the original
proportions in the dataset, we see that the model performs
better for the majority classes. This is not surprising since
minority classes are harder to learn (fewer samples), and not
detecting them is less penalizing (with 93309 Non-Tor flows
versus 1392 Tor). NonVPN and VPN detection could be
improved with techniques such as oversampling and
introducing class weights during training.

An analysis of the confusion matrix presented in Figure 5
indicates that the classifier exhibits exceptionally high
discriminatory power. The model's performance is

2577

characterized by misclassification rates that remain
predominantly below 0.5% across all four defined anonymity
categories. Despite this robust performance, two specific
confusion patterns are discernible. The most significant occurs
between Tor and NonVPN traffic, where approximately 10
Tor samples (0.45%) were misclassified. This is likely
attributable to overlapping statistical patterns when Tor
circuits encapsulate traffic resembling normal encrypted
sessions, a challenge compounded by the relatively lower
number of Tor samples (n = 121). A second, minor pattern
involves a handful of Non-Tor samples being confused with
NonVPN and VPN classes (< 4 samples each, < 0.2%)),
potentially stemming from similar feature distributions like
packet lengths and timing in various encrypted streams.
Overall, the model performs remarkably well, but the Tor vs.
NonVPN distinction remains challenging, primarily due to
their similar traffic patterns and the imbalance between
classes.

Non-Tor

Tor

NonVPN
VPN

Figure 4. Proportion of each misclassified class — Traffic
case

Non-Tor

NonVPN

True label

VPN

0

T 3 1 0
or 2.24% 7.46% 0.00%

NonVPN VPN
Predicted label

Non-Tor

Tor

Figure 5. Confusion matrix for multi-class flow
classification — Traffic case

Table 4 compares the performance of various graph neural
network (GNN) models, including ResNet, GIN, GCN, GAT,
GraphSAGE, RevGNN, DGNN, and the proposed DHGNN
model, on a traffic classification task. The performance
metrics reported are accuracy, precision, F1-score, and recall
(TPR). The proposed DHGNN classifier achieves the highest
accuracy of 0.9980, precision of 0.9898, F1-score of 0.9820,
and recall of 0.9322.

Table 4. Performance evaluation of various traffic classification methods

Model Accuracy Precision F1 Recall
DGNN [26] 0.9852 0.9662 0.9488 0.8322
GIN [35] 0.9358 0.8653 0.7569 0.6741
GCN [36] 0.9260 0.8464 0.7108 0.6158
GAT [37] 0.9235 0.8324 0.7021 0.6086
Gra%z?GE 0.9556 09142 08407 0.7791
RevGNN [39] 0.9131 0.8384 0.6348 0.5131
ResNet [40] 0.9043 0.7625 0.7120 0.6991
Our DHGNN 0.9980 0.9898 0.9820 0.9748
5.2 Application classification (case of 8 classes) Model loss
—— Train
0.35 —— Validation

Our focus now was directed towards the second data layer
of the CIC-Darknet2020 dataset, which included data samples 0.30
classified as Media Streaming (Audio and Video), Live Chat,
E-mail, P2P, Voice over IP, File Transfer, and Web Browsing.

0.25

We employ Precision, Recall, Fl-score, and Accuracy Zo20

evaluation metrics to evaluate the performance of the proposed o1

approach. ‘
Figure 6 shows a curve representing the model’s loss as a 0.10

function of the number of epochs during the training process.
The curve starts at a relatively high loss value, indicating that
the model’s initial predictions were quite inaccurate or far 0 20 40 60 50 100
from the true values at the beginning of the training process. Epoch

In the early stages of training, the loss curve exhibits a steep
decline. This rapid decrease in loss suggests that the model is
learning quickly and improving its predictions significantly
with each epoch. During this phase, the model is making
substantial adjustments to its internal parameters to minimize
the error between its predictions and the true values. As the
training progresses, the rate at which the loss decreases starts
to slow down gradually. This indicates that the model is still
improving, but the improvements are becoming smaller. In
application classification, the accuracy of our DHGNN model
is 98.80%, indicating a very high level of correct predictions.

The circular chart given in Figure 7 shows the distribution Audio-Streaming
of each misclassified class in the case of application
classification.

Figure 8 presents the confusion matrix for the 8-class
application classification task, illustrating the model's
evaluation performance by comparing predicted labels against
true labels. The matrix shows generally excellent performance,
though with interpretable patterns of misclassification. The
most common errors are with Video-Streaming. It is
sometimes mistaken for Audio-Streaming (75 samples, ©
2.42%) and Chat (47 samples, 2.02%). This makes sense 4

0.05

Figure 6. Model’s loss as a function of an epoch during the
training process — Application case

Browsing

VoIP
Email

Video-Streaming

File-Transfer

Chat

Figure 7. Proportion of each misclassified class —
Application case

6 0 1 1 0
0.18% 0.00% 0.03% 0.03% 0.06% 0.00%

2
0.01%

because a video stream also contains an audio track, and its

data can arrive in bursts, similar to a chat application. & ik

Similarly, Audio-Streaming shows minor confusion with - yy&“\ 7 | v

VoIP, and Email traffic is moderately confused with Browsing 3 n

(72 samples, 6.33%), reflecting the real-world ambiguity of " I

HTTPS-based webmail services. A notable case is the VOIP 0 R

class, which has a higher error rate. It is often misclassified as) & B

Browsing, Email, or Audio-Streaming. On the other hand, T

applications with very unique traffic patterns, like P2P and & oo oo

File-Transfer, are almost never confused with anything else. e 8 i oz F 3 3

They are identified perfectly. In summary, most of the model's £) : ; =
i §

Audio-Streaming

mistakes happen between application types that naturally have
very similar network behavior. This shows a real-world
challenge in classifying network traffic, not a major problem
with the model itself.

Predicted label

Figure 8. Confusion matrix for multi-class flow
classification — Application case

2578

Table 5 presents the recall values of the different models for
classifying various applications, such as Audio-streaming,
Browsing, Chat, Email, Transfer, P2P, VOIP, and Video-
streaming. The proposed DHGNN classifier achieves the
highest recall for most applications, including Browsing
(0.9800), Chat (0.9587), Transfer (0.9892), P2P (0.9984),
VOIP (0.9691), and Video-stream (0.8610). DGNN [26]
performs better for Audio-Streaming and Email classification
with a recall of 0.9788 and 0.9682, respectively.

For a fair and direct comparison, the proposed DHGNN
model is evaluated alongside the DGNN model [26] under
identical experimental conditions, including dataset splits,
preprocessing steps, and evaluation metrics. The results
demonstrate that our model achieves superior performance.
The results for other models (e.g., GCN, GAT, GraphSAGE)
are provided as a general benchmark from the cited literature
and were obtained under different experimental setups.

Table 5. Comparison of application classification methodologies’ recall results

Model Audio-Streaming Browsing Chat Email Transfer P2P VOIP Video-Streaming
DGNN [26] 0.9788 0.7577 0.9458 0.9682 0.8804 0.9702 0.9548 0.8557
GIN [35] 0.8928 0.3397 0.8341 0.1015 0.5059 0.7724 0.4706 0.3977
GCN [36] 0.8557 0.0072 0.7995 0.0020 0.3638 0.4968 0.5561 0.0240
GAT [37] 0.8061 0.0228 0.7838 0.1009 0.0731 0.7223 0.2545 0.0217
GraphSAGE [38] 0.9044 0.2423 0.8485 0.7804 0.5364 0.8756 0.8439 0.4438
RevGNN [39] 0.7472 0.0023 0.7723 0.0179 0.0181 0.0124 0.0089 0.0042
ResNet [40] 0.8237 0.7808 0.8946 0.5553 0.6774 0.8898 0.7864 0.6104
DHGNN (Qurs) 0.9253 0.9800 0.9587 0.8344 0.9892 0.9984 0.9691 0.8610

Table 6 compares the performance of different methods,
including Random Forest (RF), ensemble methods
(RF+KNN+DT), ResGAT, Deeplmage, CNN+LSTM, and the
proposed DHGNN and DGNN models, on an application
classification task. The metrics reported are accuracy, F1-
score, and the model used. The proposed DHGNN model
achieves the highest F1-score of 0.9879 and an accuracy of
0.9880, outperforming the other methods. DGNN also
performs well with an accuracy of 0.9906 and an F1-score of
0.9569.

Table 6. Performance comparison of different application
classification models

Method Accuracy F1-Score Model
[41] — 0.922 RF
[42] 0.9788 0.94 RF+KNN+DT
[43] — 0.8807 ResGAT
[19] 0.86 0.86 Deeplmage
[44] 0.9222 0.92 CNN+LSTM
[45] 0.8599 0.86 RF
[26] 0.9906 0.9569 DGNN
Our 0.9880 0.9879 DHGNN

6. CONCLUSIONS

In this paper, we propose an approach for detecting and
classifying Darknet traffic using a Heterogeneous Graph
Neural Network (DHGNN). The classifier is evaluated using
the CIC-Darknet2020 dataset, which includes four traffic
types (Tor, Non-Tor, VPN, Non-VPN) and eight application
categories (Audio-Stream, Browsing, Chat, E-mail, P2P,
Transfer, Video-Stream, VOIP). Our evaluation tests show
that our model, called DHGNN, performs better than other
methods at classifying Darknet traffic. This proves it has great
potential to improve network security by effectively detecting
this hidden, often malicious traffic. For future work, we plan
to continue in a few directions: We will test other types of
Graph Neural Network (GNN) classifiers. We will investigate
hybrid models that mix different GNN architectures. The goal
is to combine their individual strengths to create a model that
is both stronger and more flexible. We also understand that for
cybersecurity, it is not enough for a model to be accurate—it

must also be understandable. Therefore, we will develop
methods to improve the interpretability of DHGNN. We want
to make its decision-making process clear and transparent.
This focus on explainability is crucial for building trust in the
system, ensuring we can see how it works, and for gaining a
deeper understanding of the threats it finds.

REFERENCES

[1] Chertoff, M. (2017). A public policy perspective of the
Dark Web. Journal of Cyber Policy, 2(1): 26-38.
https://doi.org/10.1080/23738871.2017.1298643

[2] Nazah, S., Huda, S., Abawajy, J., Hassan, M.M. (2020).
Evolution of dark web threat analysis and detection: A
systematic approach. IEEE Access, 8: 171796-171819.
https://doi.org/10.1109/ACCESS.2020.3024198

[3] Awverin, A., Samartsev, A., Sachenko, N. (2020). Review
of methods for ensuring anonymity and de-
anonymization in blockchain. In 2020 International
Conference Quality Management, Transport and
Information Security, Information Technologies
(IT&QM&IS), Yaroslavl, Russia, pp. 82-87. IEEE.
https://doi.org/10.1109 /itqmis51053.2020.9322974

[4] Ezra, PJ., Misra, S., Agrawal, A., Oluranti, J.,
Maskeliunas, R., Damasevicius, R. (2021). Secured
communication using virtual private network (VPN). In
Cyber Security and Digital Forensics. Lecture Notes on
Data Engineering and Communications Technologies,
73: 309-319. https://doi.org/10.1007/978-981-16-3961-
6 27

[5] dos Santos Horta, M.S.P. (2022). Tor K-anonymity
against deep learning watermarking attacks. Master's
thesis. Universidade NOVA de Lisboa (Portugal).

[6] Alharbi, A., Faizan, M., Alosaimi, W., Alyami, H.,
Agrawal, A., Kumar, R., Khan, R.A. (2021). Exploring
the topological properties of the Tor Dark Web. IEEE
Access, 9: 21746-21758. https://doi.org/10.1109/
ACCESS.2021.3055532

[7]1 Saleem, J., Islam, R., Islam, Z. (2024). Darknet traffic
analysis: A systematic literature review. IEEE Access,
12: 42423-42452. https://doi.org/10.1109/ACCESS.
2024.3373769

2579

(8]

[9]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

Almomani, A. (2025). Darknet traffic analysis, and
classification system based on modified stacking
ensemble learning algorithms. Information Systems and
E-Business Management, 23: 209-240.
https://doi.org/10.1007/s10257-023-00626-2

Dutta, P., Mayilvaghanan, K., Sinha, P., Dukkipati, A.
(2024). Deep representation learning for prediction of
temporal event sets in the continuous time domain. In
15th Asian Conference on Machine Learning (ACML),
Istanbul, Turkey, pp. 343-358.

Ban, T., Eto, M., Guo, S., Inoue, D., Nakao, K., Huang,
R. (2015). A study on association rule mining of darknet
big data. In International Joint Conference on Neural
Networks (IJCNN), Killarney, Ireland, pp. 1-7.
https://doi.org/10.1109/IJCNN.2015.7280818

Xu, S., Han, J., Liu, Y., Liu, H., Bai, Y.(2025). Few-shot
traffic classification based on autoencoder and deep
graph convolutional networks. Scientific Reports, 15(1):
8995. https://doi.org/10.1038/s41598-025-94240-6
Maddumala, V.R., R, A. (2020). A weight based feature
extraction model on multifaceted multimedia bigdata
using convolutional neural network. Ingénierie des
Systémes d’Information, 25(6): 729-735.
https://doi.org/10.18280/is1.250603

Habibi Lashkari, A., Kaur, G., Rahali, A. (2020).
Didarknet: A contemporary approach to detect and
characterize the darknet traffic using deep image
learning. In Proceedings of the 2020 10th International
Conference on Communication and Network Security
(ICCNS), New York, USA, pp. 1-13.
https://doi.org/10.1145/3442520.3442521

Kisanga, P., Woungang, 1., Traore, 1., Carvalho, G.H.
(2023). Network anomaly detection using a graph neural
network. In 2023 International Conference on
Computing, Networking and Communications (ICNC),
Hawaii, USA, pp- 61-65.
https://doi.org/10.1109/ICNC57223.2023.10074111
Purnama, S.R., Istiyanto, J.E., Amrizal, M.A., Handika,
V., Rochman, S., Dharmawan, A. (2022). Inductive
Graph Neural Network with causal sampling for IoT
network intrusion detection system. In 2022 International
Conference on Computer Engineering, Network, and
Intelligent Multimedia (CENIM), Surabaya, Indonesia,
pp- 241-246.
https://doi.org/10.1109/CENIM56801.2022.10037304
Lin, H.C., Wang, P., Lin, W.H., Lin, Y.H., Chen, J.H.
(2023). Graph neural network for malware detection and
classification on renewable energy management
platform. In 2023 IEEE 5th Eurasia Conference on
Biomedical Engineering, Healthcare and Sustainability
(ECBIOS), Taiwan, pp- 164-166.
https://doi.org/10.1109/ECBIOS57802.2023.10218478
Bilot, T., El Madhoun, N., Al Agha, K., Zouaoui, A.
(2023). Graph neural networks for intrusion detection: A
survey. IEEE Access, 11: 49114-49139.
https://doi.org/10.1109/ACCESS.2023.3275789

Zhai, Z., Li, P., Feng, S. (2023). State of the art on
adversarial attacks and defenses in graphs. Neural
Computing and Applications, 35(26): 18851-18872.
https://doi.org/10.1007/s00521-023-08839-9

Sarkar, D., Vinod, P., Yerima, S.Y. (2020). Detection of
Tor traffic using deep learning. In 2020 IEEE/ACS 17th
International Conference on Computer Systems and
Applications (AICCSA), Antalya, Turkey, pp. 1-8.

2580

[20]

[22]

(23]

[24]

[25]

[27]

[29]

[30]

https://doi.org/10.1109/AICCSA50499.2020.9316533
Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani,
A.A. (2017). Characterization of Tor traffic using time
based features. In Proceedings of the 3rd International
Conference on Information Systems Security and
Privacy (ICISSP 2017), Porto, Portugal, pp. 253-262.
https://doi.org/10.5220/0006105602530262

Iliadis, L.A., Kaifas, T. (2021). Darknet traffic
classification using machine learning techniques. In 10th
International Conference on Modern Circuits and
Systems Technologies (MOCAST), Thessaloniki,
Greece, pp- 1-4.
https://doi.org/10.1109/MOCAST52088.2021.9493386
Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C.,
Iliadis, L. (2021). Darknet traffic big-data analysis and
network management for real-time automating of the
malicious intent detection process by a weight agnostic
neural networks framework. Electronics, 10(7): 781.
https://doi.org/10.3390/electronics 10070781

Sarwar, M.B., Hanif, M.K., Talib, R., Younas, M.,
Sarwar, M.U. (2021). Darkdetect: Darknet traffic
detection and categorization using modified convolution-
long short-term memory. IEEE Access, 9: 113705-
113713.
https://doi.org/10.1109/ACCESS.2021.3105000

Marim, M.C., Ramos, P.V.B., Vieira, A.B., Galletta, A.,
Villari, M., de Oliveira, R.M., Silva, E.F. (2023).
Darknet traffic detection and characterization with
models based on decision trees and neural networks.
Intelligent Systems with Applications, 18: 200199.
https://doi.org/10.1016/j.iswa.2023.200199

Alimoradi, M., Zabihimayvan, M., Daliri, A., Sledzik,
R., Sadeghi, R. (2022). Deep neural classification of
darknet traffic. In Artificial Intelligence Research and
Development, 356: 105-114.
https://doi.org/10.3233/FAIA220323

Zhu, Y., Tao, J., Wang, H., Yu, L., et al. (2023). DGNN:
Accurate darknet application classification adopting
attention graph neural network. IEEE Transactions on
Network and Service Management, 21(2): 1660-1671.
https://doi.org/ 10.1109/TNSM.2023.3344580

Saheed, K., Henna, S. (2023). Heterogeneous graph
transformer for advanced persistent threat classification
in wireless networks. In IEEE Conference on Network
Function Virtualization and Software Defined Networks
(NFV-SDN), Dresden, Germany, pp. 15-20.
https://doi.org/10.1109/NFV-
SDN59219.2023.10329745

Mika, G.P., Bouzeghoub, A., Wegrzyn-Wolska, K.,
Neggaz, Y.M. (2023). HGExplainer: Explainable
heterogeneous graph neural network. In 2023 IEEE
International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), Venice, Italy,
pp- 221-229. https://doi.org/10.1109/WI-
1AT59888.2023.00035

Fu, X., Zhang, J., Meng, Z., King, 1. (2020). MAGNN:
Metapath aggregated graph neural network for
heterogeneous graph embedding. In Proceedings of the
Web Conference 2020, Taipei, Taiwan, pp. 2331-2341.
https://doi.org/10.1145/3366423.3380297

Lou, X., Liu, G., Li, J. (2023). ASIAM-HGNN:
Automatic selection and interpretable aggregation of
meta-path instances for heterogeneous graph neural
network. Computing and Informatics, 42(2): 257-279.

[31]

[32]

[34]

[35]

[36]

[37]

[38]

https://doi.org/10.31577/cai_2023 2 257

Labonne, M. (2023). Hands-on Graph Neural Networks
Using Python: Practical Techniques and Architectures
for Building Powerful Graph and Deep Learning Apps
with Pytorch. Birmingham, UK: Packt Publishing.
Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg,
R., Titov, 1., Welling, M. (2018). Modeling relational
data with graph convolutional networks. In the Semantic
Web: 15th International Conference ESWC 2018,
Heraklion, Crete, Greece, pp- 593-607.
https://doi.org/10.1007/978-3-319-93417-4 38

Yu, P., Fu, C., Yu, Y., Huang, C., Zhao, Z., Dong, J.
(2022). Multiplex heterogeneous graph convolutional
network. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
New York, USA, pp- 2377-2387.
https://doi.org/10.1145/3534678.3539482

Canadian Institute for Cybersecurity. (n.d.). Canadian
Institute for Cybersecurity. University of New
Brunswick. https://www.unb.ca/cic/.

Xu, K., Hu, W., Leskovec, J., Jegelka, S. (2018). How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
https://doi.org/10.48550/arXiv.1810.00826

Kipf, T.N., Welling, M. (2016). Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907. https://doi.org/10.48550
/arXiv.1609.02907

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.
https://doi.org/10.48550/arXiv.1710.10903

Hamilton, W., Ying, Z., Leskovec, J. (2017). Inductive
representation learning on large graphs. In 31st
Conference on Neural Information Processing Systems

2581

[39]

[40]

[42]

[43]

[44]

[45]

(NIPS 2017), Long Beach, CA, USA.

Li, G., Miiller, M., Ghanem, B., Koltun, V. (2021).
Training graph neural networks with 1000 layers. In
International Conference on machine learning PMLR,
pp. 6437-6449.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, USA, pp. 770-778.
Rust-Nguyen, N., Sharma, S., Stamp, M. (2023). Darknet
traffic classification and adversarial attacks using
machine learning. Computers Security, 127: 103098.
https://doi.org/10.1016/j.cose.2023.103098

Mohanty, H., Roudsari, A.H., Lashkari, A.H. (2022).
Robust stacking ensemble model for darknet traffic
classification under adversarial settings. Computers &
Security, 120: 102830.
https://doi.org/10.1016/j.cose.2022.102830

Chang, L., Branco, P. (2021). Graph-based solutions
with residuals for intrusion detection: The modified E-
GraphSAGE and E-ResGAT algorithms. arXiv preprint
arXiv:2111.13597.
https://doi.org/10.48550/arXiv.2111.13597

Lan, J, Liu, X, Li, B., Li, Y., Geng, T. (2022).
DarknetSec: A novel self-attentive deep learning method
for darknet traffic classification and application
identification. Computers & Security, 116: 102663.
https://doi.org/10.1016/j.cose.2022.102663

Karagdl, H., Erdem, O., Akbas, B., Soylu, T. (2022).
Darknet traffic classification with machine learning
algorithms and SMOTE method. In 2022 7th
International Conference on Computer Science and
Engineering (UBMK), Diyarbakir, Turkey, pp. 374-378.
https://doi.org/10.1109/UBMK55850.2022.9919462

