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The proliferation of Virtual Private Networks (VPNs) and The Onion Router (TOR) has 

both benefits and drawbacks for individuals and organisations. These technologies offer 

enhanced privacy and security online, but can also facilitate illegal or harmful behaviour by 

masking users’ identities. Therefore, it is crucial to develop reliable methods for identifying 

and monitoring VPN and TOR traffic to mitigate potential risks and ensure online safety. 

In this paper, we propose a Darknet Heterogeneous Graph Neural Network (DHGNN) 

model to address the challenge of detecting traffic and applications in the Darknet. Our 

approach utilizes the CIC-Darknet2020 dataset, a large collection of openly available 

network traffic data, to train and evaluate our DHGNN classifier. The dataset is 

systematically explored to identify the most informative features and preprocessed into a 

clean tabular format. This tabular data is then converted into a graph structure suitable for 

the DHGNN classifier. Experimental results show that the proposed model achieves 99.80% 

accuracy in traffic classification and 98.80% accuracy in application classification, 

outperforming existing methods in Darknet classification. This approach demonstrates the 

effectiveness of integrating feature-driven preprocessing with graph-based neural network 

modeling for robust and accurate classification.  
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1. INTRODUCTION

The internet is a global system that links millions of 

computers and digital devices together, enabling 

communication and information exchange across the world. A 

key service on the internet is the World Wide Web, which is a 

vast collection of interconnected pages containing text, 

images, and videos, accessed online. The Web relies on key 

components: web pages (documents written in a special code), 

hyperlinks (which enable navigation between pages), and web 

servers (computers that host and deliver these pages). In 

contrast, the Deep Web is a hidden part of the internet that 

standard search engines like Google cannot access, containing 

private data such as bank records, medical history, and 

government files not intended for public viewing [1].  

In contrast, the Dark Web constitutes a part of the internet 

accessible solely through specialized software like the Tor 

browser, characterized by its anonymity. Infamous for its 

association with illicit activities, it serves as a marketplace for 

illegal transactions, including drugs, weaponry, and stolen 

data, and facilitates the exchange of prohibited information 

and materials [2]. The proliferation of encrypted and 

anonymized network traffic, largely driven by the widespread 

use of privacy-enhancing technologies (PETs) like Tor and 

VPNs, has created a formidable challenge for modern 

cybersecurity operations [3, 4]. While these technologies serve 

legitimate privacy needs, their infrastructure also forms the 

backbone of Darknets, which are increasingly exploited for 

illicit activities such as coordinated hacking campaigns, 

espionage, and the deployment of advanced persistent threats 

(APTs). Consequently, the accurate and efficient classification 

of Darknet traffic has become a critical imperative for enabling 

proactive cyber threat intelligence and strengthening national 

and organizational security postures. 

The expansion of the Internet has transformed global 

communication, enabling individuals to interact across 

borders with an Internet connection. The Tor network is a 

technology that provides users with privacy and anonymity 

online. It was developed by a team of mathematicians and 

computer experts based at the Naval Research Laboratory 

(NRL) in response to concerns about privacy and anonymity 

during the early stages of the Internet’s development [5].  

The Tor network uses a technique called onion routing to 

route traffic through multiple servers and encrypts it, making 
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it nearly impossible for anyone to trace the user’s online 

activities [3, 6]. Despite its importance, the task of Darknet 

traffic classification is fraught with inherent difficulties. The 

very nature of anonymity tools is to obfuscate traffic patterns 

and payload content, rendering traditional deep packet 

inspection (DPI) methods ineffective. While machine learning 

(ML) approaches that rely on flow-based statistical features

have shown more promise, they often exhibit critical

limitations [7, 8]. These methods typically treat traffic flows

as independent, isolated instances, failing to capture the

complex relational structures and temporal dependencies that

exist between communication nodes in a network [9]. This

inability to model the underlying graph-like nature of network

data, where connections between IP addresses, sessions, and

protocols contain vital discriminative information, results in

suboptimal accuracy, limited generalizability, and poor

scalability to the vast volumes of traffic generated in real-

world Darknet environments [10].

To bridge this gap, we propose a Darknet Heterogeneous 

Graph Neural Network (DHGNN) framework. The core 

innovation of our approach is the reformulation of the traffic 

classification problem from a tabular learning task to a graph 

learning task. By constructing a heterogeneous graph that 

represents various network entities (e.g., hosts, packets, 

services) and the rich relationships between them, our 

DHGNN model can directly learn from the topological 

structure of the network traffic. This allows the model to 

discern subtle, relational fingerprints of different applications 

and services that are invisible to conventional classifiers [11, 

12]. The proposed method offers significant advantages, 

including enhanced classification accuracy by leveraging 

multi-relational data, inherent scalability for large-scale 

network analysis, and a more nuanced understanding of 

network behavior. 

To validate our approach, we utilize the comprehensive 

CIC-Darknet2020 dataset [13], a benchmark containing 

labeled traffic from Tor, VPN, and non-VPN applications. Our 

methodology involves a rigorous feature analysis to inform the 

graph construction process, followed by a data preprocessing 

pipeline that transforms raw tabular traffic data into a 

structured heterogeneous graph. The experimental results 

demonstrate that our DHGNN classifier achieves superior 

performance, outperforming previous state-of-the-art traffic 

classifiers and confirming the efficacy of graph-based learning 

for tackling the complexities of Darknet traffic analysis. 

The rest of this paper is organized as follows: Section II 

provides a summary of the relevant literature and prior 

research in the field. Section III covers the basics of 

Heterogeneous Graph Neural Networks, such as graph data 

construction, heterogeneous message passing, and model 

architecture. Section IV presents the proposed methodology, 

encompassing the description of the CIC-Darknet2020 

dataset, data exploration and preprocessing, as well as the 

model design. Section V provides the experimental results for 

both traffic and application classification scenarios. Following 

this, Section VI is dedicated to the conclusion and suggestions 

for future research directions. 

2. RELATED WORK

Recent research shows that many scientists now prefer to 

use Graph Neural Networks (GNNs) instead of traditional 

machine learning methods. GNNs are especially good at 

understanding relationships between data points when the data 

can be represented as a graph. This strength is very useful in 

areas such as social network analysis, protein–protein 

interaction modelling, and anomaly detection—tasks where 

older methods often struggle to capture the connections 

between features. 

The study by Kisanga et al. [14] introduces a new approach 

to network security by building activity and event networks 

with GNNs. This method aims to better handle both large-

scale attacks and long-term threats. The authors tested their 

approach on two datasets, TOR-nonTOR and a DDoS dataset, 

and achieved accuracy scores of 78% and 88%. 

In another study, Purnama et al. [15] explore how GNNs 

can improve modern Intrusion Detection Systems (IDS). They 

use E-GraphSAGE, a variant of the GraphSAGE algorithm, to 

efficiently gather and use information from neighbouring 

nodes in graph-structured data. This approach helps capture 

the complex patterns that appear in network traffic, which is 

essential for correctly identifying and classifying malicious 

activity. A related investigation [16] applies GNNs to malware 

detection and classification. Using the CIC-AndMal2017 

dataset, which contains a wide range of Android malware 

samples, the researchers evaluate how well GNN models can 

detect and classify different malware types. They test the 

models using accuracy, precision, recall, and ROC curves. 

Their results show that GNNs are a strong option for 

improving malware detection.  

An interesting survey [17] reviews how graph 

representation learning can be used for network- and host-

based intrusion detection. It provides an overview of different 

GNN models, explains how these models are built, and 

discusses examples from published research. The survey also 

looks at how robust these methods are against adversarial 

attacks. In the end, the authors summarise the strengths and 

weaknesses of GNN-based intrusion detection and suggest 

directions for future research. 

Another survey [18] examines graph adversarial attacks and 

defence methods. It highlights that although GNNs work very 

well in many tasks, they can be vulnerable to such attacks. The 

study reviews key algorithms, comparing their strategies, 

benefits, and drawbacks, and offers benchmark results that 

show the ongoing challenge of making GNNs more robust 

while addressing their security weaknesses. 

In the study by Habibi Lashkari et al. [13], a CNN-based 

model was proposed for binary traffic classification, where 

Tor/VPN traffic was labelled as “Darknet” and non-Tor/non-

VPN traffic as “clearnet.” The model reached 94% accuracy 

in distinguishing between benign and Darknet traffic. It also 

achieved 86% accuracy in identifying the type of application 

generating the traffic, classifying them into categories such as 

video streaming, audio streaming, VoIP, browsing, chat, 

email, file transfer, and P2P downloads. Similarly, Sarkar et 

al. [19] used a Deep Neural Network (DNN) to differentiate 

between Tor and non-Tor traffic, using the UNB-CIC (ISCX 

Tor-2016) dataset [20]. They designed two models: a three-

layer DNN-A and a five-layer DNN-B. DNN-A achieved 

98.81% accuracy, while DNN-B performed even better with 

99.89%. 

The study [21] focused on analysing traffic types using a 

standard dataset and several machine learning classifiers. They 

grouped the data into benign and Darknet classes and also 

considered four traffic types for multi-class classification 

(Tor/non-Tor or VPN/non-VPN). Their results showed that the 

Random Forest classifier performed the best, achieving an F1 
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score of 98.61% in the multi-class setting. 

Demertzis et al. [22] extended the application types into 11 

subcategories and employed the WANN classifier architecture 

(Weighted Agnostic Neural Networks). Unlike regular 

Artificial Neural Networks (ANNs), WANNs neither adjust 

the weights of neurons; instead, they modify their neural 

network architecture incrementally. The WANN methodology 

first evaluates candidate structures based on performance and 

design complexity, and then uses the best-performing 

architecture to construct new layers. Their leading WANN 

classifier achieved an accuracy rate of 92.68% in application-

layer classification.  

The research detailed in the study by Sarwar et al. [23] 

focused on classifying traffic and application types using 

Convolutional Neural Networks (CNNs), as well as two 

alternative approaches based on Long Short Term Memory 

(LSTM) and Gated Recurrent Units (GRU). Initially, they 

selected 20 features based on three methods: Decision Trees 

(DT), Principal Component Analysis (PCA), and Extreme 

Gradient Boosting (XGBoost), followed by the 

implementation of hybrid architectures such as CNN/LSTM 

and CNN/GRU. In this framework, the CNN layer was 

responsible for feature extraction, while LSTM and GRU were 

employed for time-series prediction based on these input 

features. Notably, CNN/LSTM combined with XGBoost for 

feature selection demonstrated the highest F1-scores, 

achieving 96% accuracy in traffic type classification and 89% 

accuracy in application type classification.  

Marim et al. [24] studied and classified real Darknet traffic 

using the CIC-Darknet2020 dataset. They used feature 

extraction and applied an n-gram technique to group potential 

subnets. They also evaluated the importance of the most 

relevant features using Recursive Feature Elimination. Their 

results show that simple models such as Decision Trees and 

Random Forests can achieve more than 99% accuracy in 

classifying traffic. Overall, their method provides up to a 13% 

improvement compared with current state-of-the-art 

approaches. 

Alimoradi et al. [25] developed a new decision support 

system for detecting Tor and VPN traffic. Their system 

classifies Darknet data into four categories: Tor, non-Tor, 

VPN, and non-VPN. The model uses a DNN with 79 neurons 

in the input layer and 6 neurons in the hidden layers to capture 

the complex nonlinear patterns found in real darknet traffic. 

They tested their approach on the DIDarknet benchmark 

dataset, achieving an accuracy of 96%. Impressively, these 

strong results were obtained without any preprocessing steps 

such as feature extraction, data balancing, or data cleaning. 

This highlights the ability of their model to handle raw 

Darknet traffic effectively. 

Zhu et al. [26] introduced the Darknet Traffic Graph (DTG), 

an interactive graph that visualizes connections between 

source and destination nodes (servers and clients) in Darknet 

traffic. Based on DTG, they combined Graph Neural Networks 

with an attention mechanism to create Darknet Graph Neural 

Networks (DGNNs). This model makes effective use of both 

benign and Darknet traffic characteristics. When evaluated on 

the CIC-Darknet2020 dataset, DGNNs achieved excellent 

accuracy scores: 98.52% for traffic classification and 99.06% 

for application classification, outperforming other existing 

classifiers. 

Even with the state-of-the-art use of deep learning models 

such as CNNs, RNNs, and Transformers for traffic 

classification, there is still a serious problem. These models 

ignore the intricate graph relationships between hosts and 

services, treating traffic as discrete tabular or sequential data 

[11]. As a result, they are unaware of the critical topological 

fingerprints of applications. In Darknet environments such as 

Tor and VPNs, where these structural patterns are the main 

observable feature, this limitation significantly reduces their 

efficacy in categorizing encrypted traffic.  

Table 1 is included to explicitly contrast tabular and graph-

based approaches, thereby emphasizing the distinctive 

strengths of DHGNN [25]. 

Table 1. Tabular vs. Graph-based methods: Emphasizing DHGNN strengths 

Study/Method Core Approach 
Data 

Representation 
Key Limitation/Gap DHGNN Improvement 

Statistical Methods 

(SVM, Naive Bayes) 

Feature 

Engineering 
Tabular/Vector 

Ignores inherent relationships, 

sensitive to feature selection. 

Leverages all relational data directly 

via the graph structure. 

Deep Packet 

Inspection (DPI) 

Signature 

Matching 
Payload Data 

Fails with encryption (Tor, 

VPN), violates privacy. 

Operates on metadata and topology, 

inherently robust against encryption. 

State-of-the-Art 

ML/DL Classifiers 

(CNN, RNN) 

Automated 

Feature 

Extraction 

Tabular/Sequential 

Cannot capture inter-entity 

relationships (host-packet-

service); misses topological 

fingerprints. 

Reformulates to Graph Learning to 

capture subtle, multi-relational 

fingerprints. 

Proposed Method 

(DHGNN) 

Heterogeneous 

Graph NN 

Heterogeneous 

Graph 
N/A 

Enhanced accuracy through 

topological structure learning; 

inherent scalability, nuanced 

understanding of Darknet behavior. 

3. HETEROGENEOUS GRAPH NEURAL NETWORK

Heterogeneous Graph Neural Networks (HGNNs) are 

designed to process graph-structured data consisting of 

multiple node and edge types, allowing the model to capture 

complex relational semantics across diverse entities [27]. The 

presence of such heterogeneous node and edge categories is 

what distinguishes heterogeneous graphs from their 

homogeneous counterparts [28]. 

The HeteroGNN algorithm effectively captures the complex 

and rich relationships present in such data [29], making it 

useful for various tasks like node-level classification, link 

prediction, and graph-level classification across various 

domains, including social networks, knowledge graphs, and 

malware detection [30]. 

3.1 Graph data construction 

This phase is foundational, involving the translation of raw 

network traffic data into a format that a GNN can process. 
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Consider a heterogeneous graph 𝐺 = (𝑉, 𝐸), where V denotes 

the set of nodes and E denotes the set of edges [31]. 

The node set V is categorized into two subsets, 𝑉 = 𝑉ℎ ∪
𝑉𝑓, with Vh being the host nodes and Vf the flow nodes. 

Host nodes have feature 𝑋ℎ ∈, and flow nodes have feature 

matrix 𝑋𝑓 ∈ 𝑅(|𝑉𝑓|×𝑑𝑓), where dh and df represent the feature 

dimensions for host and flow nodes, respectively. These 

features serve as the input to the HGNN [29]. 

Identify the relationships or connections between nodes 

that will be represented as edges. We consider that the edge set 

E is divided into two different types of flow and host 𝐸 = 𝐸ℎ ∪
𝐸𝑓, where Ehf are edges from host to flow nodes, and Efh are 

edges from flow to host nodes. This distinction is crucial for 

heterogeneous graphs where different types of nodes and 

edges may encode distinct kinds of information and 

relationships. 

 

3.2 Heterogeneous message passing 

 

The core of the HGNN algorithm is the heterogeneous 

message passing mechanism, which updates node embeddings 

by aggregating information from neighboring nodes across 

different types [31, 32]. This can be formalized as follows for 

a two-node-type system using Heterogeneous Graph 

Convolution (HConv). 

For Ehf edges, the update rule for flow node features is: 

 

( ) ( )( )( 1) ( ) ( ) ,l l l

f hf h h f hfH W AGG h v v E+ =   ∣  (1) 

 

For Efh edges, the update rule for host node features is: 

 

( ) ( )( )( 1) ( ) ( ) ,l l l

h fh f h f fhH W AGG h v v E+ =   ∣  (2) 

 

Here, 𝐻𝑓
(𝑙+1)

 and 𝐻ℎ
(𝑙+1)

 denote the embeddings for flow 

and host nodes at layer l. 

𝑊ℎ𝑓
(𝑙)

 and 𝑊𝑓ℎ

(𝑙)
 are the learnable weights for each edge type, 

σ represents a non-linear activation function, and AGG 

denotes an aggregation function, and their role in combining 

information from a node’s neighborhood: 

(1) Mean Aggregation: 

 

  ( )( )( ), ,mean i i jAGG mean H v v v E=    (3) 

 

(2) Sum Aggregation: 

 

  ( )( )( ), ,sum i i jAGG sum H v v v E=    (4) 

 

3.3 Model architecture 

 

The model consists of L HConv layers, where the node 

embeddings are iteratively updated [31, 33]. Initially: 

 
(0) (0)

h h f fH X and H X= =  (5) 

 

After L layers, the embeddings for flow nodes, 𝐻𝑓
(𝐿)

, are 

used in a linear prediction layer: 

 

( ). L

out f outY W H b= +  (6) 

 

𝑌 ∈ ℝ|𝑉𝑓|×𝐶  represents the logits for C classes for each flow 

node, with Wout and bout being learnable parameters. 

The multi-layer structure with L HConv layers allows for 

progressively complex feature extraction and representation 

learning. The transition from initial node features to final 

embeddings capable of supporting classification tasks 

illustrates the model’s capability to transform raw data into 

actionable insights. Finally, the model is optimized via 

supervised learning, minimizing the cross-entropy loss 

between the predicted scores Y and the true labels YTrue: 

 

( ), logTrue ic ic

i C

L Y Y= −   (7) 

 

Here, I index over flow nodes, and c over classes. 

The parameters (Wout, 𝑊𝑓ℎ

(𝑙)
, 𝑊ℎ𝑓

(𝑙)
, and bout) are optimized to 

minimize L using gradient-based optimization techniques such 

as Adam, Adamax, AdaGrad, and RMSProp. 

The model consists of 7 HeteroGNN layers with a hidden 

dimension of 64. Host node features Xh and flow node features 

Xf are embedded into 32 and 11 dimensions, respectively. 

Each HeteroGNN layer uses SAGEConv with mean 

aggregation and LeakyReLU activation. The final flow node 

embeddings are passed through a linear output layer with 

softmax activation for classification. 

 

 

4. METHODOLOGY 

 

4.1 Dataset description 

 

Released in 2020 by the Canadian Institute for 

Cybersecurity [34], the CIC-Darknet2020 dataset aggregates 

network traffic from a range of simulation environments, 

capturing both normal background patterns and malicious 

behaviors. Its purpose is to provide researchers and 

practitioners with a comprehensive collection of data on 

network traffic analysis to support the advancement, 

assessment, and experimentation of cybersecurity methods. 

The dataset is structured into two levels. The first level 

employs a dual-layered strategy to create benign and Darknet 

network traffic. 

The second tier encompasses various traffic scenarios such 

as Browsing, P2P, Audio-Stream, Transfer, Chat, Email, 

Video-Stream, and VoIP within the Darknet traffic. To ensure 

representativeness, the dataset combines previous datasets like 

ISCXTor-2016 and ISCXVPN-2016. The VPN and Tor traffic 

is to be merged into the relevant Darknet categories [19]. 

 

4.2 Data exploration and preprocessing 

 

There are a few interesting features we can use for our 

DHGNN model: 

The timestamp we can process to extract information about 

the day of the week and the time of day. In general, network 

traffic is seasonal, and connections that occur at night or on 

unusual days are suspicious. 

Processing IP addresses like 192.168.200.4 can be 

challenging due to their non-numeric nature and adherence to 

complex rules. One approach could involve categorizing them 

into a few groups based on knowledge of our local network 
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configuration. Alternatively, a widely used and more 

adaptable solution involves converting them into binary 

representation, where ’192’ would be represented 

as ’11000000’. 

Flow Duration, the number of packets, and the number of 

bytes are features that usually display heavy-tailed 

distributions. Therefore, they will require special processing if 

that is the case. 

The CIC-Darknet2020 dataset contains a diverse set of 

feature types, including numerical attributes (e.g., flow 

duration), categorical variables such as Label or Label 1, 

which serve as the target class and additional data elements 

like timestamps and IP addresses. 

To prepare these heterogeneous features for downstream 

analysis and model training, we apply a series of 

representation strategies informed by domain knowledge. 

First, temporal information embedded in the timestamp is 

used to extract the week of data collection. This feature is 

subsequently one-hot encoded, and the resulting indicator 

variables are renamed to enhance interpretability. 

Second, we derive the time of day from each timestamp 

and apply min–max normalization to scale this value between 

0 and 1, ensuring consistency with other continuous inputs. 

Both source and destination IP addresses are transformed 

using binary encoding. Instead of encoding all 32 bits of each 

IPv4 address, we retain only the least significant 16 bits, as 

these carry the most relevant variability for our context. The 

most significant 16 bits are typically constant commonly 

representing the internal network prefix 192.168 and therefore 

contribute limited discriminative value. 

We establish a train/validation/test split using ratios of 

80/10/10. 

Finally, we need to address the scaling of three features: 

flow duration, the number of packets, and the number of bytes. 

We use PowerTransformer() from scikit-learn to modify 

their distributions. 

Table 2 presents the node features utilized in the DHGNN 

model. 

 

Table 2. DHGNN model node features 

 
Feature Type Feature Description 

Host Source IP (ipsrc_1 to ipsrc_16) 

Host Destination IP (ipdst_1 to ipdst_16) 

Flow Daytime 

Flow Day of the Week (Monday to Friday) 

Flow Flow Duration 

Flow Flow Packets/s 

Flow Flow Bytes/s 

Flow FIN Flag Count 

Flow SYN Flag Count 

Flow RST Flag Count 

Flow Protocol 

 

4.3 Design model 

 

The design of our model is depicted in Figure 1. The model 

consists of 7 HeteroGNN layers with a hidden dimension of 

64. Host and flow node features are passed through embedding 

layers, then processed via SAGEConv-based aggregation 

(mean) and LeakyReLU activation. Separate projection 

matrices (Whf, Wfh) transform aggregated features. Final flow 

node embeddings are passed through a linear layer and 

softmax for classification.

 

 
 

Figure 1. Model design process of the proposed DHGNN 

 

The input features for host nodes Xh and flow nodes Xf are 

passed through an embedding layer to obtain initial node 

embeddings 𝐻ℎ
(0)

 and 𝐻𝑓
(0)

. For host nodes, Xh includes 

network-specific features such as source and destination IP 

address bits. For flow nodes, Xf incorporates temporal and 

statistical features including daytime, weekday, flow duration, 

total bytes and packets transmitted, TCP flag counts, and 

protocol information. These embedded representations serve 

as the foundation for subsequent graph neural network 

processing. 

At each HeteroGNN layer l, the node embeddings from the 

previous layer (𝐻ℎ
(𝑙)

and 𝐻𝑓
(𝑙)

) are processed through distinct 

aggregation functions (AGGhf and AGGfh). The AGGhf function 

aggregates features from neighboring flow nodes to update 

host node embeddings, while AGGfh performs the 

complementary operation by aggregating host node features to 
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update flow node embeddings. These aggregation functions 

are implemented as SAGEConv (GraphSAGE) layers, which 

compute a weighted combination of neighboring node features 

processed by a Nonlinear activation function. This architecture 

enables effective information propagation between the two 

node types while maintaining their distinct feature spaces.  

The aggregated embeddings from AGGhf and AGGfh are 

concatenated to form a joint representation. This combined 

embedding is subsequently transformed through two separate 

learnable projection matrices, Whf and Wfh, which 

independently process the host-to-flow and flow-to-host 

aggregated features, respectively. These methods allows the 

model to learn different patterns from each direction of the 

relationship. At the same time, it carefully preserves the 

important network structure and connections that were 

identified during the earlier combining step. 

The projected embeddings are then passed through a non-

linear activation function σ (typically ReLU or LeakyReLU) 

to introduce non-linearity into the transformations. This 

produces the updated node embeddings 𝐻ℎ
(𝑙+1)

 and 𝐻𝑓
(𝑙+1)

 that 

will serve as input to the next HeteroGNN layer. After 

processing through all seven HeteroGNN layers, the final flow 

node embeddings 𝐻𝑓
(𝐿)

 undergo a linear projection via the 

output weight matrix Wout to generate the model’s predictions. 

The complete layer-wise transformation ensures both local 

neighborhood information and global graph structure are 

effectively captured in the final representations. 

The projected embeddings are transformed through a final 

linear layer to produce the output logits. These logits are then 

normalized using a softmax activation function 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 to obtain the model’s final predictions Y. This yields a 

probability distribution over the K target classes, where each 

element yi∈Y represents the predicted probability for class i, 

enabling probabilistic interpretation of the model’s outputs. 

The model’s output predictions, called Y are evaluated against 

the ground truth labels Ytrue. We use a special formula to 

measure how wrong the predictions are; this formula is called 

the cross-entropy loss function or L. The formula is 𝐿 =
−∑ 𝑦𝑡𝑟𝑢𝑒,𝑖 log(𝑦𝑖)

𝐾
𝑖=1 . Here, K is the number of classes we are 

trying to predict. This loss L calculates the difference between 

the predicted probability distribution and the correct class 

distribution, with the computed loss value L serving as the 

optimization objective during model training. The cross-

entropy formulation is particularly suitable for classification 

tasks as it penalizes confident incorrect predictions more 

heavily while remaining computationally efficient.  

The computed loss L is backpropagated through the entire 

network to obtain gradients with respect to all trainable 

parameters, including the weight matrices (Whf, Wfh, Wout) and 

their corresponding bias terms. These gradients are then used 

by an optimization algorithm (typically Adam) to update the 

model parameters through gradient descent. This entire 

process is repeated for 100 epochs. One epoch means the 

model has seen all the training data once. With each epoch, the 

model's parameters are slowly refined to reduce the 

classification error. This repeated training helps the model 

learn better and more discriminative features, which improves 

its ability to make correct predictions. 

Therefore, the theoretical AGG is practically instantiated 

using SAGEConv with mean aggregation for aggregating 

neighbor information within each relation type in the 

heterogeneous graph.  

 

 

5. EXPERIMENT RESULTS 

 

In the DHGNN classifier, we’ll set up four or eight layers 

of SAGEConv with LeakyRELU for each node type (four 

layers in the case of traffic classification and eight layers in the 

case of application classification). Then, a linear layer will 

produce a four or eight-dimensional vector, with each 

dimension representing a class. Additionally, we’ll train this 

model in a supervised manner utilizing cross-entropy loss and 

the Adam optimizer. Next, we specify the heterogeneous 

GNN, incorporating three parameters: the count of hidden 

dimensions, the count of output dimensions, and the number 

of layers. 

Hyperparameters optimization for GNN classifiers is 

crucial, given that it directly affects the model’s classification 

accuracy. Our experiments, detailed in Table 3, thoroughly 

explore key parameters, assessing accuracy within defined 

ranges. We find that a network depth of seven layers, trained 

over 100 epochs with the Adam optimizer and the LeakyReLU 

activation function, is the ideal configuration. 

In the following subsections, we will present results for both 

traffic classification and application classification scenarios. 
 

Table 3. DHGNN model hyperparameters and exploration range 
 

Hyperparameter Value Interval 
Optimal 

Value 
Description 

Device - Dynamic Computed based on CUDA availability; 'cuda' or 'cpu'. 

Number of Layers [3, 4, 5, 6, 7] 7 
The number of layers in the model indicates the depth of the 

network. 

Dimension of Hidden 

Layer 
64 64 Fixed dimensionality of the hidden layers in the model. 

Output Dimension 8 and 4 8 and 4 
The dimensionality of the output layer is fixed at 8 and 4 for 

this model. 

Activation Function [Tanh, Relu, LeakyRelu] LeakyRelu 
Activation functions are considered, with LeakyReLU chosen 

for the optimal model. 

Learning Rate (LR) 
[0.001, 0.002, 0.003, 0.004, 

0.005, 0.006] 
0.004 

Range of learning rates explored, with 0.004 selected as the 

optimal rate. 

Optimizer 
[Adam, AdamW, RMSprop, 

Adamax] 
Adam 

Different optimization algorithms were considered, with Adam 

chosen for the optimal model. 

Loss Function Cross Entropy 
Cross 

Entropy 

The loss function used for training was not varied in this 

experimentation. 

Total Epochs [50, 100, 150, 200] 100 
Total epochs explored with 101 chosen for the optimal training 

duration. 
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5.1 Traffic classification (case of 4 classes) 

Our focus was primarily on the initial layer of the CIC-

Darknet2020 dataset, which included two primary classes, 

VPN/Tor Darknet traffic and Non-VPN/Non-Tor benign 

traffic. The four classes are represented by the pie chart shown 

in Figure 2, where the counts of each value are as follows: 

“Non-Tor”: 93309, “Non-VPN”: 23861, “VPN”: 22919, and 

“Tor”: 1392 occurrences. We assess the performance of the 

proposed approach using Precision, Recall, F1-score, and 

Accuracy evaluation metrics. 

In traffic classification, the accuracy of our DHGNN model 

is 99.80%, indicating a very high level of correct predictions. 

A plot of training loss and validation loss while training the 

model is shown in Figure 3. 

Figure 2. Proportion of each class in the CIC-Darknet2020 

dataset – Traffic case 

Figure 3. Model’s loss as a function of an epoch during the 

training process – Traffic case 

A plot of the proportion of misclassified samples is given in 

Figure 4. If we compare this pie chart to the original 

proportions in the dataset, we see that the model performs 

better for the majority classes. This is not surprising since 

minority classes are harder to learn (fewer samples), and not 

detecting them is less penalizing (with 93309 Non-Tor flows 

versus 1392 Tor). NonVPN and VPN detection could be 

improved with techniques such as oversampling and 

introducing class weights during training. 

An analysis of the confusion matrix presented in Figure 5 

indicates that the classifier exhibits exceptionally high 

discriminatory power. The model's performance is 

characterized by misclassification rates that remain 

predominantly below 0.5% across all four defined anonymity 

categories. Despite this robust performance, two specific 

confusion patterns are discernible. The most significant occurs 

between Tor and NonVPN traffic, where approximately 10 

Tor samples (0.45%) were misclassified. This is likely 

attributable to overlapping statistical patterns when Tor 

circuits encapsulate traffic resembling normal encrypted 

sessions, a challenge compounded by the relatively lower 

number of Tor samples (n = 121). A second, minor pattern 

involves a handful of Non-Tor samples being confused with 

NonVPN and VPN classes (≤ 4 samples each, < 0.2%), 

potentially stemming from similar feature distributions like 

packet lengths and timing in various encrypted streams. 

Overall, the model performs remarkably well, but the Tor vs. 

NonVPN distinction remains challenging, primarily due to 

their similar traffic patterns and the imbalance between 

classes. 

Figure 4. Proportion of each misclassified class – Traffic 

case 

Figure 5. Confusion matrix for multi-class flow 

classification – Traffic case 

Table 4 compares the performance of various graph neural 

network (GNN) models, including ResNet, GIN, GCN, GAT, 

GraphSAGE, RevGNN, DGNN, and the proposed DHGNN 

model, on a traffic classification task. The performance 

metrics reported are accuracy, precision, F1-score, and recall 

(TPR). The proposed DHGNN classifier achieves the highest 

accuracy of 0.9980, precision of 0.9898, F1-score of 0.9820, 

and recall of 0.9322. 
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Table 4. Performance evaluation of various traffic classification methods 

 
Model Accuracy Precision F1 Recall 

DGNN [26] 0.9852 0.9662 0.9488 0.8322 

GIN [35] 0.9358 0.8653 0.7569 0.6741 

GCN [36] 0.9260 0.8464 0.7108 0.6158 

GAT [37] 0.9235 0.8324 0.7021 0.6086 

GraphSAGE 

[38] 
0.9556 0.9142 0.8407 0.7791 

RevGNN [39] 0.9131 0.8384 0.6348 0.5131 

ResNet [40] 0.9043 0.7625 0.7120 0.6991 

Our DHGNN 0.9980 0.9898 0.9820 0.9748 

 

5.2 Application classification (case of 8 classes)  

 

Our focus now was directed towards the second data layer 

of the CIC-Darknet2020 dataset, which included data samples 

classified as Media Streaming (Audio and Video), Live Chat, 

E-mail, P2P, Voice over IP, File Transfer, and Web Browsing. 

We employ Precision, Recall, F1-score, and Accuracy 

evaluation metrics to evaluate the performance of the proposed 

approach. 

Figure 6 shows a curve representing the model’s loss as a 

function of the number of epochs during the training process. 

The curve starts at a relatively high loss value, indicating that 

the model’s initial predictions were quite inaccurate or far 

from the true values at the beginning of the training process. 

In the early stages of training, the loss curve exhibits a steep 

decline. This rapid decrease in loss suggests that the model is 

learning quickly and improving its predictions significantly 

with each epoch. During this phase, the model is making 

substantial adjustments to its internal parameters to minimize 

the error between its predictions and the true values. As the 

training progresses, the rate at which the loss decreases starts 

to slow down gradually. This indicates that the model is still 

improving, but the improvements are becoming smaller. In 

application classification, the accuracy of our DHGNN model 

is 98.80%, indicating a very high level of correct predictions.  

The circular chart given in Figure 7 shows the distribution 

of each misclassified class in the case of application 

classification. 

Figure 8 presents the confusion matrix for the 8-class 

application classification task, illustrating the model's 

evaluation performance by comparing predicted labels against 

true labels. The matrix shows generally excellent performance, 

though with interpretable patterns of misclassification. The 

most common errors are with Video-Streaming. It is 

sometimes mistaken for Audio-Streaming (75 samples, 

2.42%) and Chat (47 samples, 2.02%). This makes sense 

because a video stream also contains an audio track, and its 

data can arrive in bursts, similar to a chat application. 

Similarly, Audio-Streaming shows minor confusion with 

VoIP, and Email traffic is moderately confused with Browsing 

(72 samples, 6.33%), reflecting the real-world ambiguity of 

HTTPS-based webmail services. A notable case is the VOIP 

class, which has a higher error rate. It is often misclassified as 

Browsing, Email, or Audio-Streaming. On the other hand, 

applications with very unique traffic patterns, like P2P and 

File-Transfer, are almost never confused with anything else. 

They are identified perfectly. In summary, most of the model's 

mistakes happen between application types that naturally have 

very similar network behavior. This shows a real-world 

challenge in classifying network traffic, not a major problem 

with the model itself. 

 

 
 

Figure 6. Model’s loss as a function of an epoch during the 

training process – Application case 

 

 
 

Figure 7. Proportion of each misclassified class – 

Application case 

 

 
 

Figure 8. Confusion matrix for multi-class flow 

classification – Application case 
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Table 5 presents the recall values of the different models for 

classifying various applications, such as Audio-streaming, 

Browsing, Chat, Email, Transfer, P2P, VOIP, and Video-

streaming. The proposed DHGNN classifier achieves the 

highest recall for most applications, including Browsing 

(0.9800), Chat (0.9587), Transfer (0.9892), P2P (0.9984), 

VOIP (0.9691), and Video-stream (0.8610). DGNN [26] 

performs better for Audio-Streaming and Email classification 

with a recall of 0.9788 and 0.9682, respectively.  

For a fair and direct comparison, the proposed DHGNN 

model is evaluated alongside the DGNN model [26] under 

identical experimental conditions, including dataset splits, 

preprocessing steps, and evaluation metrics. The results 

demonstrate that our model achieves superior performance. 

The results for other models (e.g., GCN, GAT, GraphSAGE) 

are provided as a general benchmark from the cited literature 

and were obtained under different experimental setups. 

Table 5. Comparison of application classification methodologies’ recall results 

Model Audio-Streaming Browsing Chat Email Transfer P2P VOIP Video-Streaming 

DGNN [26] 0.9788 0.7577 0.9458 0.9682 0.8804 0.9702 0.9548 0.8557 

GIN [35] 0.8928 0.3397 0.8341 0.1015 0.5059 0.7724 0.4706 0.3977 

GCN [36] 0.8557 0.0072 0.7995 0.0020 0.3638 0.4968 0.5561 0.0240 

GAT [37] 0.8061 0.0228 0.7838 0.1009 0.0731 0.7223 0.2545 0.0217 

GraphSAGE [38] 0.9044 0.2423 0.8485 0.7804 0.5364 0.8756 0.8439 0.4438 

RevGNN [39] 0.7472 0.0023 0.7723 0.0179 0.0181 0.0124 0.0089 0.0042 

ResNet [40] 0.8237 0.7808 0.8946 0.5553 0.6774 0.8898 0.7864 0.6104 

DHGNN (Ours) 0.9253 0.9800 0.9587 0.8344 0.9892 0.9984 0.9691 0.8610 

Table 6 compares the performance of different methods, 

including Random Forest (RF), ensemble methods 

(RF+KNN+DT), ResGAT, DeepImage, CNN+LSTM, and the 

proposed DHGNN and DGNN models, on an application 

classification task. The metrics reported are accuracy, F1-

score, and the model used. The proposed DHGNN model 

achieves the highest F1-score of 0.9879 and an accuracy of 

0.9880, outperforming the other methods. DGNN also 

performs well with an accuracy of 0.9906 and an F1-score of 

0.9569. 

Table 6. Performance comparison of different application 

classification models 

Method Accuracy F1-Score Model 

[41] — 0.922 RF 

[42] 0.9788 0.94 RF+KNN+DT 

[43] — 0.8807 ResGAT 

[19] 0.86 0.86 DeepImage 

[44] 0.9222 0.92 CNN+LSTM 

[45] 0.8599 0.86 RF 

[26] 0.9906 0.9569 DGNN 

Our 0.9880 0.9879 DHGNN 

6. CONCLUSIONS

In this paper, we propose an approach for detecting and 

classifying Darknet traffic using a Heterogeneous Graph 

Neural Network (DHGNN). The classifier is evaluated using 

the CIC-Darknet2020 dataset, which includes four traffic 

types (Tor, Non-Tor, VPN, Non-VPN) and eight application 

categories (Audio-Stream, Browsing, Chat, E-mail, P2P, 

Transfer, Video-Stream, VOIP). Our evaluation tests show 

that our model, called DHGNN, performs better than other 

methods at classifying Darknet traffic. This proves it has great 

potential to improve network security by effectively detecting 

this hidden, often malicious traffic. For future work, we plan 

to continue in a few directions: We will test other types of 

Graph Neural Network (GNN) classifiers. We will investigate 

hybrid models that mix different GNN architectures. The goal 

is to combine their individual strengths to create a model that 

is both stronger and more flexible. We also understand that for 

cybersecurity, it is not enough for a model to be accurate—it 

must also be understandable. Therefore, we will develop 

methods to improve the interpretability of DHGNN. We want 

to make its decision-making process clear and transparent. 

This focus on explainability is crucial for building trust in the 

system, ensuring we can see how it works, and for gaining a 

deeper understanding of the threats it finds. 
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