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Accurate prediction of regional-scale thermodynamic energy flow patterns is crucial for
understanding  surface-atmosphere interactions and optimizing climate model
parameterization schemes, playing a vital role in climate simulation and ecological
environmental assessment. Traditional physics-guided machine learning (PGML) methods
typically embed physical laws as fixed soft constraints in the model, which struggle to
adapt to the spatiotemporal heterogeneity of key thermodynamic parameters under
complex underlying surfaces and non-uniform conditions. This limitation affects the
quantification accuracy of core parameters such as turbulence exchange coefficients and
surface impedance. In this paper, we propose a dual-path physics-data hybrid framework
that integrates the physical skeleton with data-driven dynamics through a collaborative
architecture of differentiable physical kernels and spatiotemporal neural parameterization.
The framework constructs a differentiable forward physics simulator based on discretized
regional energy balance equations, while utilizing high-dimensional spatiotemporal
encoder-decoder networks to adaptively generate grid-scale physical parameter fields from
multi-source climate data. Combined with a multi-objective progressive learning strategy,
the model achieves pre-training of parameters and physics-enhanced training. A closed-
loop integration module is used for energy flow evolution scenario simulation and
uncertainty quantification. This model demonstrates significant predictive advantages
across various spatial and temporal scales, as well as extreme weather scenarios. For
instance, the daily-scale sensible heat flux in homogeneous farmland reduces mean squared
error (MSE) by 38.7% compared to traditional PGML and 30.8% compared to
Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), with an
accuracy degradation rate of only 13.5%—17.3% under extreme scenarios. The energy
conservation error is < 5.7 W-m™. Ablation experiments validate the core role of
innovative components such as the neural parameterization, while revealing a regional
thermodynamic parameterization formula (R*> = 0.89) for multi-surface adaptation,
uncovering the differences in energy flow driving mechanisms across regions. This study
upgrades machine learning from a traditional predictive tool to a mechanism discovery and
model enhancement tool, offering new methods for improving regional thermodynamic
parameterization schemes and enhancing the reliability of energy flow predictions in
extreme scenarios. It holds significant academic value and practical prospects.

1. INTRODUCTION

technologies [6, 7], the accumulation of high-dimensional
climate data, such as wind, temperature, humidity, pressure,

The accurate characterization and prediction of regional-
scale thermodynamic energy flow is a core component in
analyzing surface-atmosphere energy exchange mechanisms
and optimizing climate model parameterization schemes [1-3].
Its accuracy directly affects the effectiveness of extreme
weather warnings and the reliability of ecosystem carbon-
water cycle assessments [4, 5]. With the development of
remote sensing observation and numerical simulation
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and surface types, has provided a rich data foundation for
capturing the spatiotemporal evolution patterns of energy flow
[8, 9]. However, how to deeply integrate the representation
ability of high-dimensional data with the basic thermodynamic
laws to achieve reliable prediction of energy flow patterns
under complex conditions remains a frontier challenge in the
fields of surface processes and climate simulation.

PGML, as a mainstream method that integrates data and
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physical knowledge, is based on the idea of embedding known
physical equations into the model to constrain the learning
process [10, 11]. However, traditional methods often treat
physical laws as fixed constraints, which are difficult to adapt
to the spatiotemporal heterogeneity of key parameterization
terms under complex underlying surfaces and non-uniform
environments [12-15], leading to limited quantification
accuracy of core parameters such as turbulence exchange
coefficients and surface impedance. In contrast, purely data-
driven models, though possessing strong high-dimensional
data fitting capabilities [16, 17], often generate unreasonable
predictions under extreme scenarios not covered by the
training data due to the lack of inherent physical consistency
constraints, and their generalization performance is difficult to
guarantee. There is still a clear gap in current research: the
discoverability of physical structures is insufficient, and it is
difficult to extract parameterization forms that adapt to
regional characteristics from data [18]; the adaptive learning
ability of spatiotemporal heterogeneity of parameterization
terms is limited [19]; the association between prediction
uncertainty and thermodynamic mechanisms has not been
effectively established [20, 21]. These shortcomings constrain
the improvement of the accuracy and mechanism explanation
ability of regional energy flow prediction models.

To address the above problems, the goal of this research is
to propose a hybrid model that integrates high-dimensional
climate data with differentiable physical structures, aiming to
achieve  high-accuracy prediction of regional-scale
thermodynamic energy flow patterns while uncovering region-
specific  parameterization mechanisms with physical
interpretability. The core innovative contributions are as

physical kernels and spatiotemporal neural parameterization is
constructed, elevating physical laws from external constraints
to an internally discoverable and interpretable structure within
the model; second, a multi-objective progressive learning
strategy is designed to achieve joint learning of the closure
terms of physical equations and regional distribution patterns,
enhancing the model's physical reasonableness and simplicity;
third, an uncertainty quantification module is integrated to
achieve the spatial tracing of prediction uncertainty and
establish its relationship with thermodynamic mechanisms,
improving the model's reliability and explanatory power.

The structure of this paper is arranged as follows: Chapter 2
provides a detailed explanation of the technical details of the
dual-path physics-data hybrid framework, including the
design of differentiable physical kernels, spatiotemporal
neural parameterization, multi-objective learning strategies,
and uncertainty quantification modules; Chapter 3 explains the
experimental region, data sources, model configuration, and
evaluation metrics; Chapter 4 presents the experimental results,
validating the model's prediction accuracy, the effectiveness
of innovative components, and the discovery of regional
parameterization mechanisms; Chapter 5 discusses the
academic value of the study, its comparative advantages over
existing research, and its limitations; Chapter 6 summarizes
the core conclusions and prospects for future research
directions.

2. METHODS

2.1 Overall framework design concept
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Figure 1. System flow architecture diagram

The core logic of the dual-path physics-data hybrid
framework is to achieve deep collaborative integration
between thermodynamic physical laws and high-dimensional
climate data, in order to overcome the adaptation limitations
of traditional models under complex conditions. The
framework uses the regional energy balance equation as the
physical skeleton and integrates thermodynamic conservation
laws into the model structure through differentiable modeling,
ensuring that all prediction results strictly follow basic
physical principles. At the same time, high-dimensional
climate data drives the model through a spatiotemporal neural
parameterization  unit, which adaptively  generates
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spatiotemporally heterogeneous key parameterization terms,
accurately capturing the unique characteristics of complex
underlying surfaces and non-uniform environments. The
complete link of the framework is as follows: inputs include
initial and boundary conditions such as surface temperature,
radiation forcing, and high-dimensional climate data like wind,
temperature, humidity, pressure, and surface types; the core
modules consist of differentiable physical kernels and
spatiotemporal neural parameterization units, which are
collaboratively optimized through gradient backpropagation;
outputs include high-precision energy flow spatial distribution
predictions, regional thermodynamic parameterization fields,



and corresponding uncertainty quantification results. The core
innovation of this design lies in elevating physical laws from
external fixed constraints in traditional models to discoverable
and interpretable structures within the model, achieving an
organic unity between physical skeleton and data-driven
dynamics. The overall framework architecture is shown in
Figure 1.

2.2 Design of differentiable forward physics simulator

Based on the thermodynamic energy conservation principle,
the core control equation for energy balance per unit area of
the surface at the regional scale can be expressed as:

R,=H+LE+G €))
where, R, is the net radiation flux at the surface, representing
the total radiation energy received by the unit area of the
surface per unit time; H is the sensible heat flux, describing
the sensible heat exchange between the surface and the
atmosphere; LE is the latent heat flux, corresponding to the
latent heat transfer associated with water vapor phase change;
G is the soil heat flux, reflecting the energy conduction process
between the surface and the soil. This equation forms the core
constraint of the physical simulation, clarifying the basic
balance relationship of regional energy flow transfer. To adapt
to regional-scale simulation requirements, the finite volume
method is used for spatiotemporal discretization. This method
leverages the inherent conservation properties of integration to
ensure that thermodynamic conservation laws are not violated
during discretization. In space, the study area is divided into
uniform grids, and the energy balance equation is integrated
over each grid unit to obtain the integral form of the control
equation at the grid scale; in time, a first-order implicit finite
difference scheme is used to discretize the time derivative term,
resulting in the discretized control equation:

= Jo, (TearTpe Q= [ (R,-H-LE-G)dQ @)
where, (); is the control volume of the i-th grid unit, At is the
time step, T is the surface temperature, and pand c are the
density and specific heat capacity of the surface medium,
respectively. The numerical solution steps are as follows: first,
initialize the initial temperature and boundary fluxes for the
grid units; then, substitute the parameterization terms

generated by the neural parameterizer to solve for the sensible
and latent heat fluxes; and iteratively update the energy
balance state of each grid unit until the numerical solution
meets the preset convergence criteria, ensuring that the
discretized numerical  solution  maintains  physical
reasonableness.

To achieve collaborative training of the physical kernel and
the neural parameterizer, automatic differentiation is used to
convert the full numerical computation process of the physics
simulator into a differentiable computational graph. By
tracking the gradient propagation paths of each numerical
operation, the gradients of the parameterization terms can be
backpropagated along the numerical solution chain to the
parameter space of the neural parameterizer. Specifically, the
core steps of the finite volume method, including integral
computation, flux interpolation, and iterative solving, are all
encapsulated as differentiable operators to ensure that small
changes in the parameterization terms are accurately
transmitted and converted into update signals for the neural
parameterizer. To balance numerical stability and gradient
transmissibility, a step-size adaptation strategy is designed: the
time step is dynamically optimized based on the residual size
of the current iteration step. When the residual is large, the step
size is reduced to improve stability, and when the residual
converges, the step size is increased to enhance computational
efficiency. At the same time, the QUICK scheme is used as the
spatial interpolation scheme, as its inherent higher-order
smoothing properties can reduce the gradient discretization
error caused by numerical diffusion, ensuring the continuity of
gradient propagation. The simulator’s inputs include surface
initial temperature, top-of-atmosphere radiation forcing, near-
surface meteorological variables, and other initial and
boundary conditions. The outputs include energy flow fields
such as sensible heat flux, latent heat flux, surface temperature,
and state variables. Among them, input variables must satisfy
thermodynamic dimensional consistency constraints, such as
radiation flux with units of W - m~2 and temperature in Kelvin;
output energy flow fields must meet the residual threshold
requirements of the energy balance equation to ensure the
physical validity of the output results. Figure 2 provides an
illustrative diagram of the regional energy balance control
volume analysis based on the finite volume method, showing
the energy input and output terms (R,, H, LE, G) within the
grid unit and the time/space discretized grid structure, in
conjunction with the physical meanings of Egs. (1) and (2).
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Figure 2. Regional energy balance control volume analysis diagram based on finite volume method
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2.3 Design of spatiotemporal neural parameterizer

The spatiotemporal neural parameterizer adopts an encoder-
decoder architecture. Its core function is to adaptively learn
from high-dimensional climate data and generate
parameterization fields that are fully matched with the physics
simulator’s grid, achieving precise characterization of
spatiotemporal heterogeneity of key parameters such as
turbulence exchange coefficients and surface impedance.
Figure 3 provides a detailed structure diagram of the encoder-
decoder. It shows how 3D convolution layers extract
spatiotemporal  features, Bi-GRU captures long-term
dependencies, the spatiotemporal attention module (Attention)
is connected, and the embedding of physical prior constraints
at the end of the network. The encoder part consists of 3 layers
of 3D convolution layers and 1 layer of bidirectional gated
recurrent units (Bi-GRU). The 3D convolution layers use
5 x 5 x 3 spatiotemporal convolution kernels to extract local
spatiotemporal features from wind, temperature, humidity,
pressure, and surface type data, while the Bi-GRU units
capture long-term dependencies of climate variables along the
time dimension. The decoder uses a fusion design of transpose
convolution layers and spatiotemporal attention mechanisms.
The transpose convolution layers upsample the feature maps
to restore the spatial resolution consistent with the physical
grid, while the spatiotemporal attention module calculates the
correlation weights of different spatiotemporal positions in the
feature map to enhance critical information. The attention
weight calculation formula is:

exp(“m( t,/t [ t))
a; ]t
K lelexp(Slm(Ft,]tFt,/ t))

3)

where, @; ;. is the attention weight at grid point (7, /) at time t,
F; ;¢ is the corresponding feature vector at that position, and
sim(+) uses cosine similarity for computation. The network
output layer directly outputs the parameterization field
corresponding to each grid point of the physics simulator,
through a combination of the Sigmoid activation function and
linear transformation. To ensure the thermodynamic validity
of the output parameters, two physical prior constraints are
embedded in the network design: first, a constraint on the
range of parameter values, by adding hard threshold
activations to the output layer, which limits the turbulence

surface impedance to the range of 102 to 10* s - m™1; second,

spatial smoothness initialization, where the weights of the
decoder convolution kernels are initialized to a Gaussian
distribution. The spatial smoothing property of the Gaussian
kernel guides the spatial continuity of the parameter field,
which is consistent with the spatial gradient characteristics of
thermodynamic parameters.

The preprocessing of high-dimensional climate data focuses
on ensuring thermodynamic consistency, and a full process
handling scheme is constructed, including "spatiotemporal
matching - missing value filling - physical consistency
normalization." Spatiotemporal matching wuses bilinear
interpolation to resample climate data from different sources
and resolutions to a grid scale consistent with the physics
simulator, aligning the time dimension to the same time step.
Missing value filling discards traditional interpolation
methods and adopts a generative filling strategy based on
thermodynamic equations. Using the temperature-pressure
static balance relationship and the water vapor pressure-
temperature saturation relationship as constraints, missing
data is filled through least squares optimization, ensuring the
filled data satisfies basic thermodynamic associations. The
normalization process adopts a variable-specific physical
normalization method. For variables with clear physical
baselines such as temperature and pressure, normalization is

performed based on standard atmospheric state parameters.
T-T,

Specifically, T,om = .

max 0

atmospheric sea-level temperature, and T,,,, is the maximum
temperature in the study region. This avoids the destruction of
thermodynamic variable correlations caused by traditional
normalization methods. Feature fusion uses a cross-modal
attention fusion module, which dynamically allocates the
feature contribution of different variables by calculating the
correlation weight between each climate variable and the
target parameterization term. Specifically, a variable weight
vector w = [wy, Wy, ..., wy] is learned, where Y p_; w, = 1,to0
achieve weighted fusion of multivariable features. At the same
time, a physical feature extraction submodule is embedded to
specifically extract derived physical features, such as wind
shear and temperature gradient, which are directly related to
turbulence exchange. Feature concatenation enhances the
model’s ability to identify key thermodynamic driving factors,
providing high-quality feature inputs for the precise learning
of parameterization terms.

, where T, is the standard

exchange coefficient to the range of 1073 to 102 m? - s™* and
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Figure 3. Detailed structure diagram of the spatiotemporal neural network encoder-decoder
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2.4 Multi-objective progressive learning strategy

The multi-objective progressive learning adopts a two-
phase progressive process: "supervised pretraining - physics-
enhanced training." The core innovation lies in achieving an
ordered optimization from "accuracy-first" to "balancing
physical consistency and mechanism discovery" through
phased target decomposition. The first phase is supervised
pretraining, where the core loss function is the MSE between
the outputs of the physics simulator and the observed energy
flow values, expressed as:

N
Ly~ Z 1D-0™ 12 )
N - i =i

where, N is the number of observation samples, Q; is the
energy flow value output by the simulator, and Q¢ is the
corresponding observed value. The AdamW optimizer is
selected, with an initial learning rate of 10™* and a weight
decay coefficient of 10~5. The training termination condition
is when the MSE on the validation set decreases by less than
1075 over 10 consecutive epochs. The core goal is to guide the
neural parameterizer through data supervision to generate a
parameter field that roughly aligns with real-world
observations, laying the foundation for subsequent physics-
enhanced training. The second phase is physics-enhanced
training, where three physical constraint losses are introduced
to build the total loss function on top of the MSE loss:

Lipar=Lyset1 L,

phy+/12Lsparse+j'3Ldisc

)
where, A{,4,,1; are loss weights. The physical residual
regularization loss L, combines energy conservation and
momentum conservation constraints. The energy conservation
residual is obtained by calculating the deviation of the
simulated energy flow field from the energy balance equation:

M
1 ~ e =
Lenergy:]_w E |RnJ'[—Ij'LE}'Gj|
=

(6)

where, M is the number of grid units. The momentum
conservation residual is calculated by the deviation of the

simulated wind field from the geostrophic balance relationship:

M
1
Lmomentumzﬂz |ﬁi'vpj| (7)
=

where, f is the Coriolis parameter, 'L?j is the wind vector, and
p; is the air pressure. Finally, Loy, = Lenergy + Linomentum- The
sparsity penalty loss is expressed as:

1
sparse” 1y

L ®)

1| K|

This loss uses L1 regularization to suppress redundant
parameter fluctuations and encourage spatial simplicity in the
parameter field, consistent with the smooth spatial gradient
characteristics of parameter distribution in thermodynamic
processes. The discovery loss L, aims to guide the model to
learn an analytically solvable parameterization form. A power
function based on wind speed and stability, K, = au®R¢, is
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selected as a simplified analytical function, where a, b, c are
the parameters to be fitted, u is wind speed, and R; is the
Richardson number. The loss value is the MSE between the
analytical function output and the neural parameterizer output:

M
_ 1 net bp:c)2
LdiSC_M ” Kh:i —auj le ”2 (9)
Jj=1

To ensure the convergence of the two-stage training process,
while avoiding over-suppression of the data-driven adaptive
capability by physical constraints, a multidimensional stability
guarantee mechanism is designed. The core innovation lies in
dynamically adjusting the loss weights and fine-tuning the
gradient control. The loss weights follow a progressive
incremental strategy: the physical residual regularization loss
weight A, increases linearly from 0.1 at the end of pretraining
to 0.5, the sparsity penalty loss weight 4, is fixed at 0.01, and
the discovery loss weight A5 increases from 0.05 to 0.2. This
setup ensures the model first establishes data fitting capability
and gradually strengthens physical consistency and
mechanism discovery objectives. Gradient control uses
gradient clipping, setting a global gradient norm threshold of
1.0. Gradients exceeding this threshold are clipped to prevent
gradient explosion during training, ensuring smooth parameter
updates. Learning rate adjustment follows a cosine annealing
decay strategy, maintaining the initial learning rate of 10~*
during pretraining, and decaying it following a cosine curve
during physics-enhanced training, with a minimum value of
107, This guarantees rapid convergence in the early stage and
stability in parameter fine-tuning later. Additionally, after each
round of parameter updates, a physical validity check step is
added. If the parameter field exceeds the pre-set
thermodynamic validity range, the corresponding gradients
are decay-corrected to avoid distortion of the physical
meaning of parameterization terms, ensuring the model always
converges in a physically valid direction during training.

2.5 Closed-loop integrated prediction and uncertainty
quantification module

The core logic of the closed-loop integrated prediction is to
construct a “prediction-feedback-update” autoregressive
operation loop to achieve continuous scenario simulation of
short-term thermodynamic energy flow evolution. In the
initialization phase, the initial surface temperature, radiative
forcing, and other boundary conditions, along with high-
dimensional climate data, are input into the model. The neural
parameterizer generates the initial parameter field, and the
physical simulator outputs the energy flow field and surface
state variables at time t. When transitioning to the simulation
at time t + 1, the energy flow field and surface temperature at
time t are used as new boundary conditions, and the real-time
high-dimensional climate data for t + 1 are input into the
model. The neural parameterizer then adapts the parameter
field based on the updated inputs, and the physical simulator
performs a new round of energy balance calculations under the
new parameters and boundary constraints. This closed-loop
design dynamically updates input boundary conditions and
parameter fields, allowing the simulation process to adaptively
capture the spatiotemporal evolution patterns of energy flow.
To ensure thermodynamic consistency in the autoregressive
process, a dual-check procedure is performed after each
simulation step: the energy balance equation residual | R,, —



H — LE — G | is computed. If the residual exceeds the preset
threshold of 10 W - m™2, the output parameters of the neural
parameterizer are recalculated by backtracking and adjusting;
simultaneously, the value range and spatial smoothness of the
parameter field are checked to ensure the physical validity of
the parameterization terms does not distort during the iterative
process, thus maintaining the physical validity of continuous
simulations.

Uncertainty quantification is implemented using the Monte
Carlo Dropout technique. The core innovation is to deeply
bind uncertainty quantification with the parameterization
process, enabling accurate characterization and spatial tracing
of cognitive uncertainty. The specific configuration is as
follows: Dropout layers are embedded in the key layers of the
encoder and decoder of the spatiotemporal neural
parameterizer, with a Dropout rate set to 0.15. During the
prediction phase, the Dropout layers are kept active, and 50
independent forward propagations are performed for the same
input sample, generating 50 independent parameterization
fields and energy flow prediction results. Cognitive
uncertainty is quantified through the statistical dispersion
characteristics of the parameterization fields. For each grid cell,
the uncertainty of the turbulence exchange coefficient is
represented by the standard deviation of the 50 sampling
results:

aKh(iJ>=JS% 1 (K G)-Ka0)))° (10)
where, S = 50 is the number of samples, K (i,j) is the
turbulence exchange coefficient for the s-th sample at grid
point (i, j), and K, (i,j)is the mean of the 50 samples.
Uncertainty tracing is achieved by mapping o, (i, /) to the
spatial grid of the physical simulator, generating an
uncertainty spatial distribution map. High standard deviation
regions are identified as "uncertainty hotspot areas." Further
analysis is performed to establish the intrinsic relationship
between these hotspot regions and thermodynamic features:
the proportion of different surface types in the hotspot regions
is statistically calculated to determine the contribution of
complex surfaces to uncertainty; the wind speed gradient and
Richardson number distribution in the hotspot regions are
computed to reveal the positive correlation between turbulence
exchange mechanisms and uncertainty. This provides data
support for locating fuzzy regions in thermodynamic
mechanisms and focusing subsequent research efforts.

2.6 Model output definition

The model adopts a dual-output design, with the core
advantage being the simultaneous consideration of prediction
accuracy and physical interpretability, enabling the
coordinated output of “prediction results physical
mechanisms.” The first type of output is a high-precision
energy flow spatial distribution prediction map, covering the
spatiotemporal distribution of sensible heat flux, latent heat
flux, and surface temperature. The output results undergo
thermodynamic consistency checks and strictly satisfy the
energy balance constraints, and can be directly used for
regional energy flow evolution scenario analysis and energy
flow forecasting under extreme weather conditions. The
second type of output is region-specific parameterization
results with clear physical meaning, along with corresponding
uncertainty estimates, including the turbulence exchange
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coefficient field, surface impedance field, and their spatial
uncertainty distribution maps. The two types of outputs are
tightly thermodynamically linked: the parameterization results
are the core physical foundation for energy flow prediction,
and their spatiotemporal heterogeneity directly determines the
energy flow transport efficiency and distribution pattern. The
accuracy of energy flow predictions, in turn, verifies the
rationality of the parameterization mechanism. In terms of
application value, the energy flow spatial distribution
predictions provide high-precision data support for climate
simulation and ecosystem assessment; the parameterization
results and uncertainty estimates provide direct observational
calibration for improving traditional regional thermodynamic
parameterization schemes. Particularly, the mechanism
analysis of uncertainty hotspot areas can guide targeted field
observation experiment design and promote the iterative
optimization of regional thermodynamic models.

3. EXPERIMENTAL DESIGN AND DATA

The study area is located in the northern part of the North
China Plain, a typical agricultural-urban fringe zone. This
region has a complex underlying surface, including farmland,
urban built-up areas, forested areas, and a small amount of
mountainous terrain. The spatial heterogeneity of surface
cover significantly causes differences in the spatiotemporal
distribution of thermodynamic energy flow. Additionally,
influenced by the monsoon climate, there are drastic seasonal
fluctuations in radiative forcing and meteorological conditions.
The evolution of energy flow in this region is both complex
and representative, making it suitable for testing the model's
adaptability to complex surfaces and heterogeneous conditions.
The data system includes three core types of data: (1) High-
dimensional climate data come from multi-source fusion
products. Surface temperature, surface albedo, and other
optical remote sensing data are sourced from the MODIS
satellite product (spatial-temporal resolution: 250 m/8 d).
Near-surface wind speed, temperature, relative humidity, air
pressure, and other meteorological data come from the ERAS
reanalysis product (spatial-temporal resolution: 0.25°/1 h).
Land cover data is taken from the GlobeLand30 product
(spatial resolution: 30 m). The time span of the data is from
January 2020 to December 2022, and after preprocessing, the
data is unified to a spatial-temporal resolution of 1 km/ 1 h. (2)
Energy flow observation data is sourced from continuous
observation records from three eddy covariance stations in the
region. The core variables include sensible heat flux, latent
heat flux, net radiation, and soil heat flux. The observational
data is quality-controlled and used for model training and
validation, with data from 2020-2021 serving as the training
set and data from 2022 as the independent validation set to
ensure the objectivity of the validation process. (3) Auxiliary
data includes the digital elevation model (DEM, spatial
resolution: 30 m) and land use classification maps, which are
used to construct terrain constraints and surface prior
information for the parameterization process, enhancing the
neural parameterizer’s ability to adapt to regional
characteristics.

The model parameters are configured to accurately capture
spatiotemporal features while ensuring physical consistency.
The encoder of the spatiotemporal neural parameterizer
consists of 3 layers of 3D convolution (kernel size: 5 x 5 x 3,
stride: 1, padding: 2) and 1 layer of Bi-GRU (256 hidden units).
The decoder consists of 3 layers of transposed convolution



(matching the encoder's downsampling factor) and 1 layer of
spatiotemporal attention module (8 attention heads, feature
dimension: 128). The training parameters use the AdamW
optimizer, with an initial learning rate of le-4 for the
pretraining phase, batch size of 32, and 50 epochs. During the
physical enhancement training phase, the learning rate decays
according to a cosine annealing strategy, with a batch size of
32 and 30 epochs. The uncertainty quantification parameters
include a Dropout rate of 0.15 and Monte Carlo sampling with
50 samples. The comparative experiments are divided into two
categories: (1) Benchmark models: The traditional PGML
model (which wuses turbulence exchange coefficients
calculated from empirical formulas as fixed parameters for
input into the physical simulator) and the pure data-driven
model (CNN-LSTM, with the same input-output configuration
as our model) are used to verify the prediction accuracy
advantages of the proposed model. (2) Ablation experiments:
Three groups of comparisons are made by removing the neural

parameterizer, removing the physical residual regularization
loss, and removing the discovery loss. By comparing the
prediction accuracy and physical consistency of different
models, the core roles of each innovative component are
verified.

4. EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Energy flow prediction accuracy verification

The spatiotemporal scale verification and extreme scenario
verification results for energy flow prediction accuracy are
shown in Tables 1 and 2. The proposed model demonstrates
significant advantages under different spatiotemporal scales
and extreme conditions, with the core advantage stemming
from the deep integration of physical consistency and data-
driven adaptability.

Table 1. Comparison of energy flow prediction accuracy of different models under different spatiotemporal scales and surface
types (Units: MSE: W2 m™; MAE: W-m2; R: dimensionless)

Prediction

Energy Conservation

Scale Surface Type Model Sensible Heat Flux (H) Latent Heat Flux (LE) Error (W-m?)
Homogeneous Propqsed Model MSE: 892.3, MAE:22.1,R: 0.92 MSE: 1056.7, MAE: 25.3, R: 0.90 4.8
Farmland Traditional PGML MSE: 1456.2, MAE: 31.5, R: 0.84 MSE: 1689.4, MAE: 34.7, R: 0.82 8.6
Daily CNN-LSTM MSE: 1289.5, MAE: 28.7, R: 0.87 MSE: 1523.6, MAE: 32.1, R: 0.85 11.2
Scale  Heterogeneous Proposed Model — MSE: 1123.5, MAE: 26.4, R: 0.89 MSE: 1321.8, MAE: 29.6, R: 0.87 53
Urban-Rural  Traditional PGML MSE: 1892.7, MAE: 38.2, R: 0.78 MSE: 2156.9, MAE: 42.5, R: 0.75 9.8
Fringe CNN-LSTM MSE: 1645.3, MAE: 34.5, R: 0.82 MSE: 1987.4, MAE: 39.8, R: 0.79 13.5
Homogeneous Propqsed Model MSE: 987.6, MAE: 24.3, R: 0.90 MSE: 1189.2, MAE:27.8, R: 0.88 5.2
Farmland Traditional PGML MSE: 1589.3, MAE: 33.8, R: 0.82 MSE: 1821.5, MAE: 36.9, R: 0.80 9.1
Weekly CNN-LSTM MSE: 1423.7, MAE: 31.2, R: 0.85 MSE: 1698.3, MAE: 34.5, R: 0.83 12.1
Scale  Heterogeneous Proposed Model = MSE: 1256.8, MAE: 28.7, R: 0.87 MSE: 1456.9, MAE: 32.4, R: 0.85 5.7
Urban-Rural  Traditional PGML MSE: 2034.5, MAE: 40.6, R: 0.76 MSE: 2321.7, MAE: 44.8, R: 0.73 10.5
Fringe CNN-LSTM MSE: 1789.2, MAE: 36.9, R: 0.80 MSE: 2145.6, MAE: 41.2, R: 0.77 14.3

Note: The data are from the 2022 independent validation set. R is the Pearson correlation coefficient. The energy conservation error is the mean residual of the
energy balance equation.

Table 2. Comparison of energy flow prediction accuracy of different models under extreme weather scenarios (Units: MSE:
W2m™; MAE: W-m%;, R: dimensionless)

Accuracy Degradation

g"tre"?e Model Sensible Heat Flux (H) Latent Heat Flux (LE) Rate (Daily Scale vs.
cenario .

Extreme Scenario, %)
High Proposed Model MSE: 1245.8, MAE: 28.9, R: 0.88 MSE: 1489.3, MAE: 33.2, R: 0.85 152 (H), 17.3 (LE)
Temperature  Traditional PGML MSE:2134.6, MAE: 42.8, R: 0.75 MSE: 2567.8, MAE: 48.6, R: 0.72 31.5 (H), 33.7 (LE)
(T>35°C) CNN-LSTM MSE: 1987.4, MAE: 39.6, R: 0.79 MSE: 2345.7, MAE: 45.3, R: 0.76 36.8 (H), 38.2 (LE)
Strong Wind Propqsed Model MSE: 1189.5, MAE: 27.6, R: 0.89 MSE: 1398.6, MAE: 31.5, R: 0.86 13.5 (H), 15.7 (LE)
(118 mls) Traditional PGML MSE: 1987.3, MAE: 39.5, R: 0.77 MSE: 2289.5, MAE: 44.7, R: 0.74 28.4 (H),30.2 (LE)
CNN-LSTM MSE: 1823.6, MAE: 36.8, R: 0.81 MSE: 2134.8, MAE:41.9, R: 0.78 33.1 (H),34.5(LE)

Note: The accuracy degradation rate is defined as the difference in MSE between the extreme scenario and the homogeneous farmland daily scale divided by the
daily scale MSE, with negative values indicating improved accuracy

From Table 1, it can be seen that on the daily scale, the
proposed model reduces the MSE of sensible heat flux by
38.7% compared to the traditional PGML and by 30.8%
compared to CNN-LSTM for homogeneous farmland. For the
heterogeneous urban-rural fringe, the MSE of sensible heat
flux is reduced by 40.6% compared to traditional PGML and
by 29.7% compared to CNN-LSTM. Although the weekly
scale prediction accuracy slightly decreases, the advantage
remains stable. Spatially, the accuracy improvement for
heterogeneous surfaces is significantly higher than for
homogeneous surfaces, indicating that the neural
parameterizer effectively captures the heterogeneity of the
underlying surface. Regarding energy conservation error, the
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proposed model consistently stays below 5.7 W-m™, far better
than the 8.6~10.5 W-m™? of traditional PGML and 11.2~14.3
W-m2 of CNN-LSTM, which verifies the role of embedded
physical consistency in ensuring the reliability of predictions.
The extreme scenario validation results in Table 2 show that
the accuracy degradation rate of the proposed model under
high temperature and strong wind conditions is only
13.5%~17.3%, far lower than the 28.4%~33.7% for traditional
PGML and 33.1%~38.2% for CNN-LSTM. In the high-
temperature scenario, traditional PGML fails to adapt to the
strong convection conditions due to fixed turbulence exchange
coefficients, leading to a sharp increase in MSE for sensible
heat flux prediction. CNN-LSTM, lacking physical constraints,



exhibits numerical extrapolation bias. In contrast, the proposed
model dynamically adjusts the turbulence exchange
coefficients using the neural parameterizer and maintains
energy balance under physical conservation constraints,
effectively controlling prediction bias. In the strong wind
scenario, the strict adherence to momentum conservation
further reduces the deviation in energy flow simulation,
verifying the core role of embedded physical consistency in
enhancing model generalization capability.

4.2 Innovation component effectiveness analysis

The effectiveness verification results of the innovative
components based on the ablation experiments are shown in
Table 3. The synergistic effect of the neural parameterizer,
multi-objective  learning  strategy, and  uncertainty
quantification module is the key to ensuring model
performance. The independent contributions of each
component are significant and complementary.

The effectiveness of the neural parameterizer is significant:
when removed, the MSE of sensible heat flux increases by
75.7%, the MSE of latent heat flux increases by 69.3%, and
the energy conservation error doubles, with the parameter
reasonability coefficient dropping from 0.87 to 0.65. This
indicates that fixed empirical parameters cannot adapt to the
spatiotemporal heterogeneity of complex surfaces, whereas

the neural parameterizer, driven by high-dimensional climate
data, can precisely generate parameter fields that match
regional features, providing core support for high-precision
simulations. In the multi-objective learning strategy, removing
physical residual regularization increases the energy
conservation error from 4.8 to 8.5 W-m™, and the parameter
reasonability coefficient drops by 0.11, verifying its key role
in strengthening physical consistency. Removing the
discovery loss decreases the parameter reasonability
coefficient by 0.15, indicating that this loss term effectively
guides the model to learn a simplified and physically intuitive
parameterization form. The effectiveness of the uncertainty
quantification module is verified by the confidence interval
coverage, with the model achieving a coverage rate of nearly
94%, far exceeding the approximately 82% coverage rate of
the model without the neural parameterizer. This demonstrates
its ability to accurately depict cognitive uncertainty. The
CRPS metric shows that the uncertainty quantification
accuracy of the model is over 35% higher than that of the
model without the neural parameterizer, and the uncertainty
hotspot areas are primarily concentrated in regions with
complex underlying surfaces such as urban-rural fringe zones
and mountain-plain transitions, as well as areas with sparse
observational data, which aligns highly with regional
thermodynamic characteristics, achieving precise association
between uncertainty and mechanisms.

Table 3. Impact of each component on model performance in ablation experiments (Units: MSE: W2-m™; MAE: W-m%; R:
dimensionless; energy conservation error: W-m™2; Confidence interval coverage: %; CRPS: W-m™2)

Energy Parameter Confidence
Model Configuration  Sensible Heat Flux (H) Latent(féz)it Flux Conservation Reasonability Interval Coverage (gll/{lf)s)
Error (W-m?) Coefficient (H/LE, %)
Proposed Model (All MSE: 892.3, MAE: MSE: 1056.7, MAE: 18.5/
Components) 22.1,R: 0.92 253, R: 0.90 438 0.87 9427938 21.3
No Neural Parameterizer
. . MSE: 1567.8, MAE:  MSE: 1789.5, MAE: 28.7/
(Fixed Empirical 332, R: 0.83 36.8, R: 0.81 9.2 0.65 82.5/81.7 324
Parameters)
No Physical Residual MSE: 1089.4, MAE:  MSE: 1267.8, MAE: 223/
Regularization 25.8, R: 0.89 28.9, R: 0.87 8.5 0.76 90.3/89.5 25.6
. MSE: 987.6, MAE: MSE: 1145.3, MAE: 19.8/
No Discovery Loss 24.5. R: 0.90 272, R: 0.88 5.3 0.72 93.5/92.9 277
No Uncertainty MSE: 895.7, MAE: MSE: 1063.2, MAE: 49 086 /- /-
Quantification Module 22.3,R: 091 25.6, R: 0.89 ’ )

Note: The parameter reasonability coefficient is the correlation coefficient between the neural parameterizer output and the observed derived turbulence exchange
coefficient. CRPS is the Continuous Ranked Probability Score, with lower values indicating more accurate uncertainty quantification

4.3 Discovery results of
parameterization mechanism

regional thermodynamic

The discovery results of the regional thermodynamic
parameterization mechanism are the core innovation of this
study, including the spatial distribution characteristics of
parameterization terms, the derivable parameterization
relationships, and the core thermodynamic driving
mechanisms. The related results are shown in Table 4 and
Table 5. The corresponding Figure 4 displays the regional
turbulence exchange coefficient field K, surface impedance
field r;, and the corresponding uncertainty spatial distribution
map generated by the model inversion. It highlights the
parameter gradient changes in heterogeneous regions such as
the urban-rural fringe.

Table 4 shows that the spatial distribution characteristics of
parameterization terms are significant and consistent with
thermodynamic principles: The turbulence exchange
coefficient K}, follows the distribution pattern of waterbody >
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bare land > forest > farmland > urban built-up area, which is
negatively correlated with surface roughness—water bodies
have smooth surfaces and low momentum exchange resistance,
yielding the largest Kj,; urban areas with dense buildings have
high roughness, resulting in the smallest K;. The surface
impedance 75, in contrast, shows an opposite trend, with urban
built-up areas having the largest r; due to low vegetation cover
and weak evaporation, while water bodies have the smallest 5.
Correlation analysis shows that K}, is significantly positively
correlated with both wind speed and temperature gradient,
with coefficients higher than 0.85 for bare land and water,
indicating that turbulence exchange in these regions is
primarily driven by wind speed. For farmland and forest, the
correlation with temperature gradient is higher, reflecting the
important contribution of thermal convection to turbulence
exchange. These distribution characteristics are consistent
with the physical understanding of regional thermodynamic
processes.
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Figure 4. Regional spatial distribution heatmap

Table 4. Statistical results of turbulence exchange coefficient and surface impedance for different surface types (Units: Kj,:

m2-s; 7 s'm™)

Turbulence Exchange Surface Impedance Correlation Correlation Coefficient

Surface Type Coefficient (Mean + Standard (Mean + Standard  Coefficient with Wind with Temperature

Deviation) Deviation) Speed (K, —u) Gradient (K, —VT)
Forest 0.82+0.15 856+ 123 0.78 0.65
Farmland 0.65+0.12 623 +98 0.82 0.71
Urban Built-up Area 0.48+0.18 1258 £ 215 0.69 0.58
Bare Land 0.95+0.21 489+ 76 0.85 0.78
Waterbody 1.23 £0.25 325+ 58 0.88 0.62

Note: Data are based on grid-scale statistical results from the 2022 validation set; the correlation coefficients are Pearson correlation coefficients

Table 5. Comparison of fit performance between newly discovered parameterization relationships and existing empirical

formulas
o . . . Fit Quality Root Mean Square Applicable Surface
Parameterization Relationship Type Expression R?) Error (RMSE, m*s) Types
. . . . All Regions
- 1.23 p:-0.32 g
New Discovered Relationship (This Model)  Kh=0.087u!*’Ri 0.89 0.078 (Multi-Surface Mix)
Businger-Dyer Formula (Traditional) Kh=0.094uRi "> 0.72 0.156 Homogeneous Farmland
Zhang Formula (Improved Traditional) K;=0.075u" 1 Ri "4 0.78 0.123 Forest / Farmland Mix

Note: u is near-surface wind speed (m-s™); R; is the Richardson number (dimensionless); fit quality and RMSE are calculated based on the observed-derived
values of K, from the 2022 validation set.
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Figure 5. Fit comparison of newly discovered parameterization relationship with existing empirical formulas

Table 5 shows that the newly discovered parameterization
relationship has significant advantages: its fit quality
R? reaches 0.89, improving by 23.6% compared to the
traditional Businger-Dyer formula and by 14.1% compared to
the improved Zhang formula. The RMSE is only 0.078 m?:s™,
more than 50% lower than the traditional formulas. Traditional

formulas are mostly suitable for single homogeneous surfaces,
while the new relationship, constrained by discovery loss,
integrates the thermodynamic characteristics of multiple
surface types and can adapt to the turbulence exchange laws
of different regions. Combined with energy flow prediction
results and parameter distribution characteristics, the core
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driving mechanisms of regional energy flow evolution can be
clearly identified: In the plain farmland region, the turbulence
exchange coefficient has a high correlation with the
temperature gradient, and energy flow transmission is
dominated by thermal convection, with latent heat flux
accounting for more than 60%. In the urban built-up area, the
large surface impedance and weak turbulence exchange lead
to a significant increase in sensible heat flux, which accounts
for 55%~65%, forming an "urban heat island" related energy
flow distribution pattern. In the mountain-plain transition zone,
the surface heterogeneity causes dramatic fluctuations in the
turbulence exchange coefficient, making it a hotspot area for
uncertainty in energy flow prediction. In this region, energy
flow transmission is jointly dominated by terrain dynamics
and thermal effects. Corresponding to Table 5, Figure 5
displays the comparison of fit performance between the newly
discovered parameterization relationship, the traditional
Businger-Dyer formula, and observational data. The X-axis
represents the physical driving variables, and the Y-axis
represents the turbulence exchange coefficient, showing the
data point distribution and the fitting curves of different
formulas.

5. DISCUSSION

The core academic breakthrough of the dual-path physical-
data hybrid framework lies in achieving the paradigm shift
from fixed physical constraints to discoverable physical
structures in PGML, providing a new paradigm for the role of
machine learning in thermodynamic research. Traditional
PGML embeds physical laws as external static constraints in
models, essentially still limited to data fitting and surrogate
prediction. In contrast, this framework transforms physical
laws into inherently optimizable structures through the
collaborative design of a differentiable physical kernel and
spatiotemporal neural parameterizer, allowing machine
learning to actively participate in the discovery of
thermodynamic parameterization mechanisms. This shift not
only improves prediction accuracy but also achieves a leap
from "black-box prediction" to "mechanism discovery." The
newly discovered regional-adaptive turbulence exchange
coefficient relationship compensates for the inability of
traditional empirical formulas to adapt to complex surface
mixed regions and provides direct theoretical support and data
for improving the parameterization system of regional
thermodynamic energy balance models. It deepens our
understanding of the coexistence of multiple driving
mechanisms of energy flow transmission under complex
surface conditions.

Compared with existing studies, this framework shows
significant advantages in the synergistic improvement of
physical consistency, generalization, and interpretability.
Compared to traditional PGML models, this framework,
through the adaptive learning of the neural parameterizer,
eliminates the reliance on fixed empirical parameters,
achieving more than 30% improvement in prediction accuracy
in heterogeneous surface regions and a 50% reduction in
accuracy degradation rate under extreme scenarios,
highlighting the enhancement of physical models by data-
driven adaptive capability. Compared to purely data-driven
models, the embedded thermodynamic conservation
constraints fundamentally avoid non-physical predictions
under extreme conditions, with energy conservation errors
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controlled within 5 W-m™2, showing significantly better
physical consistency than existing models. Furthermore, the
design of the framework in terms of high-dimensional climate
data fusion efficiency and uncertainty traceability is unique:
the cross-modal attention fusion module achieves precise
weighting of multi-source climate variables, enhancing the
identification efficiency of key thermodynamic driving factors;
Monte Carlo Dropout, deeply integrated with the
parameterization process, enables uncertainty quantification to
directly trace back to the thermodynamic mechanism
complexity of specific grid units, providing clear guidance for
future research focus.

This study still has some limitations, which point out
directions for future improvements. The parameterization
accuracy in extremely complex terrain regions still has room
for improvement, as the influence of terrain dynamics on
turbulence exchange has not been fully captured, leading to
less precise spatial heterogeneity of parameterization terms. In
long-term autoregressive predictions, the cumulative effect of
energy balance residuals causes prediction bias to gradually
increase over time, affecting the reliability of long-term
simulations. The preset analytical function form in the
discovery loss has prior dependencies, which may limit the
discovery of more complex parameterization mechanisms. To
address these issues, future improvements can focus on three
aspects: (1) Introducing a terrain feature extraction module
based on graph neural networks, which will integrate terrain
dynamic parameters to improve the driving factor system for
parameterization terms. (2) Designing a residual correction
mechanism, which will adjust the boundary conditions and
parameter fields of long-term simulations through real-time
observational data feedback, helping to suppress the
accumulation of errors. (3) Using Bayesian optimization
combined with symbolic regression methods to build a search
mechanism for analytical functions without prior constraints,
enhancing the model's ability to discover complex
thermodynamic mechanisms. Additionally, the framework can
be expanded to global-scale thermodynamic energy flow
simulations, further testing its generalization ability and
application value.

6. CONCLUSION

This study proposed a dual-path physics-data hybrid
framework that achieves deep synergistic integration of high-
dimensional climate data and thermodynamic physical laws.
The core innovation lies in constructing a collaborative
architecture of differentiable physical kernels and
spatiotemporal neural parameterizers, which upgrades
physical laws from traditional external fixed constraints to an
internally discoverable and interpretable structure within the
model. This effectively solved the challenges of unknown
thermodynamic parameterizations and spatial heterogeneity
adaptation under complex underlying surface conditions. The
integration of multi-objective progressive learning strategies
and closed-loop uncertainty quantification modules further
strengthened the model's physical consistency and mechanism
discovery capabilities, forming a complete technological
system of '"physical skeleton-data flesh-mechanism
discovery."

Experimental results show that this model outperforms
traditional PGML and CNN-LSTM in both spatiotemporal
scale and extreme scenario validations. The MSE of sensible



heat flux in heterogeneous urban-rural transition zones at the
daily scale is reduced by 40.6% compared to traditional PGML.
The advantage remains stable at the weekly scale, and the
accuracy degradation rate under high temperature and strong
wind conditions is far lower than that of the comparison
models. Ablation experiments show that after removing the
neural parameterizer, the MSE of sensible heat flux increases
by 75.7%. The physical residual regularization ensures energy
conservation, and the collaborative components enhance
model  performance. The discovery of regional
thermodynamic mechanisms shows that the turbulence
exchange coefficient follows the order: water > bare land >
forest > farmland > urban built-up area. The newly discovered
parameterization relationship has a goodness of fit (R?) 0of 0.89,
significantly improving compared to traditional formulas, and
clarifies the regional differences in energy flow drivers, such
as thermal convection dominance in plain farmland and
sensible heat dominance in urban built-up areas.

The academic contribution of this study lies in providing a
new method for regional thermodynamic energy flow pattern
prediction, advancing the paradigm shift in machine learning
from alternative prediction to mechanism discovery and model
enhancement in the field of thermodynamics. The practical
value is reflected in how the discovered regional
parameterization mechanism provides direct data support and
theoretical basis for improving traditional climate model
parameterization schemes. This is of great significance for
enhancing climate simulation reliability, optimizing extreme
weather warnings, and ecological environment assessments.
Future research can further expand the model's scale
adaptability, improve parameterization systems under
complex terrain conditions, and promote its application in
thermodynamic system simulations across larger areas.
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