
Darknet Traffic and Application Classification Using Heterogeneous Graph Neural Network

Abdelhak Etchiali1,2* , Wafaa Ferhi3,4 , Mohammed M’hamedi2,5 , Mourad Hadjila3,4 ,

Mohammed Merzoug1,2 , Mohammed Hicham Hachemi4,6

1 Department of Computer Science, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria
2 LRIT Laboratory, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria
3 Department of Telecommunication, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria
4 STIC Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria
5 Department of Second Cycle, Ecole Supérieure en Sciences Appliquées de Tlemcen ESSAT, Tlemcen 13000, Algeria
6 Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran-Mohamed

Boudiaf, Oran 31000, Algeria

Corresponding Author Email: abdelhak.etchiali@univ-tlemcen.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301005 ABSTRACT

Received: 14 June 2025

Revised: 16 September 2025

Accepted: 24 September 2025

Available online: 31 October 2025

The proliferation of Virtual Private Networks (VPNs) and The Onion Router (TOR) has

both benefits and drawbacks for individuals and organisations. These technologies offer

enhanced privacy and security online, but can also facilitate illegal or harmful behaviour by

masking users’ identities. Therefore, it is crucial to develop reliable methods for identifying

and monitoring VPN and TOR traffic to mitigate potential risks and ensure online safety.

In this paper, we propose a Darknet Heterogeneous Graph Neural Network (DHGNN)

model to address the challenge of detecting traffic and applications in the Darknet. Our

approach utilizes the CIC-Darknet2020 dataset, a large collection of openly available

network traffic data, to train and evaluate our DHGNN classifier. The dataset is

systematically explored to identify the most informative features and preprocessed into a

clean tabular format. This tabular data is then converted into a graph structure suitable for

the DHGNN classifier. Experimental results show that the proposed model achieves 99.80%

accuracy in traffic classification and 98.80% accuracy in application classification,

outperforming existing methods in Darknet classification. This approach demonstrates the

effectiveness of integrating feature-driven preprocessing with graph-based neural network

modeling for robust and accurate classification.

Keywords:

Graph Neural Network, Heterogeneous

Graph Neural Network, Darknet, VPN, TOR,

classification, network traffic analysis, CIC-

Darknet

1. INTRODUCTION

The internet is a global system that links millions of

computers and digital devices together, enabling

communication and information exchange across the world. A

key service on the internet is the World Wide Web, which is a

vast collection of interconnected pages containing text,

images, and videos, accessed online. The Web relies on key

components: web pages (documents written in a special code),

hyperlinks (which enable navigation between pages), and web

servers (computers that host and deliver these pages). In

contrast, the Deep Web is a hidden part of the internet that

standard search engines like Google cannot access, containing

private data such as bank records, medical history, and

government files not intended for public viewing [1].

In contrast, the Dark Web constitutes a part of the internet

accessible solely through specialized software like the Tor

browser, characterized by its anonymity. Infamous for its

association with illicit activities, it serves as a marketplace for

illegal transactions, including drugs, weaponry, and stolen

data, and facilitates the exchange of prohibited information

and materials [2]. The proliferation of encrypted and

anonymized network traffic, largely driven by the widespread

use of privacy-enhancing technologies (PETs) like Tor and

VPNs, has created a formidable challenge for modern

cybersecurity operations [3, 4]. While these technologies serve

legitimate privacy needs, their infrastructure also forms the

backbone of Darknets, which are increasingly exploited for

illicit activities such as coordinated hacking campaigns,

espionage, and the deployment of advanced persistent threats

(APTs). Consequently, the accurate and efficient classification

of Darknet traffic has become a critical imperative for enabling

proactive cyber threat intelligence and strengthening national

and organizational security postures.

The expansion of the Internet has transformed global

communication, enabling individuals to interact across

borders with an Internet connection. The Tor network is a

technology that provides users with privacy and anonymity

online. It was developed by a team of mathematicians and

computer experts based at the Naval Research Laboratory

(NRL) in response to concerns about privacy and anonymity

during the early stages of the Internet’s development [5].

The Tor network uses a technique called onion routing to

route traffic through multiple servers and encrypts it, making

Ingénierie des Systèmes d’Information
Vol. 30, No. 10, October, 2025, pp. 2571-2581

Journal homepage: http://iieta.org/journals/isi

2571

https://orcid.org/0009-0008-0790-3022
https://orcid.org/0009-0005-7574-8368
https://orcid.org/0009-0003-7899-2185
https://orcid.org/0000-0002-6554-3925
https://orcid.org/0000-0002-0426-1668
https://orcid.org/0000-0003-3967-6609
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301005&domain=pdf

it nearly impossible for anyone to trace the user’s online

activities [3, 6]. Despite its importance, the task of Darknet

traffic classification is fraught with inherent difficulties. The

very nature of anonymity tools is to obfuscate traffic patterns

and payload content, rendering traditional deep packet

inspection (DPI) methods ineffective. While machine learning

(ML) approaches that rely on flow-based statistical features

have shown more promise, they often exhibit critical

limitations [7, 8]. These methods typically treat traffic flows

as independent, isolated instances, failing to capture the

complex relational structures and temporal dependencies that

exist between communication nodes in a network [9]. This

inability to model the underlying graph-like nature of network

data, where connections between IP addresses, sessions, and

protocols contain vital discriminative information, results in

suboptimal accuracy, limited generalizability, and poor

scalability to the vast volumes of traffic generated in real-

world Darknet environments [10].

To bridge this gap, we propose a Darknet Heterogeneous

Graph Neural Network (DHGNN) framework. The core

innovation of our approach is the reformulation of the traffic

classification problem from a tabular learning task to a graph

learning task. By constructing a heterogeneous graph that

represents various network entities (e.g., hosts, packets,

services) and the rich relationships between them, our

DHGNN model can directly learn from the topological

structure of the network traffic. This allows the model to

discern subtle, relational fingerprints of different applications

and services that are invisible to conventional classifiers [11,

12]. The proposed method offers significant advantages,

including enhanced classification accuracy by leveraging

multi-relational data, inherent scalability for large-scale

network analysis, and a more nuanced understanding of

network behavior.

To validate our approach, we utilize the comprehensive

CIC-Darknet2020 dataset [13], a benchmark containing

labeled traffic from Tor, VPN, and non-VPN applications. Our

methodology involves a rigorous feature analysis to inform the

graph construction process, followed by a data preprocessing

pipeline that transforms raw tabular traffic data into a

structured heterogeneous graph. The experimental results

demonstrate that our DHGNN classifier achieves superior

performance, outperforming previous state-of-the-art traffic

classifiers and confirming the efficacy of graph-based learning

for tackling the complexities of Darknet traffic analysis.

The rest of this paper is organized as follows: Section II

provides a summary of the relevant literature and prior

research in the field. Section III covers the basics of

Heterogeneous Graph Neural Networks, such as graph data

construction, heterogeneous message passing, and model

architecture. Section IV presents the proposed methodology,

encompassing the description of the CIC-Darknet2020

dataset, data exploration and preprocessing, as well as the

model design. Section V provides the experimental results for

both traffic and application classification scenarios. Following

this, Section VI is dedicated to the conclusion and suggestions

for future research directions.

2. RELATED WORK

Recent research shows that many scientists now prefer to

use Graph Neural Networks (GNNs) instead of traditional

machine learning methods. GNNs are especially good at

understanding relationships between data points when the data

can be represented as a graph. This strength is very useful in

areas such as social network analysis, protein–protein

interaction modelling, and anomaly detection—tasks where

older methods often struggle to capture the connections

between features.

The study by Kisanga et al. [14] introduces a new approach

to network security by building activity and event networks

with GNNs. This method aims to better handle both large-

scale attacks and long-term threats. The authors tested their

approach on two datasets, TOR-nonTOR and a DDoS dataset,

and achieved accuracy scores of 78% and 88%.

In another study, Purnama et al. [15] explore how GNNs

can improve modern Intrusion Detection Systems (IDS). They

use E-GraphSAGE, a variant of the GraphSAGE algorithm, to

efficiently gather and use information from neighbouring

nodes in graph-structured data. This approach helps capture

the complex patterns that appear in network traffic, which is

essential for correctly identifying and classifying malicious

activity. A related investigation [16] applies GNNs to malware

detection and classification. Using the CIC-AndMal2017

dataset, which contains a wide range of Android malware

samples, the researchers evaluate how well GNN models can

detect and classify different malware types. They test the

models using accuracy, precision, recall, and ROC curves.

Their results show that GNNs are a strong option for

improving malware detection.

An interesting survey [17] reviews how graph

representation learning can be used for network- and host-

based intrusion detection. It provides an overview of different

GNN models, explains how these models are built, and

discusses examples from published research. The survey also

looks at how robust these methods are against adversarial

attacks. In the end, the authors summarise the strengths and

weaknesses of GNN-based intrusion detection and suggest

directions for future research.

Another survey [18] examines graph adversarial attacks and

defence methods. It highlights that although GNNs work very

well in many tasks, they can be vulnerable to such attacks. The

study reviews key algorithms, comparing their strategies,

benefits, and drawbacks, and offers benchmark results that

show the ongoing challenge of making GNNs more robust

while addressing their security weaknesses.

In the study by Habibi Lashkari et al. [13], a CNN-based

model was proposed for binary traffic classification, where

Tor/VPN traffic was labelled as “Darknet” and non-Tor/non-

VPN traffic as “clearnet.” The model reached 94% accuracy

in distinguishing between benign and Darknet traffic. It also

achieved 86% accuracy in identifying the type of application

generating the traffic, classifying them into categories such as

video streaming, audio streaming, VoIP, browsing, chat,

email, file transfer, and P2P downloads. Similarly, Sarkar et

al. [19] used a Deep Neural Network (DNN) to differentiate

between Tor and non-Tor traffic, using the UNB-CIC (ISCX

Tor-2016) dataset [20]. They designed two models: a three-

layer DNN-A and a five-layer DNN-B. DNN-A achieved

98.81% accuracy, while DNN-B performed even better with

99.89%.

The study [21] focused on analysing traffic types using a

standard dataset and several machine learning classifiers. They

grouped the data into benign and Darknet classes and also

considered four traffic types for multi-class classification

(Tor/non-Tor or VPN/non-VPN). Their results showed that the

Random Forest classifier performed the best, achieving an F1

2572

score of 98.61% in the multi-class setting.

Demertzis et al. [22] extended the application types into 11

subcategories and employed the WANN classifier architecture

(Weighted Agnostic Neural Networks). Unlike regular

Artificial Neural Networks (ANNs), WANNs neither adjust

the weights of neurons; instead, they modify their neural

network architecture incrementally. The WANN methodology

first evaluates candidate structures based on performance and

design complexity, and then uses the best-performing

architecture to construct new layers. Their leading WANN

classifier achieved an accuracy rate of 92.68% in application-

layer classification.

The research detailed in the study by Sarwar et al. [23]

focused on classifying traffic and application types using

Convolutional Neural Networks (CNNs), as well as two

alternative approaches based on Long Short Term Memory

(LSTM) and Gated Recurrent Units (GRU). Initially, they

selected 20 features based on three methods: Decision Trees

(DT), Principal Component Analysis (PCA), and Extreme

Gradient Boosting (XGBoost), followed by the

implementation of hybrid architectures such as CNN/LSTM

and CNN/GRU. In this framework, the CNN layer was

responsible for feature extraction, while LSTM and GRU were

employed for time-series prediction based on these input

features. Notably, CNN/LSTM combined with XGBoost for

feature selection demonstrated the highest F1-scores,

achieving 96% accuracy in traffic type classification and 89%

accuracy in application type classification.

Marim et al. [24] studied and classified real Darknet traffic

using the CIC-Darknet2020 dataset. They used feature

extraction and applied an n-gram technique to group potential

subnets. They also evaluated the importance of the most

relevant features using Recursive Feature Elimination. Their

results show that simple models such as Decision Trees and

Random Forests can achieve more than 99% accuracy in

classifying traffic. Overall, their method provides up to a 13%

improvement compared with current state-of-the-art

approaches.

Alimoradi et al. [25] developed a new decision support

system for detecting Tor and VPN traffic. Their system

classifies Darknet data into four categories: Tor, non-Tor,

VPN, and non-VPN. The model uses a DNN with 79 neurons

in the input layer and 6 neurons in the hidden layers to capture

the complex nonlinear patterns found in real darknet traffic.

They tested their approach on the DIDarknet benchmark

dataset, achieving an accuracy of 96%. Impressively, these

strong results were obtained without any preprocessing steps

such as feature extraction, data balancing, or data cleaning.

This highlights the ability of their model to handle raw

Darknet traffic effectively.

Zhu et al. [26] introduced the Darknet Traffic Graph (DTG),

an interactive graph that visualizes connections between

source and destination nodes (servers and clients) in Darknet

traffic. Based on DTG, they combined Graph Neural Networks

with an attention mechanism to create Darknet Graph Neural

Networks (DGNNs). This model makes effective use of both

benign and Darknet traffic characteristics. When evaluated on

the CIC-Darknet2020 dataset, DGNNs achieved excellent

accuracy scores: 98.52% for traffic classification and 99.06%

for application classification, outperforming other existing

classifiers.

Even with the state-of-the-art use of deep learning models

such as CNNs, RNNs, and Transformers for traffic

classification, there is still a serious problem. These models

ignore the intricate graph relationships between hosts and

services, treating traffic as discrete tabular or sequential data

[11]. As a result, they are unaware of the critical topological

fingerprints of applications. In Darknet environments such as

Tor and VPNs, where these structural patterns are the main

observable feature, this limitation significantly reduces their

efficacy in categorizing encrypted traffic.

Table 1 is included to explicitly contrast tabular and graph-

based approaches, thereby emphasizing the distinctive

strengths of DHGNN [25].

Table 1. Tabular vs. Graph-based methods: Emphasizing DHGNN strengths

Study/Method Core Approach
Data

Representation
Key Limitation/Gap DHGNN Improvement

Statistical Methods

(SVM, Naive Bayes)

Feature

Engineering
Tabular/Vector

Ignores inherent relationships,

sensitive to feature selection.

Leverages all relational data directly

via the graph structure.

Deep Packet

Inspection (DPI)

Signature

Matching
Payload Data

Fails with encryption (Tor,

VPN), violates privacy.

Operates on metadata and topology,

inherently robust against encryption.

State-of-the-Art

ML/DL Classifiers

(CNN, RNN)

Automated

Feature

Extraction

Tabular/Sequential

Cannot capture inter-entity

relationships (host-packet-

service); misses topological

fingerprints.

Reformulates to Graph Learning to

capture subtle, multi-relational

fingerprints.

Proposed Method

(DHGNN)

Heterogeneous

Graph NN

Heterogeneous

Graph
N/A

Enhanced accuracy through

topological structure learning;

inherent scalability, nuanced

understanding of Darknet behavior.

3. HETEROGENEOUS GRAPH NEURAL NETWORK

Heterogeneous Graph Neural Networks (HGNNs) are

designed to process graph-structured data consisting of

multiple node and edge types, allowing the model to capture

complex relational semantics across diverse entities [27]. The

presence of such heterogeneous node and edge categories is

what distinguishes heterogeneous graphs from their

homogeneous counterparts [28].

The HeteroGNN algorithm effectively captures the complex

and rich relationships present in such data [29], making it

useful for various tasks like node-level classification, link

prediction, and graph-level classification across various

domains, including social networks, knowledge graphs, and

malware detection [30].

3.1 Graph data construction

This phase is foundational, involving the translation of raw

network traffic data into a format that a GNN can process.

2573

Consider a heterogeneous graph 𝐺 = (𝑉, 𝐸), where V denotes

the set of nodes and E denotes the set of edges [31].

The node set V is categorized into two subsets, 𝑉 = 𝑉ℎ ∪
𝑉𝑓, with Vh being the host nodes and Vf the flow nodes.

Host nodes have feature 𝑋ℎ ∈, and flow nodes have feature

matrix 𝑋𝑓 ∈ 𝑅(|𝑉𝑓|×𝑑𝑓), where dh and df represent the feature

dimensions for host and flow nodes, respectively. These

features serve as the input to the HGNN [29].

Identify the relationships or connections between nodes

that will be represented as edges. We consider that the edge set

E is divided into two different types of flow and host 𝐸 = 𝐸ℎ ∪
𝐸𝑓, where Ehf are edges from host to flow nodes, and Efh are

edges from flow to host nodes. This distinction is crucial for

heterogeneous graphs where different types of nodes and

edges may encode distinct kinds of information and

relationships.

3.2 Heterogeneous message passing

The core of the HGNN algorithm is the heterogeneous

message passing mechanism, which updates node embeddings

by aggregating information from neighboring nodes across

different types [31, 32]. This can be formalized as follows for

a two-node-type system using Heterogeneous Graph

Convolution (HConv).

For Ehf edges, the update rule for flow node features is:

() ()()(1) () () ,l l l

f hf h h f hfH W AGG h v v E+ =   ∣ (1)

For Efh edges, the update rule for host node features is:

() ()()(1) () () ,l l l

h fh f h f fhH W AGG h v v E+ =   ∣ (2)

Here, 𝐻𝑓
(𝑙+1)

 and 𝐻ℎ
(𝑙+1)

 denote the embeddings for flow

and host nodes at layer l.

𝑊ℎ𝑓
(𝑙)

 and 𝑊𝑓ℎ

(𝑙)
 are the learnable weights for each edge type,

σ represents a non-linear activation function, and AGG

denotes an aggregation function, and their role in combining

information from a node’s neighborhood:

(1) Mean Aggregation:

  ()()(), ,mean i i jAGG mean H v v v E=   (3)

(2) Sum Aggregation:

  ()()(), ,sum i i jAGG sum H v v v E=   (4)

3.3 Model architecture

The model consists of L HConv layers, where the node

embeddings are iteratively updated [31, 33]. Initially:

(0) (0)

h h f fH X and H X= = (5)

After L layers, the embeddings for flow nodes, 𝐻𝑓
(𝐿)

, are

used in a linear prediction layer:

(). L

out f outY W H b= + (6)

𝑌 ∈ ℝ|𝑉𝑓|×𝐶 represents the logits for C classes for each flow

node, with Wout and bout being learnable parameters.

The multi-layer structure with L HConv layers allows for

progressively complex feature extraction and representation

learning. The transition from initial node features to final

embeddings capable of supporting classification tasks

illustrates the model’s capability to transform raw data into

actionable insights. Finally, the model is optimized via

supervised learning, minimizing the cross-entropy loss

between the predicted scores Y and the true labels YTrue:

(), logTrue ic ic

i C

L Y Y= −  (7)

Here, I index over flow nodes, and c over classes.

The parameters (Wout, 𝑊𝑓ℎ

(𝑙)
, 𝑊ℎ𝑓

(𝑙)
, and bout) are optimized to

minimize L using gradient-based optimization techniques such

as Adam, Adamax, AdaGrad, and RMSProp.

The model consists of 7 HeteroGNN layers with a hidden

dimension of 64. Host node features Xh and flow node features

Xf are embedded into 32 and 11 dimensions, respectively.

Each HeteroGNN layer uses SAGEConv with mean

aggregation and LeakyReLU activation. The final flow node

embeddings are passed through a linear output layer with

softmax activation for classification.

4. METHODOLOGY

4.1 Dataset description

Released in 2020 by the Canadian Institute for

Cybersecurity [34], the CIC-Darknet2020 dataset aggregates

network traffic from a range of simulation environments,

capturing both normal background patterns and malicious

behaviors. Its purpose is to provide researchers and

practitioners with a comprehensive collection of data on

network traffic analysis to support the advancement,

assessment, and experimentation of cybersecurity methods.

The dataset is structured into two levels. The first level

employs a dual-layered strategy to create benign and Darknet

network traffic.

The second tier encompasses various traffic scenarios such

as Browsing, P2P, Audio-Stream, Transfer, Chat, Email,

Video-Stream, and VoIP within the Darknet traffic. To ensure

representativeness, the dataset combines previous datasets like

ISCXTor-2016 and ISCXVPN-2016. The VPN and Tor traffic

is to be merged into the relevant Darknet categories [19].

4.2 Data exploration and preprocessing

There are a few interesting features we can use for our

DHGNN model:

The timestamp we can process to extract information about

the day of the week and the time of day. In general, network

traffic is seasonal, and connections that occur at night or on

unusual days are suspicious.

Processing IP addresses like 192.168.200.4 can be

challenging due to their non-numeric nature and adherence to

complex rules. One approach could involve categorizing them

into a few groups based on knowledge of our local network

2574

configuration. Alternatively, a widely used and more

adaptable solution involves converting them into binary

representation, where ’192’ would be represented

as ’11000000’.

Flow Duration, the number of packets, and the number of

bytes are features that usually display heavy-tailed

distributions. Therefore, they will require special processing if

that is the case.

The CIC-Darknet2020 dataset contains a diverse set of

feature types, including numerical attributes (e.g., flow

duration), categorical variables such as Label or Label 1,

which serve as the target class and additional data elements

like timestamps and IP addresses.

To prepare these heterogeneous features for downstream

analysis and model training, we apply a series of

representation strategies informed by domain knowledge.

First, temporal information embedded in the timestamp is

used to extract the week of data collection. This feature is

subsequently one-hot encoded, and the resulting indicator

variables are renamed to enhance interpretability.

Second, we derive the time of day from each timestamp

and apply min–max normalization to scale this value between

0 and 1, ensuring consistency with other continuous inputs.

Both source and destination IP addresses are transformed

using binary encoding. Instead of encoding all 32 bits of each

IPv4 address, we retain only the least significant 16 bits, as

these carry the most relevant variability for our context. The

most significant 16 bits are typically constant commonly

representing the internal network prefix 192.168 and therefore

contribute limited discriminative value.

We establish a train/validation/test split using ratios of

80/10/10.

Finally, we need to address the scaling of three features:

flow duration, the number of packets, and the number of bytes.

We use PowerTransformer() from scikit-learn to modify

their distributions.

Table 2 presents the node features utilized in the DHGNN

model.

Table 2. DHGNN model node features

Feature Type Feature Description

Host Source IP (ipsrc_1 to ipsrc_16)

Host Destination IP (ipdst_1 to ipdst_16)

Flow Daytime

Flow Day of the Week (Monday to Friday)

Flow Flow Duration

Flow Flow Packets/s

Flow Flow Bytes/s

Flow FIN Flag Count

Flow SYN Flag Count

Flow RST Flag Count

Flow Protocol

4.3 Design model

The design of our model is depicted in Figure 1. The model

consists of 7 HeteroGNN layers with a hidden dimension of

64. Host and flow node features are passed through embedding

layers, then processed via SAGEConv-based aggregation

(mean) and LeakyReLU activation. Separate projection

matrices (Whf, Wfh) transform aggregated features. Final flow

node embeddings are passed through a linear layer and

softmax for classification.

Figure 1. Model design process of the proposed DHGNN

The input features for host nodes Xh and flow nodes Xf are

passed through an embedding layer to obtain initial node

embeddings 𝐻ℎ
(0)

 and 𝐻𝑓
(0)

. For host nodes, Xh includes

network-specific features such as source and destination IP

address bits. For flow nodes, Xf incorporates temporal and

statistical features including daytime, weekday, flow duration,

total bytes and packets transmitted, TCP flag counts, and

protocol information. These embedded representations serve

as the foundation for subsequent graph neural network

processing.

At each HeteroGNN layer l, the node embeddings from the

previous layer (𝐻ℎ
(𝑙)

and 𝐻𝑓
(𝑙)

) are processed through distinct

aggregation functions (AGGhf and AGGfh). The AGGhf function

aggregates features from neighboring flow nodes to update

host node embeddings, while AGGfh performs the

complementary operation by aggregating host node features to

2575

update flow node embeddings. These aggregation functions

are implemented as SAGEConv (GraphSAGE) layers, which

compute a weighted combination of neighboring node features

processed by a Nonlinear activation function. This architecture

enables effective information propagation between the two

node types while maintaining their distinct feature spaces.

The aggregated embeddings from AGGhf and AGGfh are

concatenated to form a joint representation. This combined

embedding is subsequently transformed through two separate

learnable projection matrices, Whf and Wfh, which

independently process the host-to-flow and flow-to-host

aggregated features, respectively. These methods allows the

model to learn different patterns from each direction of the

relationship. At the same time, it carefully preserves the

important network structure and connections that were

identified during the earlier combining step.

The projected embeddings are then passed through a non-

linear activation function σ (typically ReLU or LeakyReLU)

to introduce non-linearity into the transformations. This

produces the updated node embeddings 𝐻ℎ
(𝑙+1)

 and 𝐻𝑓
(𝑙+1)

 that

will serve as input to the next HeteroGNN layer. After

processing through all seven HeteroGNN layers, the final flow

node embeddings 𝐻𝑓
(𝐿)

 undergo a linear projection via the

output weight matrix Wout to generate the model’s predictions.

The complete layer-wise transformation ensures both local

neighborhood information and global graph structure are

effectively captured in the final representations.

The projected embeddings are transformed through a final

linear layer to produce the output logits. These logits are then

normalized using a softmax activation function 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 to obtain the model’s final predictions Y. This yields a

probability distribution over the K target classes, where each

element yi∈Y represents the predicted probability for class i,

enabling probabilistic interpretation of the model’s outputs.

The model’s output predictions, called Y are evaluated against

the ground truth labels Ytrue. We use a special formula to

measure how wrong the predictions are; this formula is called

the cross-entropy loss function or L. The formula is 𝐿 =
−∑ 𝑦𝑡𝑟𝑢𝑒,𝑖 log(𝑦𝑖)

𝐾
𝑖=1 . Here, K is the number of classes we are

trying to predict. This loss L calculates the difference between

the predicted probability distribution and the correct class

distribution, with the computed loss value L serving as the

optimization objective during model training. The cross-

entropy formulation is particularly suitable for classification

tasks as it penalizes confident incorrect predictions more

heavily while remaining computationally efficient.

The computed loss L is backpropagated through the entire

network to obtain gradients with respect to all trainable

parameters, including the weight matrices (Whf, Wfh, Wout) and

their corresponding bias terms. These gradients are then used

by an optimization algorithm (typically Adam) to update the

model parameters through gradient descent. This entire

process is repeated for 100 epochs. One epoch means the

model has seen all the training data once. With each epoch, the

model's parameters are slowly refined to reduce the

classification error. This repeated training helps the model

learn better and more discriminative features, which improves

its ability to make correct predictions.

Therefore, the theoretical AGG is practically instantiated

using SAGEConv with mean aggregation for aggregating

neighbor information within each relation type in the

heterogeneous graph.

5. EXPERIMENT RESULTS

In the DHGNN classifier, we’ll set up four or eight layers

of SAGEConv with LeakyRELU for each node type (four

layers in the case of traffic classification and eight layers in the

case of application classification). Then, a linear layer will

produce a four or eight-dimensional vector, with each

dimension representing a class. Additionally, we’ll train this

model in a supervised manner utilizing cross-entropy loss and

the Adam optimizer. Next, we specify the heterogeneous

GNN, incorporating three parameters: the count of hidden

dimensions, the count of output dimensions, and the number

of layers.

Hyperparameters optimization for GNN classifiers is

crucial, given that it directly affects the model’s classification

accuracy. Our experiments, detailed in Table 3, thoroughly

explore key parameters, assessing accuracy within defined

ranges. We find that a network depth of seven layers, trained

over 100 epochs with the Adam optimizer and the LeakyReLU

activation function, is the ideal configuration.

In the following subsections, we will present results for both

traffic classification and application classification scenarios.

Table 3. DHGNN model hyperparameters and exploration range

Hyperparameter Value Interval
Optimal

Value
Description

Device - Dynamic Computed based on CUDA availability; 'cuda' or 'cpu'.

Number of Layers [3, 4, 5, 6, 7] 7
The number of layers in the model indicates the depth of the

network.

Dimension of Hidden

Layer
64 64 Fixed dimensionality of the hidden layers in the model.

Output Dimension 8 and 4 8 and 4
The dimensionality of the output layer is fixed at 8 and 4 for

this model.

Activation Function [Tanh, Relu, LeakyRelu] LeakyRelu
Activation functions are considered, with LeakyReLU chosen

for the optimal model.

Learning Rate (LR)
[0.001, 0.002, 0.003, 0.004,

0.005, 0.006]
0.004

Range of learning rates explored, with 0.004 selected as the

optimal rate.

Optimizer
[Adam, AdamW, RMSprop,

Adamax]
Adam

Different optimization algorithms were considered, with Adam

chosen for the optimal model.

Loss Function Cross Entropy
Cross

Entropy

The loss function used for training was not varied in this

experimentation.

Total Epochs [50, 100, 150, 200] 100
Total epochs explored with 101 chosen for the optimal training

duration.

2576

5.1 Traffic classification (case of 4 classes)

Our focus was primarily on the initial layer of the CIC-

Darknet2020 dataset, which included two primary classes,

VPN/Tor Darknet traffic and Non-VPN/Non-Tor benign

traffic. The four classes are represented by the pie chart shown

in Figure 2, where the counts of each value are as follows:

“Non-Tor”: 93309, “Non-VPN”: 23861, “VPN”: 22919, and

“Tor”: 1392 occurrences. We assess the performance of the

proposed approach using Precision, Recall, F1-score, and

Accuracy evaluation metrics.

In traffic classification, the accuracy of our DHGNN model

is 99.80%, indicating a very high level of correct predictions.

A plot of training loss and validation loss while training the

model is shown in Figure 3.

Figure 2. Proportion of each class in the CIC-Darknet2020

dataset – Traffic case

Figure 3. Model’s loss as a function of an epoch during the

training process – Traffic case

A plot of the proportion of misclassified samples is given in

Figure 4. If we compare this pie chart to the original

proportions in the dataset, we see that the model performs

better for the majority classes. This is not surprising since

minority classes are harder to learn (fewer samples), and not

detecting them is less penalizing (with 93309 Non-Tor flows

versus 1392 Tor). NonVPN and VPN detection could be

improved with techniques such as oversampling and

introducing class weights during training.

An analysis of the confusion matrix presented in Figure 5

indicates that the classifier exhibits exceptionally high

discriminatory power. The model's performance is

characterized by misclassification rates that remain

predominantly below 0.5% across all four defined anonymity

categories. Despite this robust performance, two specific

confusion patterns are discernible. The most significant occurs

between Tor and NonVPN traffic, where approximately 10

Tor samples (0.45%) were misclassified. This is likely

attributable to overlapping statistical patterns when Tor

circuits encapsulate traffic resembling normal encrypted

sessions, a challenge compounded by the relatively lower

number of Tor samples (n = 121). A second, minor pattern

involves a handful of Non-Tor samples being confused with

NonVPN and VPN classes (≤ 4 samples each, < 0.2%),

potentially stemming from similar feature distributions like

packet lengths and timing in various encrypted streams.

Overall, the model performs remarkably well, but the Tor vs.

NonVPN distinction remains challenging, primarily due to

their similar traffic patterns and the imbalance between

classes.

Figure 4. Proportion of each misclassified class – Traffic

case

Figure 5. Confusion matrix for multi-class flow

classification – Traffic case

Table 4 compares the performance of various graph neural

network (GNN) models, including ResNet, GIN, GCN, GAT,

GraphSAGE, RevGNN, DGNN, and the proposed DHGNN

model, on a traffic classification task. The performance

metrics reported are accuracy, precision, F1-score, and recall

(TPR). The proposed DHGNN classifier achieves the highest

accuracy of 0.9980, precision of 0.9898, F1-score of 0.9820,

and recall of 0.9322.

2577

Table 4. Performance evaluation of various traffic classification methods

Model Accuracy Precision F1 Recall

DGNN [26] 0.9852 0.9662 0.9488 0.8322

GIN [35] 0.9358 0.8653 0.7569 0.6741

GCN [36] 0.9260 0.8464 0.7108 0.6158

GAT [37] 0.9235 0.8324 0.7021 0.6086

GraphSAGE

[38]
0.9556 0.9142 0.8407 0.7791

RevGNN [39] 0.9131 0.8384 0.6348 0.5131

ResNet [40] 0.9043 0.7625 0.7120 0.6991

Our DHGNN 0.9980 0.9898 0.9820 0.9748

5.2 Application classification (case of 8 classes)

Our focus now was directed towards the second data layer

of the CIC-Darknet2020 dataset, which included data samples

classified as Media Streaming (Audio and Video), Live Chat,

E-mail, P2P, Voice over IP, File Transfer, and Web Browsing.

We employ Precision, Recall, F1-score, and Accuracy

evaluation metrics to evaluate the performance of the proposed

approach.

Figure 6 shows a curve representing the model’s loss as a

function of the number of epochs during the training process.

The curve starts at a relatively high loss value, indicating that

the model’s initial predictions were quite inaccurate or far

from the true values at the beginning of the training process.

In the early stages of training, the loss curve exhibits a steep

decline. This rapid decrease in loss suggests that the model is

learning quickly and improving its predictions significantly

with each epoch. During this phase, the model is making

substantial adjustments to its internal parameters to minimize

the error between its predictions and the true values. As the

training progresses, the rate at which the loss decreases starts

to slow down gradually. This indicates that the model is still

improving, but the improvements are becoming smaller. In

application classification, the accuracy of our DHGNN model

is 98.80%, indicating a very high level of correct predictions.

The circular chart given in Figure 7 shows the distribution

of each misclassified class in the case of application

classification.

Figure 8 presents the confusion matrix for the 8-class

application classification task, illustrating the model's

evaluation performance by comparing predicted labels against

true labels. The matrix shows generally excellent performance,

though with interpretable patterns of misclassification. The

most common errors are with Video-Streaming. It is

sometimes mistaken for Audio-Streaming (75 samples,

2.42%) and Chat (47 samples, 2.02%). This makes sense

because a video stream also contains an audio track, and its

data can arrive in bursts, similar to a chat application.

Similarly, Audio-Streaming shows minor confusion with

VoIP, and Email traffic is moderately confused with Browsing

(72 samples, 6.33%), reflecting the real-world ambiguity of

HTTPS-based webmail services. A notable case is the VOIP

class, which has a higher error rate. It is often misclassified as

Browsing, Email, or Audio-Streaming. On the other hand,

applications with very unique traffic patterns, like P2P and

File-Transfer, are almost never confused with anything else.

They are identified perfectly. In summary, most of the model's

mistakes happen between application types that naturally have

very similar network behavior. This shows a real-world

challenge in classifying network traffic, not a major problem

with the model itself.

Figure 6. Model’s loss as a function of an epoch during the

training process – Application case

Figure 7. Proportion of each misclassified class –

Application case

Figure 8. Confusion matrix for multi-class flow

classification – Application case

2578

Table 5 presents the recall values of the different models for

classifying various applications, such as Audio-streaming,

Browsing, Chat, Email, Transfer, P2P, VOIP, and Video-

streaming. The proposed DHGNN classifier achieves the

highest recall for most applications, including Browsing

(0.9800), Chat (0.9587), Transfer (0.9892), P2P (0.9984),

VOIP (0.9691), and Video-stream (0.8610). DGNN [26]

performs better for Audio-Streaming and Email classification

with a recall of 0.9788 and 0.9682, respectively.

For a fair and direct comparison, the proposed DHGNN

model is evaluated alongside the DGNN model [26] under

identical experimental conditions, including dataset splits,

preprocessing steps, and evaluation metrics. The results

demonstrate that our model achieves superior performance.

The results for other models (e.g., GCN, GAT, GraphSAGE)

are provided as a general benchmark from the cited literature

and were obtained under different experimental setups.

Table 5. Comparison of application classification methodologies’ recall results

Model Audio-Streaming Browsing Chat Email Transfer P2P VOIP Video-Streaming

DGNN [26] 0.9788 0.7577 0.9458 0.9682 0.8804 0.9702 0.9548 0.8557

GIN [35] 0.8928 0.3397 0.8341 0.1015 0.5059 0.7724 0.4706 0.3977

GCN [36] 0.8557 0.0072 0.7995 0.0020 0.3638 0.4968 0.5561 0.0240

GAT [37] 0.8061 0.0228 0.7838 0.1009 0.0731 0.7223 0.2545 0.0217

GraphSAGE [38] 0.9044 0.2423 0.8485 0.7804 0.5364 0.8756 0.8439 0.4438

RevGNN [39] 0.7472 0.0023 0.7723 0.0179 0.0181 0.0124 0.0089 0.0042

ResNet [40] 0.8237 0.7808 0.8946 0.5553 0.6774 0.8898 0.7864 0.6104

DHGNN (Ours) 0.9253 0.9800 0.9587 0.8344 0.9892 0.9984 0.9691 0.8610

Table 6 compares the performance of different methods,

including Random Forest (RF), ensemble methods

(RF+KNN+DT), ResGAT, DeepImage, CNN+LSTM, and the

proposed DHGNN and DGNN models, on an application

classification task. The metrics reported are accuracy, F1-

score, and the model used. The proposed DHGNN model

achieves the highest F1-score of 0.9879 and an accuracy of

0.9880, outperforming the other methods. DGNN also

performs well with an accuracy of 0.9906 and an F1-score of

0.9569.

Table 6. Performance comparison of different application

classification models

Method Accuracy F1-Score Model

[41] — 0.922 RF

[42] 0.9788 0.94 RF+KNN+DT

[43] — 0.8807 ResGAT

[19] 0.86 0.86 DeepImage

[44] 0.9222 0.92 CNN+LSTM

[45] 0.8599 0.86 RF

[26] 0.9906 0.9569 DGNN

Our 0.9880 0.9879 DHGNN

6. CONCLUSIONS

In this paper, we propose an approach for detecting and

classifying Darknet traffic using a Heterogeneous Graph

Neural Network (DHGNN). The classifier is evaluated using

the CIC-Darknet2020 dataset, which includes four traffic

types (Tor, Non-Tor, VPN, Non-VPN) and eight application

categories (Audio-Stream, Browsing, Chat, E-mail, P2P,

Transfer, Video-Stream, VOIP). Our evaluation tests show

that our model, called DHGNN, performs better than other

methods at classifying Darknet traffic. This proves it has great

potential to improve network security by effectively detecting

this hidden, often malicious traffic. For future work, we plan

to continue in a few directions: We will test other types of

Graph Neural Network (GNN) classifiers. We will investigate

hybrid models that mix different GNN architectures. The goal

is to combine their individual strengths to create a model that

is both stronger and more flexible. We also understand that for

cybersecurity, it is not enough for a model to be accurate—it

must also be understandable. Therefore, we will develop

methods to improve the interpretability of DHGNN. We want

to make its decision-making process clear and transparent.

This focus on explainability is crucial for building trust in the

system, ensuring we can see how it works, and for gaining a

deeper understanding of the threats it finds.

REFERENCES

[1] Chertoff, M. (2017). A public policy perspective of the

Dark Web. Journal of Cyber Policy, 2(1): 26-38.

https://doi.org/10.1080/23738871.2017.1298643

[2] Nazah, S., Huda, S., Abawajy, J., Hassan, M.M. (2020).

Evolution of dark web threat analysis and detection: A

systematic approach. IEEE Access, 8: 171796-171819.

https://doi.org/10.1109/ACCESS.2020.3024198

[3] Averin, A., Samartsev, A., Sachenko, N. (2020). Review

of methods for ensuring anonymity and de-

anonymization in blockchain. In 2020 International

Conference Quality Management, Transport and

Information Security, Information Technologies

(IT&QM&IS), Yaroslavl, Russia, pp. 82-87. IEEE.

https://doi.org/10.1109 /itqmis51053.2020.9322974

[4] Ezra, P.J., Misra, S., Agrawal, A., Oluranti, J.,

Maskeliunas, R., Damasevicius, R. (2021). Secured

communication using virtual private network (VPN). In

Cyber Security and Digital Forensics. Lecture Notes on

Data Engineering and Communications Technologies,

73: 309-319. https://doi.org/10.1007/978-981-16-3961-

6_27

[5] dos Santos Horta, M.S.P. (2022). Tor K-anonymity

against deep learning watermarking attacks. Master's

thesis. Universidade NOVA de Lisboa (Portugal).

[6] Alharbi, A., Faizan, M., Alosaimi, W., Alyami, H.,

Agrawal, A., Kumar, R., Khan, R.A. (2021). Exploring

the topological properties of the Tor Dark Web. IEEE

Access, 9: 21746-21758. https://doi.org/10.1109/

ACCESS.2021.3055532

[7] Saleem, J., Islam, R., Islam, Z. (2024). Darknet traffic

analysis: A systematic literature review. IEEE Access,

12: 42423-42452. https://doi.org/10.1109/ACCESS.

2024.3373769

2579

[8] Almomani, A. (2025). Darknet traffic analysis, and

classification system based on modified stacking

ensemble learning algorithms. Information Systems and

E-Business Management, 23: 209-240.

https://doi.org/10.1007/s10257-023-00626-2

[9] Dutta, P., Mayilvaghanan, K., Sinha, P., Dukkipati, A.

(2024). Deep representation learning for prediction of

temporal event sets in the continuous time domain. In

15th Asian Conference on Machine Learning (ACML),

Istanbul, Turkey, pp. 343-358.

[10] Ban, T., Eto, M., Guo, S., Inoue, D., Nakao, K., Huang,

R. (2015). A study on association rule mining of darknet

big data. In International Joint Conference on Neural

Networks (IJCNN), Killarney, Ireland, pp. 1-7.

https://doi.org/10.1109/IJCNN.2015.7280818

[11] Xu, S., Han, J., Liu, Y., Liu, H., Bai, Y.(2025). Few-shot

traffic classification based on autoencoder and deep

graph convolutional networks. Scientific Reports, 15(1):

8995. https://doi.org/10.1038/s41598-025-94240-6

[12] Maddumala, V.R., R, A. (2020). A weight based feature

extraction model on multifaceted multimedia bigdata

using convolutional neural network. Ingénierie des

Systèmes d’Information, 25(6): 729-735.

https://doi.org/10.18280/isi.250603

[13] Habibi Lashkari, A., Kaur, G., Rahali, A. (2020).

Didarknet: A contemporary approach to detect and

characterize the darknet traffic using deep image

learning. In Proceedings of the 2020 10th International

Conference on Communication and Network Security

(ICCNS), New York, USA, pp. 1-13.

https://doi.org/10.1145/3442520.3442521

[14] Kisanga, P., Woungang, I., Traore, I., Carvalho, G.H.

(2023). Network anomaly detection using a graph neural

network. In 2023 International Conference on

Computing, Networking and Communications (ICNC),

Hawaii, USA, pp. 61-65.

https://doi.org/10.1109/ICNC57223.2023.10074111

[15] Purnama, S.R., Istiyanto, J.E., Amrizal, M.A., Handika,

V., Rochman, S., Dharmawan, A. (2022). Inductive

Graph Neural Network with causal sampling for IoT

network intrusion detection system. In 2022 International

Conference on Computer Engineering, Network, and

Intelligent Multimedia (CENIM), Surabaya, Indonesia,

pp. 241-246.

https://doi.org/10.1109/CENIM56801.2022.10037304

[16] Lin, H.C., Wang, P., Lin, W.H., Lin, Y.H., Chen, J.H.

(2023). Graph neural network for malware detection and

classification on renewable energy management

platform. In 2023 IEEE 5th Eurasia Conference on

Biomedical Engineering, Healthcare and Sustainability

(ECBIOS), Taiwan, pp. 164-166.

https://doi.org/10.1109/ECBIOS57802.2023.10218478

[17] Bilot, T., El Madhoun, N., Al Agha, K., Zouaoui, A.

(2023). Graph neural networks for intrusion detection: A

survey. IEEE Access, 11: 49114-49139.

https://doi.org/10.1109/ACCESS.2023.3275789

[18] Zhai, Z., Li, P., Feng, S. (2023). State of the art on

adversarial attacks and defenses in graphs. Neural

Computing and Applications, 35(26): 18851-18872.

https://doi.org/10.1007/s00521-023-08839-9

[19] Sarkar, D., Vinod, P., Yerima, S.Y. (2020). Detection of

Tor traffic using deep learning. In 2020 IEEE/ACS 17th

International Conference on Computer Systems and

Applications (AICCSA), Antalya, Turkey, pp. 1-8.

https://doi.org/10.1109/AICCSA50499.2020.9316533

[20] Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani,

A.A. (2017). Characterization of Tor traffic using time

based features. In Proceedings of the 3rd International

Conference on Information Systems Security and

Privacy (ICISSP 2017), Porto, Portugal, pp. 253-262.

https://doi.org/10.5220/0006105602530262

[21] Iliadis, L.A., Kaifas, T. (2021). Darknet traffic

classification using machine learning techniques. In 10th

International Conference on Modern Circuits and

Systems Technologies (MOCAST), Thessaloniki,

Greece, pp. 1-4.

https://doi.org/10.1109/MOCAST52088.2021.9493386

[22] Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C.,

Iliadis, L. (2021). Darknet traffic big-data analysis and

network management for real-time automating of the

malicious intent detection process by a weight agnostic

neural networks framework. Electronics, 10(7): 781.

https://doi.org/10.3390/electronics10070781

[23] Sarwar, M.B., Hanif, M.K., Talib, R., Younas, M.,

Sarwar, M.U. (2021). Darkdetect: Darknet traffic

detection and categorization using modified convolution-

long short-term memory. IEEE Access, 9: 113705-

113713.

https://doi.org/10.1109/ACCESS.2021.3105000

[24] Marim, M.C., Ramos, P.V.B., Vieira, A.B., Galletta, A.,

Villari, M., de Oliveira, R.M., Silva, E.F. (2023).

Darknet traffic detection and characterization with

models based on decision trees and neural networks.

Intelligent Systems with Applications, 18: 200199.

https://doi.org/10.1016/j.iswa.2023.200199

[25] Alimoradi, M., Zabihimayvan, M., Daliri, A., Sledzik,

R., Sadeghi, R. (2022). Deep neural classification of

darknet traffic. In Artificial Intelligence Research and

Development, 356: 105-114.

https://doi.org/10.3233/FAIA220323

[26] Zhu, Y., Tao, J., Wang, H., Yu, L., et al. (2023). DGNN:

Accurate darknet application classification adopting

attention graph neural network. IEEE Transactions on

Network and Service Management, 21(2): 1660-1671.

https://doi.org/ 10.1109/TNSM.2023.3344580

[27] Saheed, K., Henna, S. (2023). Heterogeneous graph

transformer for advanced persistent threat classification

in wireless networks. In IEEE Conference on Network

Function Virtualization and Software Defined Networks

(NFV-SDN), Dresden, Germany, pp. 15-20.

https://doi.org/10.1109/NFV-

SDN59219.2023.10329745

[28] Mika, G.P., Bouzeghoub, A., Wegrzyn-Wolska, K.,

Neggaz, Y.M. (2023). HGExplainer: Explainable

heterogeneous graph neural network. In 2023 IEEE

International Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT), Venice, Italy,

pp. 221-229. https://doi.org/10.1109/WI-

IAT59888.2023.00035

[29] Fu, X., Zhang, J., Meng, Z., King, I. (2020). MAGNN:

Metapath aggregated graph neural network for

heterogeneous graph embedding. In Proceedings of the

Web Conference 2020, Taipei, Taiwan, pp. 2331-2341.

https://doi.org/10.1145/3366423.3380297

[30] Lou, X., Liu, G., Li, J. (2023). ASIAM-HGNN:

Automatic selection and interpretable aggregation of

meta-path instances for heterogeneous graph neural

network. Computing and Informatics, 42(2): 257-279.

2580

https://doi.org/10.31577/cai_2023_2_257

[31] Labonne, M. (2023). Hands-on Graph Neural Networks

Using Python: Practical Techniques and Architectures

for Building Powerful Graph and Deep Learning Apps

with Pytorch. Birmingham, UK: Packt Publishing.

[32] Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg,

R., Titov, I., Welling, M. (2018). Modeling relational

data with graph convolutional networks. In the Semantic

Web: 15th International Conference ESWC 2018,

Heraklion, Crete, Greece, pp. 593-607.

https://doi.org/10.1007/978-3-319-93417-4_38

[33] Yu, P., Fu, C., Yu, Y., Huang, C., Zhao, Z., Dong, J.

(2022). Multiplex heterogeneous graph convolutional

network. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining,

New York, USA, pp. 2377-2387.

https://doi.org/10.1145/3534678.3539482

[34] Canadian Institute for Cybersecurity. (n.d.). Canadian

Institute for Cybersecurity. University of New

Brunswick. https://www.unb.ca/cic/.

[35] Xu, K., Hu, W., Leskovec, J., Jegelka, S. (2018). How

powerful are graph neural networks? arXiv preprint

arXiv:1810.00826.

https://doi.org/10.48550/arXiv.1810.00826

[36] Kipf, T.N., Welling, M. (2016). Semi-supervised

classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907. https://doi.org/10.48550

/arXiv.1609.02907

[37] Veličković, P., Cucurull, G., Casanova, A., Romero, A.,

Lio, P., Bengio, Y. (2017). Graph attention networks.

arXiv preprint arXiv:1710.10903.

https://doi.org/10.48550/arXiv.1710.10903

[38] Hamilton, W., Ying, Z., Leskovec, J. (2017). Inductive

representation learning on large graphs. In 31st

Conference on Neural Information Processing Systems

(NIPS 2017), Long Beach, CA, USA.

[39] Li, G., Müller, M., Ghanem, B., Koltun, V. (2021).

Training graph neural networks with 1000 layers. In

International Conference on machine learning PMLR,

pp. 6437-6449.

[40] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, USA, pp. 770-778.

[41] Rust-Nguyen, N., Sharma, S., Stamp, M. (2023). Darknet

traffic classification and adversarial attacks using

machine learning. Computers Security, 127: 103098.

https://doi.org/10.1016/j.cose.2023.103098

[42] Mohanty, H., Roudsari, A.H., Lashkari, A.H. (2022).

Robust stacking ensemble model for darknet traffic

classification under adversarial settings. Computers &

Security, 120: 102830.

https://doi.org/10.1016/j.cose.2022.102830

[43] Chang, L., Branco, P. (2021). Graph-based solutions

with residuals for intrusion detection: The modified E-

GraphSAGE and E-ResGAT algorithms. arXiv preprint

arXiv:2111.13597.

https://doi.org/10.48550/arXiv.2111.13597

[44] Lan, J., Liu, X., Li, B., Li, Y., Geng, T. (2022).

DarknetSec: A novel self-attentive deep learning method

for darknet traffic classification and application

identification. Computers & Security, 116: 102663.

https://doi.org/10.1016/j.cose.2022.102663

[45] Karagöl, H., Erdem, O., Akbas, B., Soylu, T. (2022).

Darknet traffic classification with machine learning

algorithms and SMOTE method. In 2022 7th

International Conference on Computer Science and

Engineering (UBMK), Diyarbakir, Turkey, pp. 374-378.

https://doi.org/10.1109/UBMK55850.2022.9919462

2581

