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This study presents a data-driven framework for enhancing both the prediction and post- 

deposition structural analysis of gas sensor materials using deep learning and bio-inspired 

algorithms. A deep learning prediction model is first developed and trained on a 

comprehensive dataset incorporating key material and process parameters, including 

thermal conductivity, band gap, base and dopant compositions, substrate temperature, 

sputtering pressure, power density, and deposition rates. This model achieves a high 

prediction accuracy of 99.4% in classifying material structures amorphous, crystalline, or 

polycrystalline based on input conditions, thereby enabling informed decisions in sensor 

material design prior to deposition. In the post-deposition phase, a 53-layer Convolutional 

Neural Network (CNN) is employed for structural classification using SEM images, 

accurately distinguishing between crystalline and polycrystalline forms with an initial 

accuracy of 92.2%. To further refine performance, bio-inspired optimization techniques 

such as Particle Swarm Optimization (PSO) and Bee Colony Optimization (BCO) are 

applied for hyperparameter tuning, improving classification accuracy to 98.6% and 96.25%, 

respectively. 
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1. INTRODUCTION

Gas sensors play an integral role in a myriad of applications, 

ranging from environmental monitoring and industrial safety 

to medical diagnostics and homeland security [1]. Their ability 

to detect and quantify various gases with high sensitivity and 

selectivity is crucial for ensuring air quality, preventing 

hazardous conditions, and enabling precise medical diagnoses. 

With the increasing concern over environmental pollution, 

toxic gas emissions, and the demand for smart, connected 

devices, the development of advanced gas sensors has become 

imperative [2]. Future needs will necessitate sensors that are 

not only highly accurate and reliable but also cost-effective 

and capable of integration into compact and portable devices. 

Consequently, the advancement of gas sensor technology is 

pivotal to addressing these evolving challenges and meeting 

the stringent requirements of next-generation applications [3]. 

The design of gas sensors, however, is fraught with 

complexities that pose significant challenges. One of the 

primary hurdles is the selection of suitable materials that can 

provide the desired sensitivity and specificity for various gases 

[4]. This involves not only choosing the right base and dopant 

materials but also optimizing their composition and structural 

properties. Additionally, the deposition parameters, such as 

substrate temperature, sputtering pressure, and deposition rate 

must be meticulously controlled to ensure the formation of the 

desired material structure [5]. Any deviation in these 

parameters can lead to inconsistencies in sensor performance, 

making the design process highly intricate. The need to predict 

and control the crystalline structure of the sensor material 

further complicates the design, as different structures, 

crystalline, polycrystalline, or amorphous affect the sensor's 

electrical and chemical properties differently [6]. 

Deep learning algorithms offer a transformative approach to 

overcoming these design challenges by enabling the pre-

prediction of gas sensor materials and deposition parameters 

[7]. These algorithms, trained on extensive datasets, can 

predict the optimal material characteristics and deposition 

conditions required to achieve the desired sensor performance. 

For instance, deep learning models can analyse a range of 

parameters, including thermal conductivity, band gap, and 

composition, to forecast the output structure of the gas sensor 

material [8]. This predictive capability significantly reduces 

the trial-and-error approach traditionally associated with 
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material selection and deposition parameter optimization, 

thereby streamlining the sensor design process and enhancing 

the precision of the predicted outcomes [9]. 

In addition to material prediction, deep learning plays a 

crucial role in the post- deposition analysis of the sensor's 

crystalline structure. Advanced models, such as Convolutional 

Neural Networks (CNNs), can accurately classify the structure 

of the deposited material, distinguishing between crystalline, 

polycrystalline, and amorphous forms. By employing bio-

inspired optimization algorithms like Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO) and 

Bee Colony Optimization (BCO), these models can be further 

refined to achieve high classification accuracy [10]. This 

integration of deep learning and bio- inspired optimization not 

only enhances the reliability of structural analysis but also 

provides a robust framework for optimizing the sensor design 

for specific applications [11]. 

2. LITERATURE SURVEY

The design of gas sensors presents numerous research 

challenges, primarily due to the intricate interplay of material 

properties, deposition conditions, and structural 

configurations that collectively determine sensor performance 

[12]. One of the foremost challenges is the accurate prediction 

of optimal material combinations and their corresponding 

deposition parameters to achieve the desired sensitivity and 

selectivity for specific gases [13]. This is complicated by the 

need to tailor material properties such as thermal conductivity, 

band gap, and composition to match the sensing requirements. 

Moreover, the deposition process itself must be precisely 

controlled to form the appropriate crystalline structure, 

whether it be crystalline, polycrystalline, or amorphous, as 

these structures have significant impacts on the sensor’s 

electrical and chemical behaviour [14]. Variability in 

deposition parameters like substrate temperature, sputtering 

pressure, and deposition rate can lead to inconsistencies in the 

sensor's performance, complicating the design and fabrication 

processes [15]. Additionally, the post-deposition analysis of 

the sensor material's structural properties is crucial but 

challenging, as it requires sophisticated techniques to 

accurately classify and understand the impact of different 

structures on sensor functionality [16]. Addressing these 

challenges requires innovative approaches and advanced 

technologies, such as deep learning algorithms, to predict and 

optimize the design parameters, thus pushing the boundaries 

of gas sensor development in Figure 1. 

(a)  (b)  (c) 

Figure 1. Structures (a) Single Crystalline (b) Polycrystalline (c) Amorphous 

In the realm of structural classification, extensive literature 

exists, reflecting the interdisciplinary nature of this field. 

Researchers have focused on elucidating the significance of 

accurately categorizing structural forms, including amorphous, 

crystalline, and polycrystalline states, owing to their profound 

implications in materials science, chemistry, and engineering 

applications. Benchmark studies such as those by Gulevich et 

al. [17] and Ochoa-Muñoz et al. [18] have underscored the 

critical role of structural classification in understanding 

material properties and designing novel materials with tailored 

functionalities. These seminal works have established 

foundational benchmarks for subsequent research endeavours, 

highlighting the need for robust classification methodologies 

to address the inherent challenges posed by diverse structural 

configurations. 

Challenges abound in accurately classifying structural states, 

necessitating innovative approaches and methodologies. Key 

challenges identified in the literature include the subtle 

distinctions between crystalline and polycrystalline structures, 

which often confound conventional classification techniques. 

Benchmark studies, such as the work by Tabian et al. [19], 

have elucidated the complexities associated with 

discriminating between these closely resembling structural 

forms. Additionally, the scalability and computational 

efficiency of classification algorithms have been highlighted 

as critical considerations, particularly in handling large and 

heterogeneous datasets. Benchmark studies by Thalluri et al. 

[20] and Simion et al. [21] have shed light on these challenges,

setting benchmarks for algorithmic performance and

computational resource utilization in structural classification

tasks.

Recent advancements in deep learning, particularly CNNs, 

have spurred significant progress in structural classification 

research. Benchmark studies by Hu et al. [22] and Kononov et 

al. [23] have demonstrated the efficacy of CNN-based 

approaches in surpassing conventional techniques and 

achieving state-of-the-art classification accuracies. These 

benchmarks have propelled the adoption of CNNs as the de 

facto standard for structural classification tasks, owing to their 

ability to automatically learn discriminative features from raw 

data. Furthermore, benchmark studies focusing on 

hyperparameter optimization techniques, such as those by 

Dennler et al. [24] and García-Rodríguez et al. [25], have 

highlighted the critical role of parameter tuning in maximizing 

classification performance. By benchmarking against 

established methodologies and performance metrics, 
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researchers continue to push the boundaries of structural 

classification, paving the way for advancements in materials 

science and related disciplines. 

3. GAS SENSOR DESIGN PARAMETERS PRE-

PREDICTION

Gas sensor design parameters pre-prediction using deep 

learning involves a systematic and multifaceted approach that 

encompasses several critical requirements and process steps. 

Initially, a comprehensive dataset is essential, encompassing a 

diverse range of parameters such as base target thermal 

conductivity, band gap, composition, and deposition duration, 

along with dopant characteristics, substrate temperature, 

sputtering pressure, power density, deposition rate, and argon 

flow rate. The deep learning process begins with the collection 

and preprocessing of this data to ensure it is clean, normalized, 

and suitable for training models. Following this, a deep 

learning architecture, typically a neural network with multiple 

layers, is selected and configured to handle the complexity of 

the prediction task. The model is then trained on the dataset, 

learning to correlate the input parameters with the desired 

output structures, such as whether the material will be 

crystalline, polycrystalline, or amorphous. This process 

enables a robust and reliable prediction of gas sensor design 

parameters, significantly streamlining the development and 

optimization of high-performance gas sensors. 

3.1 Dataset 

A dataset was created with parameters like base target 

thermal conductivity, band gap, composition, deposition 

duration, dopant characteristics, substrate temperature, 

sputtering pressure, power density, deposition rate, and argon 

flow rate as listed in Table 1. 

Table 1. List of dataset parameters [26-39] 

Dataset Parameter Name/Value 

Base Target 
SnO₂, Si₃N₄, Cu₂O, TiO₂, SnO₂, CeO₂, Ge, 

SnO₂, ZnO, WO₃, CeO₂, Si, In₂O₃, Ga₂O₃, Fe₂O₃, Fe₂O₃ 

Base Target Thermal Conductivity (W/m•K) 60 

Base Target Band Gap (eV) 3.6 

Base Target Composition (wt.%) 97 

Base Target Deposition Duration (min) 10 

Dopant Target N, Nb, Ga, Sb, Zr, P, Al, Re, Zr, B, Sn, Ti 

Dopant Target Density (g/cm³) 5.0 - 10.0 

Dopant Target Melting Point (℃) 500 - 2000 

Dopant Target Refractive Index 1.5 - 2.5 

Dopant Target Thermal Conductivity (W/m•K) 20 - 50 

Dopant Target Band Gap (eV) 1.0 - 3.0 

Dopant Target Composition (wt.%) 1.0 - 10.0 

Dopant Target Deposition Duration (min) 5 - 15 

Substrate Temperature (℃) 200 - 500 

Sputtering Pressure (mTorr) 5 - 15 

Power Density (W/cm²) 2 - 8 

Deposition Rate (nm/min) 20 - 50 

Argon Flow Rate (sccm) 20 - 50 

Output Structure Amorphous / Crystalline/ Poly Crystalline 

Figure 2. Presented deep learning model 

3.2 Deep learning model 

The presented deep learning algorithm is a neural network 

model designed for multi- class classification tasks. It 

comprises multiple dense layers with rectified linear unit 

(ReLU) activation functions, which enable the model to learn 

complex nonlinear relationships within the data. Dropout 

layers are incorporated to prevent overfitting by randomly 

deactivating neurons during training, enhancing the model's 

generalization capabilities. The model is trained using the 

Adam optimizer and sparse categorical cross-entropy loss 

function, suitable for handling categorical targets. By 

iteratively adjusting weights based on observed errors, the 

model learns to accurately classify input data into different 

categories. Its significance lies in its ability to automatically 

extract features from raw data, making it suitable for various 

applications, including image recognition, natural language 

processing, and bioinformatics. Additionally, its flexibility 

and scalability make it well-suited for large-scale datasets and 

complex problem domains, contributing to advancements in 

artificial intelligence and machine learning research in Figure 

2. 

The classification of materials into amorphous, crystalline, 

and polycrystalline structures is pivotal in various applications, 
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including gas sensing and beyond. In gas sensing, amorphous 

materials offer high surface areas and chemical reactivity, 

making them suitable for adsorption and reaction with gas 

molecules. 

Figure 3. Deep learning model accuracy 

Crystalline materials provide predictable and reproducible 

sensing behaviour due to their well- defined crystal structures, 

which may offer intrinsic properties for specific gas species 

detection. Polycrystalline materials, comprising multiple 

grains with random orientation, balance the high surface area 

of amorphous materials with the defined properties of single 

crystals, introducing additional active sites for gas adsorption. 

Beyond gas sensing, this classification guides material 

selection in electronic devices, optoelectronic devices, 

catalysis, and energy storage, where each structure type offers 

distinct advantages based on its properties and applications 

requirements. The accuracy plot indicates that the model has 

learned to classify the material structure with high confidence, 

reaching near-perfect accuracy of 99.4% after 50 epochs. This 

suggests that the deep learning model is highly effective in 

identifying complex relationships between material and 

deposition parameters, such as composition, temperature, 

pressure, and dopant properties and the resulting structure type 

amorphous, crystalline, or polycrystalline in Figure 3. 

4. METAL OXIDE WITH DOPANT DEPOSITION

In this study, metal oxides were meticulously selected for 

gas sensor development using deep learning predictions to 

identify optimal material combinations and deposition 

parameters. WO₃ was chosen as the primary metal oxide due 

to its excellent gas sensing properties, and its performance was 

further enhanced by incorporating varying proportions of TiO₂, 

as indicated by the deep learning model in Table 2. 

Table 2. Composites considered for deposition 

Composition 

Composition-1 Composition-2 Composition-3 

WO3 WO3 + TiO2 WO3 + TiO2 

100% 95% + 5% 90% +10% 

The deposition process was tailored to achieve specific 

topographical, optical, and structural characteristics. The 

characterization results demonstrate that pure WO₃ forms a 

coarse-grained surface with 82% transparency at 453.15 K, 

and exhibits a semi-crystalline structure. In contrast, the 

addition of 5% TiO₂ to WO₃ resulted in a similar coarse-

grained morphology with slightly improved transparency at 

83.25% and maintained a semi-crystalline nature. Notably, 

increasing the TiO₂ content to 10% transformed the surface 

into a granular texture, significantly enhancing transparency to 

86% and achieving a fully crystalline structure. These findings 

underline the efficacy of deep learning in predicting and 

optimizing material compositions and deposition conditions, 

leading to advanced metal oxide sensors with tailored 

properties for superior performance. 

4.1 Polycrystalline structure 

Leveraging deep learning predictions, WO₃-based metal 

oxides were selected and precisely deposited to develop 

advanced gas sensors with tailored properties. The deep 

learning model guided the optimal incorporation of TiO₂ to 

enhance sensor characteristics. Characterization revealed that 

pure WO₃ forms a coarse-grained surface with 82% 

transparency at 453.15 K and a semi-crystalline structure. 

Adding 5% TiO₂ maintained a coarse texture but increased 

transparency to 83.25%, while 10% TiO₂ resulted in a granular 

surface, boosting transparency to 86% and achieving a fully 

crystalline structure. These results underscore the efficacy of 

deep learning in predicting and optimizing material 

compositions and deposition processes, leading to high-

performance gas sensors with specific topographical, optical, 

and structural attributes in Figure 4. 

Figure 4. Polycrystalline structures 

4.2 Crystalline structure 

Composition-3, comprising a combination of WO₃ and TiO₂, 

exhibits a granular surface morphology, attaining an 

impressive transparency of 86% at 453.15 K. Structurally, it 

manifests a crystalline form with 90% WO₃ and 10% TiO₂ 

composition, indicating a well-defined atomic arrangement. 

This composition showcases a balanced blend of granular 

texture, high transparency, and crystalline structure, 

suggesting its potential suitability for applications requiring 

robust gas sensor materials with optimized optical and 

structural properties in Figure 5. 

Figure 5. Crystalline structures 

5. STRUCTURAL ANALYSIS USING CNN

Structural analysis employing CNNs presents a powerful 

methodology for characterizing material structures with high 

precision and efficiency. By leveraging the hierarchical 
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feature extraction capabilities of CNN architectures, complex 

patterns within the material's crystalline arrangement can be 

discerned and classified accurately, enabling comprehensive 

structural insights crucial for various applications in material 

science. CNNs play a significant role in the structural 

classification of metal oxides into crystalline, amorphous, and 

polycrystalline forms due to their ability to effectively learn 

and analyse spatial dependencies in data. CNNs excel at 

automatically learning hierarchical representations of features 

from raw data such as images or spatially structured data. In 

the case of metal oxides, structural classification often 

involves data from imaging techniques like scanning electron 

microscopy (SEM), where spatial features are crucial for 

identifying crystal structures. 

5.1 Dataset 

The dataset used for structural analysis consisted of 106 

SEM images, categorized into two classes: 50 crystalline and 

56 polycrystalline structures. These images were collected to 

train and evaluate the performance of the 53-layer CNN model 

in accurately distinguishing between the two material 

structures. To ensure effective learning and model 

generalization, the dataset was split into 80% for training and 

20% for testing, resulting in 85 images for training and 21 

images for testing. This balanced and well labelled dataset 

provided a solid foundation for the deep learning model to 

extract structural features and perform precise classification. 

5.2 CNN layer analysis 

In CNN layer analysis, the architecture's individual layers 

are scrutinized to understand their roles in extracting and 

representing structural features from input data. Convolutional 

layers perform feature detection through convolution 

operations, while pooling layers downsample feature maps to 

retain essential information. Understanding the interactions 

between these layers elucidates how structural information is 

progressively extracted and synthesized, facilitating 

optimization of the network architecture for improved 

performance in structural analysis tasks in Figure 6. 

Figure 6. 53-Layer CNN model for structural analysis 

The 53-layer CNN model developed for structural analysis 

is a deep convolutional architecture designed to extract and 

classify complex features from material surface images, such 

as those obtained through SEM or other imaging techniques. 

Comprising multiple convolutional, pooling, and fully 

connected layers, this model progressively learns hierarchical 

spatial features critical for distinguishing between amorphous, 

crystalline, and polycrystalline structures. The depth of the 

network allows it to capture fine-grained patterns and subtle 

textural differences in microstructures, leading to high 

classification accuracy. This architecture enables automated, 

scalable, and precise structural analysis, significantly 

enhancing the efficiency of materials characterization and 

supporting the development of optimized gas sensor materials. 

Figure 7. Accuracy of 53-layer CNN for Structural 

Classification 

The accuracy curve shows a consistent and progressive 

improvement over the epochs, reflecting the model's effective 

learning behaviour. Beginning at approximately 45%, the 

accuracy quickly rises to around 68% by the 2nd epoch and 

continues to improve steadily. By the 9th epoch, it crosses 

90%, ultimately reaching an accuracy of 92.2%. This smooth 

and sustained growth indicates that the model successfully 

captures the essential features required for classifying 

crystalline and polycrystalline structures in metal oxide 

sensors, demonstrating high reliability and robustness in its 

predictions in Figure 7. 

5.3 Hyperparameters optimization 

Hyperparameters optimization aims to refine the selection 

of hyperparameters to improve the overall performance of 

CNN models in structural analysis tasks. This optimization 

process is crucial for fine-tuning the model's behavior and 

achieving superior accuracy and generalization capabilities. 

Two prominent optimization algorithms employed in this 

context are PSO and BCO, which iteratively explore the 

hyperparameter space to discover configurations that yield 

optimal model performance. 

The tuning process begins by initializing a swarm of 

particles, where each particle represents a unique combination 

of CNN hyperparameters such as batch size, learning rate, 

2895



dropout, number of filters, and kernel size. The fitness of each 

particle is evaluated based on the CNN’s classification 

accuracy. After evaluation, each particle updates its personal 

best solution, and the global best among all particles is 

identified. Using this information, particles adjust their 

velocities and positions to explore new hyperparameter 

combinations. This cycle of evaluation and position updating 

continues iteratively. The process checks for convergence 

based on either reaching a maximum number of iterations or 

achieving a target accuracy. Once convergence is met, the 

best-performing hyperparameter set is selected as the optimal 

configuration for the CNN model in Figures 8-10. 

Figure 8. Hyperparameter tuning process using PSO for 

CNN model 

Figure 9. Hyperparameter tuning process using BCO for 

CNN model 

The BCO process for tuning CNN hyperparameters begins 

with initializing a population of artificial bees, where each bee 

explores a food source representing a unique set of 

hyperparameters such as batch size, learning rate, dropout rate, 

number of filters, and kernel size. In the employed bees phase, 

each bee evaluates the fitness of its current food source based 

on the CNN's classification accuracy. The information is then 

shared with onlooker bees, which probabilistically choose the 

best-performing sources to exploit further. Poor solutions are 

discarded during the scout bees phase, where new random 

sources are explored to maintain diversity in the search space. 

This iterative process continues, with bees refining their 

selections through multiple cycles, until a convergence 

condition is met—typically when the model achieves a 

specified accuracy or a maximum number of iterations is 

reached. The outcome is the identification of the most optimal 

combination of hyperparameters that maximizes CNN 

performance. Through iterative refinement guided by PSO and 

BCO, CNN-based structural analysis models can achieve 

enhanced accuracy and robustness, further advancing their 

utility in material science research and applications. 

Figure 10. Comprehensive analysis on the role of optimizers 

i.e., PSO and BCO

The hyperparameters considered for tuning in the 53-layer 

CNN include learning rate, batch size, number of filters in 

convolutional layers, kernel size, stride length, dropout rate, 

activation functions, number of neurons in fully connected 

layers, and weight initialization methods. Optimization of 

these parameters using bio-inspired algorithms significantly 

enhanced the model's performance. PSO yielded the highest 

accuracy of 98.6%, BCO achieved 96.25%. Both optimizers 

notably improved the baseline CNN accuracy of 92.2%, 

demonstrating the effectiveness of these strategies in refining 

the model’s ability to distinguish between crystalline and 

polycrystalline structures in gas sensor materials. 

6. CONCLUSION

A comprehensive dataset encompassing diverse design 

parameters, the developed deep learning model accurately 

predicts the output structure of gas sensor materials, 

streamlining the pre-prediction phase with unprecedented 

precision. Furthermore, the introduction of an advanced 53-

layer CNN for post-deposition structural analysis significantly 

enhances classification accuracy, achieving remarkable 
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differentiation between crystalline and polycrystalline 

structures. Through the implementation of bio-inspired 

optimization algorithms such as PSO and BCO, 

hyperparameters are fine-tuned, resulting in substantial 

accuracy improvements. With accuracy levels reaching up to 

98.6% and 96.25% respectively, these advancements 

underscore the potential of deep learning and bio-inspired 

optimization techniques to propel the field of gas sensor 

technology towards unparalleled levels of efficiency and 

precision in material prediction and structural analysis. 
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