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 Accurate prediction of regional-scale thermodynamic energy flow patterns is crucial for 

understanding surface-atmosphere interactions and optimizing climate model 

parameterization schemes, playing a vital role in climate simulation and ecological 

environmental assessment. Traditional physics-guided machine learning (PGML) methods 

typically embed physical laws as fixed soft constraints in the model, which struggle to 

adapt to the spatiotemporal heterogeneity of key thermodynamic parameters under 

complex underlying surfaces and non-uniform conditions. This limitation affects the 

quantification accuracy of core parameters such as turbulence exchange coefficients and 

surface impedance. In this paper, we propose a dual-path physics-data hybrid framework 

that integrates the physical skeleton with data-driven dynamics through a collaborative 

architecture of differentiable physical kernels and spatiotemporal neural parameterization. 

The framework constructs a differentiable forward physics simulator based on discretized 

regional energy balance equations, while utilizing high-dimensional spatiotemporal 

encoder-decoder networks to adaptively generate grid-scale physical parameter fields from 

multi-source climate data. Combined with a multi-objective progressive learning strategy, 

the model achieves pre-training of parameters and physics-enhanced training. A closed-

loop integration module is used for energy flow evolution scenario simulation and 

uncertainty quantification. This model demonstrates significant predictive advantages 

across various spatial and temporal scales, as well as extreme weather scenarios. For 

instance, the daily-scale sensible heat flux in homogeneous farmland reduces mean squared 

error (MSE) by 38.7% compared to traditional PGML and 30.8% compared to 

Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), with an 

accuracy degradation rate of only 13.5%–17.3% under extreme scenarios. The energy 

conservation error is ≤ 5.7 W·m⁻². Ablation experiments validate the core role of 

innovative components such as the neural parameterization, while revealing a regional 

thermodynamic parameterization formula (R² = 0.89) for multi-surface adaptation, 

uncovering the differences in energy flow driving mechanisms across regions. This study 

upgrades machine learning from a traditional predictive tool to a mechanism discovery and 

model enhancement tool, offering new methods for improving regional thermodynamic 

parameterization schemes and enhancing the reliability of energy flow predictions in 

extreme scenarios. It holds significant academic value and practical prospects. 
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1. INTRODUCTION 

 

The accurate characterization and prediction of regional-

scale thermodynamic energy flow is a core component in 

analyzing surface-atmosphere energy exchange mechanisms 

and optimizing climate model parameterization schemes [1-3]. 

Its accuracy directly affects the effectiveness of extreme 

weather warnings and the reliability of ecosystem carbon-

water cycle assessments [4, 5]. With the development of 

remote sensing observation and numerical simulation 

technologies [6, 7], the accumulation of high-dimensional 

climate data, such as wind, temperature, humidity, pressure, 

and surface types, has provided a rich data foundation for 

capturing the spatiotemporal evolution patterns of energy flow 

[8, 9]. However, how to deeply integrate the representation 

ability of high-dimensional data with the basic thermodynamic 

laws to achieve reliable prediction of energy flow patterns 

under complex conditions remains a frontier challenge in the 

fields of surface processes and climate simulation. 

PGML, as a mainstream method that integrates data and 
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physical knowledge, is based on the idea of embedding known 

physical equations into the model to constrain the learning 

process [10, 11]. However, traditional methods often treat 

physical laws as fixed constraints, which are difficult to adapt 

to the spatiotemporal heterogeneity of key parameterization 

terms under complex underlying surfaces and non-uniform 

environments [12-15], leading to limited quantification 

accuracy of core parameters such as turbulence exchange 

coefficients and surface impedance. In contrast, purely data-

driven models, though possessing strong high-dimensional 

data fitting capabilities [16, 17], often generate unreasonable 

predictions under extreme scenarios not covered by the 

training data due to the lack of inherent physical consistency 

constraints, and their generalization performance is difficult to 

guarantee. There is still a clear gap in current research: the 

discoverability of physical structures is insufficient, and it is 

difficult to extract parameterization forms that adapt to 

regional characteristics from data [18]; the adaptive learning 

ability of spatiotemporal heterogeneity of parameterization 

terms is limited [19]; the association between prediction 

uncertainty and thermodynamic mechanisms has not been 

effectively established [20, 21]. These shortcomings constrain 

the improvement of the accuracy and mechanism explanation 

ability of regional energy flow prediction models. 

To address the above problems, the goal of this research is 

to propose a hybrid model that integrates high-dimensional 

climate data with differentiable physical structures, aiming to 

achieve high-accuracy prediction of regional-scale 

thermodynamic energy flow patterns while uncovering region-

specific parameterization mechanisms with physical 

interpretability. The core innovative contributions are as 

follows: First, a dual-path framework of differentiable 

physical kernels and spatiotemporal neural parameterization is 

constructed, elevating physical laws from external constraints 

to an internally discoverable and interpretable structure within 

the model; second, a multi-objective progressive learning 

strategy is designed to achieve joint learning of the closure 

terms of physical equations and regional distribution patterns, 

enhancing the model's physical reasonableness and simplicity; 

third, an uncertainty quantification module is integrated to 

achieve the spatial tracing of prediction uncertainty and 

establish its relationship with thermodynamic mechanisms, 

improving the model's reliability and explanatory power. 

The structure of this paper is arranged as follows: Chapter 2 

provides a detailed explanation of the technical details of the 

dual-path physics-data hybrid framework, including the 

design of differentiable physical kernels, spatiotemporal 

neural parameterization, multi-objective learning strategies, 

and uncertainty quantification modules; Chapter 3 explains the 

experimental region, data sources, model configuration, and 

evaluation metrics; Chapter 4 presents the experimental results, 

validating the model's prediction accuracy, the effectiveness 

of innovative components, and the discovery of regional 

parameterization mechanisms; Chapter 5 discusses the 

academic value of the study, its comparative advantages over 

existing research, and its limitations; Chapter 6 summarizes 

the core conclusions and prospects for future research 

directions. 

 

 

2. METHODS 

 

2.1 Overall framework design concept 

 
 

 
 

Figure 1. System flow architecture diagram 
 

The core logic of the dual-path physics-data hybrid 

framework is to achieve deep collaborative integration 

between thermodynamic physical laws and high-dimensional 

climate data, in order to overcome the adaptation limitations 

of traditional models under complex conditions. The 

framework uses the regional energy balance equation as the 

physical skeleton and integrates thermodynamic conservation 

laws into the model structure through differentiable modeling, 

ensuring that all prediction results strictly follow basic 

physical principles. At the same time, high-dimensional 

climate data drives the model through a spatiotemporal neural 

parameterization unit, which adaptively generates 

spatiotemporally heterogeneous key parameterization terms, 

accurately capturing the unique characteristics of complex 

underlying surfaces and non-uniform environments. The 

complete link of the framework is as follows: inputs include 

initial and boundary conditions such as surface temperature, 

radiation forcing, and high-dimensional climate data like wind, 

temperature, humidity, pressure, and surface types; the core 

modules consist of differentiable physical kernels and 

spatiotemporal neural parameterization units, which are 

collaboratively optimized through gradient backpropagation; 

outputs include high-precision energy flow spatial distribution 

predictions, regional thermodynamic parameterization fields, 
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and corresponding uncertainty quantification results. The core 

innovation of this design lies in elevating physical laws from 

external fixed constraints in traditional models to discoverable 

and interpretable structures within the model, achieving an 

organic unity between physical skeleton and data-driven 

dynamics. The overall framework architecture is shown in 

Figure 1. 

 

2.2 Design of differentiable forward physics simulator 

 

Based on the thermodynamic energy conservation principle, 

the core control equation for energy balance per unit area of 

the surface at the regional scale can be expressed as: 

 

Rn=H+LE+G (1) 

 

where, 𝑅𝑛 is the net radiation flux at the surface, representing 

the total radiation energy received by the unit area of the 

surface per unit time; 𝐻 is the sensible heat flux, describing 

the sensible heat exchange between the surface and the 

atmosphere; 𝐿𝐸  is the latent heat flux, corresponding to the 

latent heat transfer associated with water vapor phase change; 

𝐺 is the soil heat flux, reflecting the energy conduction process 

between the surface and the soil. This equation forms the core 

constraint of the physical simulation, clarifying the basic 

balance relationship of regional energy flow transfer. To adapt 

to regional-scale simulation requirements, the finite volume 

method is used for spatiotemporal discretization. This method 

leverages the inherent conservation properties of integration to 

ensure that thermodynamic conservation laws are not violated 

during discretization. In space, the study area is divided into 

uniform grids, and the energy balance equation is integrated 

over each grid unit to obtain the integral form of the control 

equation at the grid scale; in time, a first-order implicit finite 

difference scheme is used to discretize the time derivative term, 

resulting in the discretized control equation: 

 
1

Δt
∫ (

Ωi
Tt+Δt-Tt)ρc dΩ= ∫ (

Ω
Rn-H-LE-G)dΩ  (2) 

 

where, Ω𝑖  is the control volume of the 𝑖-th grid unit, Δ𝑡 is the 

time step, 𝑇  is the surface temperature, and 𝜌and 𝑐  are the 

density and specific heat capacity of the surface medium, 

respectively. The numerical solution steps are as follows: first, 

initialize the initial temperature and boundary fluxes for the 

grid units; then, substitute the parameterization terms 

generated by the neural parameterizer to solve for the sensible 

and latent heat fluxes; and iteratively update the energy 

balance state of each grid unit until the numerical solution 

meets the preset convergence criteria, ensuring that the 

discretized numerical solution maintains physical 

reasonableness. 

To achieve collaborative training of the physical kernel and 

the neural parameterizer, automatic differentiation is used to 

convert the full numerical computation process of the physics 

simulator into a differentiable computational graph. By 

tracking the gradient propagation paths of each numerical 

operation, the gradients of the parameterization terms can be 

backpropagated along the numerical solution chain to the 

parameter space of the neural parameterizer. Specifically, the 

core steps of the finite volume method, including integral 

computation, flux interpolation, and iterative solving, are all 

encapsulated as differentiable operators to ensure that small 

changes in the parameterization terms are accurately 

transmitted and converted into update signals for the neural 

parameterizer. To balance numerical stability and gradient 

transmissibility, a step-size adaptation strategy is designed: the 

time step is dynamically optimized based on the residual size 

of the current iteration step. When the residual is large, the step 

size is reduced to improve stability, and when the residual 

converges, the step size is increased to enhance computational 

efficiency. At the same time, the QUICK scheme is used as the 

spatial interpolation scheme, as its inherent higher-order 

smoothing properties can reduce the gradient discretization 

error caused by numerical diffusion, ensuring the continuity of 

gradient propagation. The simulator’s inputs include surface 

initial temperature, top-of-atmosphere radiation forcing, near-

surface meteorological variables, and other initial and 

boundary conditions. The outputs include energy flow fields 

such as sensible heat flux, latent heat flux, surface temperature, 

and state variables. Among them, input variables must satisfy 

thermodynamic dimensional consistency constraints, such as 

radiation flux with units of W ⋅ m−2 and temperature in Kelvin; 

output energy flow fields must meet the residual threshold 

requirements of the energy balance equation to ensure the 

physical validity of the output results. Figure 2 provides an 

illustrative diagram of the regional energy balance control 

volume analysis based on the finite volume method, showing 

the energy input and output terms (Rn, H, LE, G) within the 

grid unit and the time/space discretized grid structure, in 

conjunction with the physical meanings of Eqs. (1) and (2). 

 

 
 

Figure 2. Regional energy balance control volume analysis diagram based on finite volume method 
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2.3 Design of spatiotemporal neural parameterizer 

 

The spatiotemporal neural parameterizer adopts an encoder-

decoder architecture. Its core function is to adaptively learn 

from high-dimensional climate data and generate 

parameterization fields that are fully matched with the physics 

simulator’s grid, achieving precise characterization of 

spatiotemporal heterogeneity of key parameters such as 

turbulence exchange coefficients and surface impedance. 

Figure 3 provides a detailed structure diagram of the encoder-

decoder. It shows how 3D convolution layers extract 

spatiotemporal features, Bi-GRU captures long-term 

dependencies, the spatiotemporal attention module (Attention) 

is connected, and the embedding of physical prior constraints 

at the end of the network. The encoder part consists of 3 layers 

of 3D convolution layers and 1 layer of bidirectional gated 

recurrent units (Bi-GRU). The 3D convolution layers use 

5 × 5 × 3 spatiotemporal convolution kernels to extract local 

spatiotemporal features from wind, temperature, humidity, 

pressure, and surface type data, while the Bi-GRU units 

capture long-term dependencies of climate variables along the 

time dimension. The decoder uses a fusion design of transpose 

convolution layers and spatiotemporal attention mechanisms. 

The transpose convolution layers upsample the feature maps 

to restore the spatial resolution consistent with the physical 

grid, while the spatiotemporal attention module calculates the 

correlation weights of different spatiotemporal positions in the 

feature map to enhance critical information. The attention 

weight calculation formula is: 

 

αi,j,t=
exp(sim(Fi,j,t,Fi',j',t'))

∑ exp(sim(Fi,j,t,Fi',j',t'))tl,jl,tl

  (3) 

 

where, 𝛼𝑖,𝑗,𝑡 is the attention weight at grid point (i, j) at time 𝑡, 

𝐹𝑖,𝑗,𝑡 is the corresponding feature vector at that position, and 

sim(⋅) uses cosine similarity for computation. The network 

output layer directly outputs the parameterization field 

corresponding to each grid point of the physics simulator, 

through a combination of the Sigmoid activation function and 

linear transformation. To ensure the thermodynamic validity 

of the output parameters, two physical prior constraints are 

embedded in the network design: first, a constraint on the 

range of parameter values, by adding hard threshold 

activations to the output layer, which limits the turbulence 

exchange coefficient to the range of 10−3 to 102 m2 ⋅ s−1 and 

surface impedance to the range of 102 to 104 s ⋅ m−1; second, 

spatial smoothness initialization, where the weights of the 

decoder convolution kernels are initialized to a Gaussian 

distribution. The spatial smoothing property of the Gaussian 

kernel guides the spatial continuity of the parameter field, 

which is consistent with the spatial gradient characteristics of 

thermodynamic parameters. 

The preprocessing of high-dimensional climate data focuses 

on ensuring thermodynamic consistency, and a full process 

handling scheme is constructed, including "spatiotemporal 

matching - missing value filling - physical consistency 

normalization." Spatiotemporal matching uses bilinear 

interpolation to resample climate data from different sources 

and resolutions to a grid scale consistent with the physics 

simulator, aligning the time dimension to the same time step. 

Missing value filling discards traditional interpolation 

methods and adopts a generative filling strategy based on 

thermodynamic equations. Using the temperature-pressure 

static balance relationship and the water vapor pressure-

temperature saturation relationship as constraints, missing 

data is filled through least squares optimization, ensuring the 

filled data satisfies basic thermodynamic associations. The 

normalization process adopts a variable-specific physical 

normalization method. For variables with clear physical 

baselines such as temperature and pressure, normalization is 

performed based on standard atmospheric state parameters. 

Specifically, 𝑇norm =
𝑇−𝑇0

𝑇max−𝑇0
, where 𝑇0 is the standard 

atmospheric sea-level temperature, and 𝑇max is the maximum 

temperature in the study region. This avoids the destruction of 

thermodynamic variable correlations caused by traditional 

normalization methods. Feature fusion uses a cross-modal 

attention fusion module, which dynamically allocates the 

feature contribution of different variables by calculating the 

correlation weight between each climate variable and the 

target parameterization term. Specifically, a variable weight 

vector 𝜔 = [𝜔1, 𝜔2, … , 𝜔𝑛] is learned, where ∑ 𝜔𝑘
𝑛
𝑘=1 = 1, to 

achieve weighted fusion of multivariable features. At the same 

time, a physical feature extraction submodule is embedded to 

specifically extract derived physical features, such as wind 

shear and temperature gradient, which are directly related to 

turbulence exchange. Feature concatenation enhances the 

model’s ability to identify key thermodynamic driving factors, 

providing high-quality feature inputs for the precise learning 

of parameterization terms. 

 

 
 

Figure 3. Detailed structure diagram of the spatiotemporal neural network encoder-decoder 
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2.4 Multi-objective progressive learning strategy 

 

The multi-objective progressive learning adopts a two-

phase progressive process: "supervised pretraining - physics-

enhanced training." The core innovation lies in achieving an 

ordered optimization from "accuracy-first" to "balancing 

physical consistency and mechanism discovery" through 

phased target decomposition. The first phase is supervised 

pretraining, where the core loss function is the MSE between 

the outputs of the physics simulator and the observed energy 

flow values, expressed as: 

 

LMSE=
1

N
∑ ‖

N

i=1

Q̂
i
-Q

i

obs‖
2
 (4) 

 

where, 𝑁  is the number of observation samples, 𝑄̂𝑖  is the 

energy flow value output by the simulator, and 𝑄𝑖
obs  is the 

corresponding observed value. The AdamW optimizer is 

selected, with an initial learning rate of 10−4  and a weight 

decay coefficient of 10−5. The training termination condition 

is when the MSE on the validation set decreases by less than 

10−5 over 10 consecutive epochs. The core goal is to guide the 

neural parameterizer through data supervision to generate a 

parameter field that roughly aligns with real-world 

observations, laying the foundation for subsequent physics-

enhanced training. The second phase is physics-enhanced 

training, where three physical constraint losses are introduced 

to build the total loss function on top of the MSE loss: 

 

Ltotal=LMSE+λ1Lphy+λ2Lsparse+λ3Ldisc (5) 

 

where, 𝜆1, 𝜆2, 𝜆3 are loss weights. The physical residual 

regularization loss 𝐿phy  combines energy conservation and 

momentum conservation constraints. The energy conservation 

residual is obtained by calculating the deviation of the 

simulated energy flow field from the energy balance equation: 

 

Lenergy=
1

M
∑ |

M

j=1

Rn,j-Ĥj-L̂Ej-G̃j| (6) 

 

where, 𝑀  is the number of grid units. The momentum 

conservation residual is calculated by the deviation of the 

simulated wind field from the geostrophic balance relationship: 

 

Lmomentum=
1

M
∑ |

M

j=1

fu⃗ j-∇pj| (7) 

 

where, 𝑓 is the Coriolis parameter, u⃗ j is the wind vector, and 

𝑝𝑗 is the air pressure. Finally, 𝐿phy = 𝐿energy + 𝐿momentum. The 

sparsity penalty loss is expressed as: 

 

Lsparse=
1

M
∑ |M
j=1 Kh,j|  (8) 

 

This loss uses L1 regularization to suppress redundant 

parameter fluctuations and encourage spatial simplicity in the 

parameter field, consistent with the smooth spatial gradient 

characteristics of parameter distribution in thermodynamic 

processes. The discovery loss 𝐿disc aims to guide the model to 

learn an analytically solvable parameterization form. A power 

function based on wind speed and stability, 𝐾ℎ = 𝑎𝑢𝑏𝑅𝑖
𝑐 , is 

selected as a simplified analytical function, where 𝑎, 𝑏, 𝑐 are 

the parameters to be fitted, 𝑢  is wind speed, and 𝑅𝑖  is the 

Richardson number. The loss value is the MSE between the 

analytical function output and the neural parameterizer output: 

 

Ldisc=
1

M
∑ ‖

M

j=1

Kh,j
net-auj

bRij
c‖2

2
 (9) 

 

To ensure the convergence of the two-stage training process, 

while avoiding over-suppression of the data-driven adaptive 

capability by physical constraints, a multidimensional stability 

guarantee mechanism is designed. The core innovation lies in 

dynamically adjusting the loss weights and fine-tuning the 

gradient control. The loss weights follow a progressive 

incremental strategy: the physical residual regularization loss 

weight 𝜆1 increases linearly from 0.1 at the end of pretraining 

to 0.5, the sparsity penalty loss weight 𝜆2 is fixed at 0.01, and 

the discovery loss weight 𝜆3 increases from 0.05 to 0.2. This 

setup ensures the model first establishes data fitting capability 

and gradually strengthens physical consistency and 

mechanism discovery objectives. Gradient control uses 

gradient clipping, setting a global gradient norm threshold of 

1.0. Gradients exceeding this threshold are clipped to prevent 

gradient explosion during training, ensuring smooth parameter 

updates. Learning rate adjustment follows a cosine annealing 

decay strategy, maintaining the initial learning rate of 10−4 

during pretraining, and decaying it following a cosine curve 

during physics-enhanced training, with a minimum value of 

10−6. This guarantees rapid convergence in the early stage and 

stability in parameter fine-tuning later. Additionally, after each 

round of parameter updates, a physical validity check step is 

added. If the parameter field exceeds the pre-set 

thermodynamic validity range, the corresponding gradients 

are decay-corrected to avoid distortion of the physical 

meaning of parameterization terms, ensuring the model always 

converges in a physically valid direction during training. 

 

2.5 Closed-loop integrated prediction and uncertainty 

quantification module 

 

The core logic of the closed-loop integrated prediction is to 

construct a “prediction-feedback-update” autoregressive 

operation loop to achieve continuous scenario simulation of 

short-term thermodynamic energy flow evolution. In the 

initialization phase, the initial surface temperature, radiative 

forcing, and other boundary conditions, along with high-

dimensional climate data, are input into the model. The neural 

parameterizer generates the initial parameter field, and the 

physical simulator outputs the energy flow field and surface 

state variables at time 𝑡. When transitioning to the simulation 

at time 𝑡 + 1, the energy flow field and surface temperature at 

time 𝑡 are used as new boundary conditions, and the real-time 

high-dimensional climate data for 𝑡 + 1  are input into the 

model. The neural parameterizer then adapts the parameter 

field based on the updated inputs, and the physical simulator 

performs a new round of energy balance calculations under the 

new parameters and boundary constraints. This closed-loop 

design dynamically updates input boundary conditions and 

parameter fields, allowing the simulation process to adaptively 

capture the spatiotemporal evolution patterns of energy flow. 

To ensure thermodynamic consistency in the autoregressive 

process, a dual-check procedure is performed after each 

simulation step: the energy balance equation residual ∣ 𝑅𝑛 −
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𝐻 − 𝐿𝐸 − 𝐺 ∣ is computed. If the residual exceeds the preset 

threshold of 10 W ⋅ m−2, the output parameters of the neural 

parameterizer are recalculated by backtracking and adjusting; 

simultaneously, the value range and spatial smoothness of the 

parameter field are checked to ensure the physical validity of 

the parameterization terms does not distort during the iterative 

process, thus maintaining the physical validity of continuous 

simulations. 

Uncertainty quantification is implemented using the Monte 

Carlo Dropout technique. The core innovation is to deeply 

bind uncertainty quantification with the parameterization 

process, enabling accurate characterization and spatial tracing 

of cognitive uncertainty. The specific configuration is as 

follows: Dropout layers are embedded in the key layers of the 

encoder and decoder of the spatiotemporal neural 

parameterizer, with a Dropout rate set to 0.15. During the 

prediction phase, the Dropout layers are kept active, and 50 

independent forward propagations are performed for the same 

input sample, generating 50 independent parameterization 

fields and energy flow prediction results. Cognitive 

uncertainty is quantified through the statistical dispersion 

characteristics of the parameterization fields. For each grid cell, 

the uncertainty of the turbulence exchange coefficient is 

represented by the standard deviation of the 50 sampling 

results: 

 

σKh
(i,j)=√

1

S-1
∑ (S
s=1 Kh

s (i,j)-K̄h(i,j))
2
  (10) 

 

where, 𝑆 = 50  is the number of samples, 𝐾ℎ
𝑠(𝑖, 𝑗)  is the 

turbulence exchange coefficient for the 𝑠-th sample at grid 

point (i, j), and 𝐾̄ℎ(𝑖, 𝑗) is the mean of the 50 samples. 

Uncertainty tracing is achieved by mapping σKh
(i, j)  to the 

spatial grid of the physical simulator, generating an 

uncertainty spatial distribution map. High standard deviation 

regions are identified as "uncertainty hotspot areas." Further 

analysis is performed to establish the intrinsic relationship 

between these hotspot regions and thermodynamic features: 

the proportion of different surface types in the hotspot regions 

is statistically calculated to determine the contribution of 

complex surfaces to uncertainty; the wind speed gradient and 

Richardson number distribution in the hotspot regions are 

computed to reveal the positive correlation between turbulence 

exchange mechanisms and uncertainty. This provides data 

support for locating fuzzy regions in thermodynamic 

mechanisms and focusing subsequent research efforts. 

 

2.6 Model output definition 

 

The model adopts a dual-output design, with the core 

advantage being the simultaneous consideration of prediction 

accuracy and physical interpretability, enabling the 

coordinated output of “prediction results - physical 

mechanisms.” The first type of output is a high-precision 

energy flow spatial distribution prediction map, covering the 

spatiotemporal distribution of sensible heat flux, latent heat 

flux, and surface temperature. The output results undergo 

thermodynamic consistency checks and strictly satisfy the 

energy balance constraints, and can be directly used for 

regional energy flow evolution scenario analysis and energy 

flow forecasting under extreme weather conditions. The 

second type of output is region-specific parameterization 

results with clear physical meaning, along with corresponding 

uncertainty estimates, including the turbulence exchange 

coefficient field, surface impedance field, and their spatial 

uncertainty distribution maps. The two types of outputs are 

tightly thermodynamically linked: the parameterization results 

are the core physical foundation for energy flow prediction, 

and their spatiotemporal heterogeneity directly determines the 

energy flow transport efficiency and distribution pattern. The 

accuracy of energy flow predictions, in turn, verifies the 

rationality of the parameterization mechanism. In terms of 

application value, the energy flow spatial distribution 

predictions provide high-precision data support for climate 

simulation and ecosystem assessment; the parameterization 

results and uncertainty estimates provide direct observational 

calibration for improving traditional regional thermodynamic 

parameterization schemes. Particularly, the mechanism 

analysis of uncertainty hotspot areas can guide targeted field 

observation experiment design and promote the iterative 

optimization of regional thermodynamic models. 
 

 

3. EXPERIMENTAL DESIGN AND DATA 
 

The study area is located in the northern part of the North 

China Plain, a typical agricultural-urban fringe zone. This 

region has a complex underlying surface, including farmland, 

urban built-up areas, forested areas, and a small amount of 

mountainous terrain. The spatial heterogeneity of surface 

cover significantly causes differences in the spatiotemporal 

distribution of thermodynamic energy flow. Additionally, 

influenced by the monsoon climate, there are drastic seasonal 

fluctuations in radiative forcing and meteorological conditions. 

The evolution of energy flow in this region is both complex 

and representative, making it suitable for testing the model's 

adaptability to complex surfaces and heterogeneous conditions. 

The data system includes three core types of data: (1) High-

dimensional climate data come from multi-source fusion 

products. Surface temperature, surface albedo, and other 

optical remote sensing data are sourced from the MODIS 

satellite product (spatial-temporal resolution: 250 m/8 d). 

Near-surface wind speed, temperature, relative humidity, air 

pressure, and other meteorological data come from the ERA5 

reanalysis product (spatial-temporal resolution: 0.25°/1 h). 

Land cover data is taken from the GlobeLand30 product 

(spatial resolution: 30 m). The time span of the data is from 

January 2020 to December 2022, and after preprocessing, the 

data is unified to a spatial-temporal resolution of 1 km/ 1 h. (2) 

Energy flow observation data is sourced from continuous 

observation records from three eddy covariance stations in the 

region. The core variables include sensible heat flux, latent 

heat flux, net radiation, and soil heat flux. The observational 

data is quality-controlled and used for model training and 

validation, with data from 2020-2021 serving as the training 

set and data from 2022 as the independent validation set to 

ensure the objectivity of the validation process. (3) Auxiliary 

data includes the digital elevation model (DEM, spatial 

resolution: 30 m) and land use classification maps, which are 

used to construct terrain constraints and surface prior 

information for the parameterization process, enhancing the 

neural parameterizer’s ability to adapt to regional 

characteristics. 

The model parameters are configured to accurately capture 

spatiotemporal features while ensuring physical consistency. 

The encoder of the spatiotemporal neural parameterizer 

consists of 3 layers of 3D convolution (kernel size: 5 × 5 × 3, 

stride: 1, padding: 2) and 1 layer of Bi-GRU (256 hidden units). 

The decoder consists of 3 layers of transposed convolution 
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(matching the encoder's downsampling factor) and 1 layer of 

spatiotemporal attention module (8 attention heads, feature 

dimension: 128). The training parameters use the AdamW 

optimizer, with an initial learning rate of 1e-4 for the 

pretraining phase, batch size of 32, and 50 epochs. During the 

physical enhancement training phase, the learning rate decays 

according to a cosine annealing strategy, with a batch size of 

32 and 30 epochs. The uncertainty quantification parameters 

include a Dropout rate of 0.15 and Monte Carlo sampling with 

50 samples. The comparative experiments are divided into two 

categories: (1) Benchmark models: The traditional PGML 

model (which uses turbulence exchange coefficients 

calculated from empirical formulas as fixed parameters for 

input into the physical simulator) and the pure data-driven 

model (CNN-LSTM, with the same input-output configuration 

as our model) are used to verify the prediction accuracy 

advantages of the proposed model. (2) Ablation experiments: 

Three groups of comparisons are made by removing the neural 

parameterizer, removing the physical residual regularization 

loss, and removing the discovery loss. By comparing the 

prediction accuracy and physical consistency of different 

models, the core roles of each innovative component are 

verified. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

4.1 Energy flow prediction accuracy verification 

 

The spatiotemporal scale verification and extreme scenario 

verification results for energy flow prediction accuracy are 

shown in Tables 1 and 2. The proposed model demonstrates 

significant advantages under different spatiotemporal scales 

and extreme conditions, with the core advantage stemming 

from the deep integration of physical consistency and data-

driven adaptability. 

 

Table 1. Comparison of energy flow prediction accuracy of different models under different spatiotemporal scales and surface 

types (Units: MSE: W²·m⁻⁴; MAE: W·m⁻²; R: dimensionless) 
 

Prediction 

Scale 
Surface Type Model Sensible Heat Flux (H) Latent Heat Flux (LE) 

Energy Conservation 

Error (W·m⁻²) 

Daily 

Scale 

Homogeneous 

Farmland 

Proposed Model MSE: 892.3, MAE: 22.1, R: 0.92 MSE: 1056.7, MAE: 25.3, R: 0.90 4.8 

Traditional PGML MSE: 1456.2, MAE: 31.5, R: 0.84 MSE: 1689.4, MAE: 34.7, R: 0.82 8.6 

CNN-LSTM MSE: 1289.5, MAE: 28.7, R: 0.87 MSE: 1523.6, MAE: 32.1, R: 0.85 11.2 

Heterogeneous 

Urban-Rural 

Fringe 

Proposed Model MSE: 1123.5, MAE: 26.4, R: 0.89 MSE: 1321.8, MAE: 29.6, R: 0.87 5.3 

Traditional PGML MSE: 1892.7, MAE: 38.2, R: 0.78 MSE: 2156.9, MAE: 42.5, R: 0.75 9.8 

CNN-LSTM MSE: 1645.3, MAE: 34.5, R: 0.82 MSE: 1987.4, MAE: 39.8, R: 0.79 13.5 

Weekly 

Scale 

Homogeneous 

Farmland 

Proposed Model MSE: 987.6, MAE: 24.3, R: 0.90 MSE: 1189.2, MAE: 27.8, R: 0.88 5.2 

Traditional PGML MSE: 1589.3, MAE: 33.8, R: 0.82 MSE: 1821.5, MAE: 36.9, R: 0.80 9.1 

CNN-LSTM MSE: 1423.7, MAE: 31.2, R: 0.85 MSE: 1698.3, MAE: 34.5, R: 0.83 12.1 

Heterogeneous 

Urban-Rural 

Fringe 

Proposed Model MSE: 1256.8, MAE: 28.7, R: 0.87 MSE: 1456.9, MAE: 32.4, R: 0.85 5.7 

Traditional PGML MSE: 2034.5, MAE: 40.6, R: 0.76 MSE: 2321.7, MAE: 44.8, R: 0.73 10.5 

CNN-LSTM MSE: 1789.2, MAE: 36.9, R: 0.80 MSE: 2145.6, MAE: 41.2, R: 0.77 14.3 
Note: The data are from the 2022 independent validation set. R is the Pearson correlation coefficient. The energy conservation error is the mean residual of the 

energy balance equation. 

 

Table 2. Comparison of energy flow prediction accuracy of different models under extreme weather scenarios (Units: MSE: 

W²·m⁻⁴; MAE: W·m⁻²; R: dimensionless) 

 

Extreme 

Scenario 
Model Sensible Heat Flux (H) Latent Heat Flux (LE) 

Accuracy Degradation 

Rate (Daily Scale vs. 

Extreme Scenario, %) 

High 

Temperature 

(T>35℃) 

Proposed Model MSE: 1245.8, MAE: 28.9, R: 0.88 MSE: 1489.3, MAE: 33.2, R: 0.85 15.2 (H), 17.3 (LE) 

Traditional PGML MSE: 2134.6, MAE: 42.8, R: 0.75 MSE: 2567.8, MAE: 48.6, R: 0.72 31.5 (H), 33.7 (LE) 

CNN-LSTM MSE: 1987.4, MAE: 39.6, R: 0.79 MSE: 2345.7, MAE: 45.3, R: 0.76 36.8 (H), 38.2 (LE) 

Strong Wind 

(u>8 m/s) 

Proposed Model MSE: 1189.5, MAE: 27.6, R: 0.89 MSE: 1398.6, MAE: 31.5, R: 0.86 13.5 (H), 15.7 (LE) 

Traditional PGML MSE: 1987.3, MAE: 39.5, R: 0.77 MSE: 2289.5, MAE: 44.7, R: 0.74 28.4 (H), 30.2 (LE) 

CNN-LSTM MSE: 1823.6, MAE: 36.8, R: 0.81 MSE: 2134.8, MAE: 41.9, R: 0.78 33.1 (H), 34.5 (LE) 
Note: The accuracy degradation rate is defined as the difference in MSE between the extreme scenario and the homogeneous farmland daily scale divided by the 

daily scale MSE, with negative values indicating improved accuracy 

 

From Table 1, it can be seen that on the daily scale, the 

proposed model reduces the MSE of sensible heat flux by 

38.7% compared to the traditional PGML and by 30.8% 

compared to CNN-LSTM for homogeneous farmland. For the 

heterogeneous urban-rural fringe, the MSE of sensible heat 

flux is reduced by 40.6% compared to traditional PGML and 

by 29.7% compared to CNN-LSTM. Although the weekly 

scale prediction accuracy slightly decreases, the advantage 

remains stable. Spatially, the accuracy improvement for 

heterogeneous surfaces is significantly higher than for 

homogeneous surfaces, indicating that the neural 

parameterizer effectively captures the heterogeneity of the 

underlying surface. Regarding energy conservation error, the 

proposed model consistently stays below 5.7 W·m⁻², far better 

than the 8.6~10.5 W·m⁻² of traditional PGML and 11.2~14.3 

W·m⁻² of CNN-LSTM, which verifies the role of embedded 

physical consistency in ensuring the reliability of predictions. 

The extreme scenario validation results in Table 2 show that 

the accuracy degradation rate of the proposed model under 

high temperature and strong wind conditions is only 

13.5%~17.3%, far lower than the 28.4%~33.7% for traditional 

PGML and 33.1%~38.2% for CNN-LSTM. In the high-

temperature scenario, traditional PGML fails to adapt to the 

strong convection conditions due to fixed turbulence exchange 

coefficients, leading to a sharp increase in MSE for sensible 

heat flux prediction. CNN-LSTM, lacking physical constraints, 
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exhibits numerical extrapolation bias. In contrast, the proposed 

model dynamically adjusts the turbulence exchange 

coefficients using the neural parameterizer and maintains 

energy balance under physical conservation constraints, 

effectively controlling prediction bias. In the strong wind 

scenario, the strict adherence to momentum conservation 

further reduces the deviation in energy flow simulation, 

verifying the core role of embedded physical consistency in 

enhancing model generalization capability. 

 

4.2 Innovation component effectiveness analysis 

 

The effectiveness verification results of the innovative 

components based on the ablation experiments are shown in 

Table 3. The synergistic effect of the neural parameterizer, 

multi-objective learning strategy, and uncertainty 

quantification module is the key to ensuring model 

performance. The independent contributions of each 

component are significant and complementary. 

The effectiveness of the neural parameterizer is significant: 

when removed, the MSE of sensible heat flux increases by 

75.7%, the MSE of latent heat flux increases by 69.3%, and 

the energy conservation error doubles, with the parameter 

reasonability coefficient dropping from 0.87 to 0.65. This 

indicates that fixed empirical parameters cannot adapt to the 

spatiotemporal heterogeneity of complex surfaces, whereas 

the neural parameterizer, driven by high-dimensional climate 

data, can precisely generate parameter fields that match 

regional features, providing core support for high-precision 

simulations. In the multi-objective learning strategy, removing 

physical residual regularization increases the energy 

conservation error from 4.8 to 8.5 W·m⁻², and the parameter 

reasonability coefficient drops by 0.11, verifying its key role 

in strengthening physical consistency. Removing the 

discovery loss decreases the parameter reasonability 

coefficient by 0.15, indicating that this loss term effectively 

guides the model to learn a simplified and physically intuitive 

parameterization form. The effectiveness of the uncertainty 

quantification module is verified by the confidence interval 

coverage, with the model achieving a coverage rate of nearly 

94%, far exceeding the approximately 82% coverage rate of 

the model without the neural parameterizer. This demonstrates 

its ability to accurately depict cognitive uncertainty. The 

CRPS metric shows that the uncertainty quantification 

accuracy of the model is over 35% higher than that of the 

model without the neural parameterizer, and the uncertainty 

hotspot areas are primarily concentrated in regions with 

complex underlying surfaces such as urban-rural fringe zones 

and mountain-plain transitions, as well as areas with sparse 

observational data, which aligns highly with regional 

thermodynamic characteristics, achieving precise association 

between uncertainty and mechanisms. 

 

Table 3. Impact of each component on model performance in ablation experiments (Units: MSE: W²·m⁻⁴; MAE: W·m⁻²; R: 

dimensionless; energy conservation error: W·m⁻²; Confidence interval coverage: %; CRPS: W·m⁻²) 

 

Model Configuration Sensible Heat Flux (H) 
Latent Heat Flux 

(LE) 

Energy 

Conservation 

Error (W·m⁻²) 

Parameter 

Reasonability 

Coefficient 

Confidence 

Interval Coverage 

(H/LE, %) 

CRPS 

(H/LE) 

Proposed Model (All 

Components) 

MSE: 892.3, MAE: 

22.1, R: 0.92 

MSE: 1056.7, MAE: 

25.3, R: 0.90 
4.8 0.87 94.2 / 93.8 

18.5 / 

21.3 

No Neural Parameterizer 

(Fixed Empirical 

Parameters) 

MSE: 1567.8, MAE: 

33.2, R: 0.83 

MSE: 1789.5, MAE: 

36.8, R: 0.81 
9.2 0.65 82.5 / 81.7 

28.7 / 

32.4 

No Physical Residual 

Regularization 

MSE: 1089.4, MAE: 

25.8, R: 0.89 

MSE: 1267.8, MAE: 

28.9, R: 0.87 
8.5 0.76 90.3 / 89.5 

22.3 / 

25.6 

No Discovery Loss 
MSE: 987.6, MAE: 

24.5, R: 0.90 

MSE: 1145.3, MAE: 

27.2, R: 0.88 
5.3 0.72 93.5 / 92.9 

19.8 / 

22.7 

No Uncertainty 

Quantification Module 

MSE: 895.7, MAE: 

22.3, R: 0.91 

MSE: 1063.2, MAE: 

25.6, R: 0.89 
4.9 0.86 - / - - / - 

Note: The parameter reasonability coefficient is the correlation coefficient between the neural parameterizer output and the observed derived turbulence exchange 

coefficient. CRPS is the Continuous Ranked Probability Score, with lower values indicating more accurate uncertainty quantification 

 

4.3 Discovery results of regional thermodynamic 

parameterization mechanism 

 

The discovery results of the regional thermodynamic 

parameterization mechanism are the core innovation of this 

study, including the spatial distribution characteristics of 

parameterization terms, the derivable parameterization 

relationships, and the core thermodynamic driving 

mechanisms. The related results are shown in Table 4 and 

Table 5. The corresponding Figure 4 displays the regional 

turbulence exchange coefficient field 𝐾ℎ, surface impedance 

field 𝑟𝑠, and the corresponding uncertainty spatial distribution 

map generated by the model inversion. It highlights the 

parameter gradient changes in heterogeneous regions such as 

the urban-rural fringe. 

Table 4 shows that the spatial distribution characteristics of 

parameterization terms are significant and consistent with 

thermodynamic principles: The turbulence exchange 

coefficient 𝐾ℎ follows the distribution pattern of waterbody > 

bare land > forest > farmland > urban built-up area, which is 

negatively correlated with surface roughness—water bodies 

have smooth surfaces and low momentum exchange resistance, 

yielding the largest 𝐾ℎ; urban areas with dense buildings have 

high roughness, resulting in the smallest Kh. The surface 

impedance 𝑟𝑠, in contrast, shows an opposite trend, with urban 

built-up areas having the largest 𝑟𝑠 due to low vegetation cover 

and weak evaporation, while water bodies have the smallest 𝑟𝑠. 

Correlation analysis shows that 𝐾ℎ is significantly positively 

correlated with both wind speed and temperature gradient, 

with coefficients higher than 0.85 for bare land and water, 

indicating that turbulence exchange in these regions is 

primarily driven by wind speed. For farmland and forest, the 

correlation with temperature gradient is higher, reflecting the 

important contribution of thermal convection to turbulence 

exchange. These distribution characteristics are consistent 

with the physical understanding of regional thermodynamic 

processes. 

 

2142



 
 

Figure 4. Regional spatial distribution heatmap 

 

Table 4. Statistical results of turbulence exchange coefficient and surface impedance for different surface types (Units: 𝐾ℎ: 

m²·s⁻¹; 𝑟𝑠: s·m⁻¹) 

 

Surface Type 

Turbulence Exchange 

Coefficient (Mean ± Standard 

Deviation) 

Surface Impedance 

(Mean ± Standard 

Deviation) 

Correlation 

Coefficient with Wind 

Speed (𝐾ℎ − 𝑢) 

Correlation Coefficient 

with Temperature 

Gradient (𝐾ℎ − ∇𝑇) 

Forest 0.82 ± 0.15 856 ± 123 0.78 0.65 

Farmland 0.65 ± 0.12 623 ± 98 0.82 0.71 

Urban Built-up Area 0.48 ± 0.18 1258 ± 215 0.69 0.58 

Bare Land 0.95 ± 0.21 489 ± 76 0.85 0.78 

Waterbody 1.23 ± 0.25 325 ± 58 0.88 0.62 
Note: Data are based on grid-scale statistical results from the 2022 validation set; the correlation coefficients are Pearson correlation coefficients 

 

Table 5. Comparison of fit performance between newly discovered parameterization relationships and existing empirical 

formulas 

 

Parameterization Relationship Type Expression 
Fit Quality 

(R²) 

Root Mean Square 

Error (RMSE, m²·s⁻¹) 

Applicable Surface 

Types 

New Discovered Relationship (This Model) Kh=0.087u1.23Ri-0.32 0.89 0.078 
All Regions  

(Multi-Surface Mix) 

Businger-Dyer Formula (Traditional) Kh=0.094uRi-0.5 0.72 0.156 Homogeneous Farmland 

Zhang Formula (Improved Traditional) Kh=0.075u1.1Ri-0.4 0.78 0.123 Forest / Farmland Mix 

Note: 𝑢 is near-surface wind speed (m·s⁻¹); 𝑅𝑖 is the Richardson number (dimensionless); fit quality and RMSE are calculated based on the observed-derived 

values of 𝐾ℎ from the 2022 validation set. 

 

 
 

Figure 5. Fit comparison of newly discovered parameterization relationship with existing empirical formulas 

 

Table 5 shows that the newly discovered parameterization 

relationship has significant advantages: its fit quality 

𝑅2 reaches 0.89, improving by 23.6% compared to the 

traditional Businger-Dyer formula and by 14.1% compared to 

the improved Zhang formula. The RMSE is only 0.078 m²·s⁻¹, 

more than 50% lower than the traditional formulas. Traditional 

formulas are mostly suitable for single homogeneous surfaces, 

while the new relationship, constrained by discovery loss, 

integrates the thermodynamic characteristics of multiple 

surface types and can adapt to the turbulence exchange laws 

of different regions. Combined with energy flow prediction 

results and parameter distribution characteristics, the core 
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driving mechanisms of regional energy flow evolution can be 

clearly identified: In the plain farmland region, the turbulence 

exchange coefficient has a high correlation with the 

temperature gradient, and energy flow transmission is 

dominated by thermal convection, with latent heat flux 

accounting for more than 60%. In the urban built-up area, the 

large surface impedance and weak turbulence exchange lead 

to a significant increase in sensible heat flux, which accounts 

for 55%~65%, forming an "urban heat island" related energy 

flow distribution pattern. In the mountain-plain transition zone, 

the surface heterogeneity causes dramatic fluctuations in the 

turbulence exchange coefficient, making it a hotspot area for 

uncertainty in energy flow prediction. In this region, energy 

flow transmission is jointly dominated by terrain dynamics 

and thermal effects. Corresponding to Table 5, Figure 5 

displays the comparison of fit performance between the newly 

discovered parameterization relationship, the traditional 

Businger-Dyer formula, and observational data. The X-axis 

represents the physical driving variables, and the Y-axis 

represents the turbulence exchange coefficient, showing the 

data point distribution and the fitting curves of different 

formulas. 

 

 

5. DISCUSSION  

 

The core academic breakthrough of the dual-path physical-

data hybrid framework lies in achieving the paradigm shift 

from fixed physical constraints to discoverable physical 

structures in PGML, providing a new paradigm for the role of 

machine learning in thermodynamic research. Traditional 

PGML embeds physical laws as external static constraints in 

models, essentially still limited to data fitting and surrogate 

prediction. In contrast, this framework transforms physical 

laws into inherently optimizable structures through the 

collaborative design of a differentiable physical kernel and 

spatiotemporal neural parameterizer, allowing machine 

learning to actively participate in the discovery of 

thermodynamic parameterization mechanisms. This shift not 

only improves prediction accuracy but also achieves a leap 

from "black-box prediction" to "mechanism discovery." The 

newly discovered regional-adaptive turbulence exchange 

coefficient relationship compensates for the inability of 

traditional empirical formulas to adapt to complex surface 

mixed regions and provides direct theoretical support and data 

for improving the parameterization system of regional 

thermodynamic energy balance models. It deepens our 

understanding of the coexistence of multiple driving 

mechanisms of energy flow transmission under complex 

surface conditions. 

Compared with existing studies, this framework shows 

significant advantages in the synergistic improvement of 

physical consistency, generalization, and interpretability. 

Compared to traditional PGML models, this framework, 

through the adaptive learning of the neural parameterizer, 

eliminates the reliance on fixed empirical parameters, 

achieving more than 30% improvement in prediction accuracy 

in heterogeneous surface regions and a 50% reduction in 

accuracy degradation rate under extreme scenarios, 

highlighting the enhancement of physical models by data-

driven adaptive capability. Compared to purely data-driven 

models, the embedded thermodynamic conservation 

constraints fundamentally avoid non-physical predictions 

under extreme conditions, with energy conservation errors 

controlled within 5 W·m⁻², showing significantly better 

physical consistency than existing models. Furthermore, the 

design of the framework in terms of high-dimensional climate 

data fusion efficiency and uncertainty traceability is unique: 

the cross-modal attention fusion module achieves precise 

weighting of multi-source climate variables, enhancing the 

identification efficiency of key thermodynamic driving factors; 

Monte Carlo Dropout, deeply integrated with the 

parameterization process, enables uncertainty quantification to 

directly trace back to the thermodynamic mechanism 

complexity of specific grid units, providing clear guidance for 

future research focus. 

This study still has some limitations, which point out 

directions for future improvements. The parameterization 

accuracy in extremely complex terrain regions still has room 

for improvement, as the influence of terrain dynamics on 

turbulence exchange has not been fully captured, leading to 

less precise spatial heterogeneity of parameterization terms. In 

long-term autoregressive predictions, the cumulative effect of 

energy balance residuals causes prediction bias to gradually 

increase over time, affecting the reliability of long-term 

simulations. The preset analytical function form in the 

discovery loss has prior dependencies, which may limit the 

discovery of more complex parameterization mechanisms. To 

address these issues, future improvements can focus on three 

aspects: (1) Introducing a terrain feature extraction module 

based on graph neural networks, which will integrate terrain 

dynamic parameters to improve the driving factor system for 

parameterization terms. (2) Designing a residual correction 

mechanism, which will adjust the boundary conditions and 

parameter fields of long-term simulations through real-time 

observational data feedback, helping to suppress the 

accumulation of errors. (3) Using Bayesian optimization 

combined with symbolic regression methods to build a search 

mechanism for analytical functions without prior constraints, 

enhancing the model's ability to discover complex 

thermodynamic mechanisms. Additionally, the framework can 

be expanded to global-scale thermodynamic energy flow 

simulations, further testing its generalization ability and 

application value. 

 

 

6. CONCLUSION 

 

This study proposed a dual-path physics-data hybrid 

framework that achieves deep synergistic integration of high-

dimensional climate data and thermodynamic physical laws. 

The core innovation lies in constructing a collaborative 

architecture of differentiable physical kernels and 

spatiotemporal neural parameterizers, which upgrades 

physical laws from traditional external fixed constraints to an 

internally discoverable and interpretable structure within the 

model. This effectively solved the challenges of unknown 

thermodynamic parameterizations and spatial heterogeneity 

adaptation under complex underlying surface conditions. The 

integration of multi-objective progressive learning strategies 

and closed-loop uncertainty quantification modules further 

strengthened the model's physical consistency and mechanism 

discovery capabilities, forming a complete technological 

system of "physical skeleton-data flesh-mechanism 

discovery." 

Experimental results show that this model outperforms 

traditional PGML and CNN-LSTM in both spatiotemporal 

scale and extreme scenario validations. The MSE of sensible 
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heat flux in heterogeneous urban-rural transition zones at the 

daily scale is reduced by 40.6% compared to traditional PGML. 

The advantage remains stable at the weekly scale, and the 

accuracy degradation rate under high temperature and strong 

wind conditions is far lower than that of the comparison 

models. Ablation experiments show that after removing the 

neural parameterizer, the MSE of sensible heat flux increases 

by 75.7%. The physical residual regularization ensures energy 

conservation, and the collaborative components enhance 

model performance. The discovery of regional 

thermodynamic mechanisms shows that the turbulence 

exchange coefficient follows the order: water > bare land > 

forest > farmland > urban built-up area. The newly discovered 

parameterization relationship has a goodness of fit (R²) of 0.89, 

significantly improving compared to traditional formulas, and 

clarifies the regional differences in energy flow drivers, such 

as thermal convection dominance in plain farmland and 

sensible heat dominance in urban built-up areas. 

The academic contribution of this study lies in providing a 

new method for regional thermodynamic energy flow pattern 

prediction, advancing the paradigm shift in machine learning 

from alternative prediction to mechanism discovery and model 

enhancement in the field of thermodynamics. The practical 

value is reflected in how the discovered regional 

parameterization mechanism provides direct data support and 

theoretical basis for improving traditional climate model 

parameterization schemes. This is of great significance for 

enhancing climate simulation reliability, optimizing extreme 

weather warnings, and ecological environment assessments. 

Future research can further expand the model's scale 

adaptability, improve parameterization systems under 

complex terrain conditions, and promote its application in 

thermodynamic system simulations across larger areas. 

 

 

ACKNOWLEDGMENT 

 

This work was funded by the Jiangxi Provincial Department 

of Science and Technology (Grant Nos.: S2021ZXXMC0272, 

S2023ZXXMC0288); the Project of Jiangxi Provincial 

Department of Education (Grant No.: GJJ2405305); and the 

Science and Technology Project of Jiangxi Provincial 

Department of Transportation (Grant Nos.: 2025YB032, 

2024ZG015, 2024YB009, 2024YB008, 2022H0026). 

 

 

REFERENCES  

 

[1] Fisher, J.B., Melton, F., Middleton, E., Hain, C., 

Anderson, M., Allen, R., Wood, E.F. (2017). The future 

of evapotranspiration: Global requirements for 

ecosystem functioning, carbon and climate feedbacks, 

agricultural management, and water resources. Water 

Resources Research, 53(4): 2618-2626. 

https://doi.org/10.1002/2016WR020175 

[2] Kashinath, K., Mustafa, M., Albert, A., Wu, J.L., Jiang, 

C., Esmaeilzadeh, S., Prabhat, N. (2021). Physics-

informed machine learning: Case studies for weather and 

climate modelling. Philosophical Transactions of the 

Royal Society A, 379(2194): 20200093. 

https://doi.org/10.1098/rsta.2020.0093 

[3] Watt-Meyer, O., Brenowitz, N.D., Clark, S.K., Henn, B., 

Kwa, A., McGibbon, J., Bretherton, C.S. (2024). Neural 

network parameterization of subgrid-scale physics from 

a realistic geography global storm-resolving simulation. 

Journal of Advances in Modeling Earth Systems, 16(2): 

e2023MS003668. 

https://doi.org/10.1029/2023MS003668 

[4] Dueben, P.D., Bauer, P. (2018). Challenges and design 

choices for global weather and climate models based on 

machine learning. Geoscientific Model Development, 

11(10): 3999-4009. https://doi.org/10.5194/gmd-11-

3999-2018 

[5] Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., 

Gentine, P. (2021). Enforcing analytic constraints in 

neural networks emulating physical systems. Physical 

Review Letters, 126(9): 098302. 

https://doi.org/10.1103/PhysRevLett.126.098302 

[6] Hess, P., Aich, M., Pan, B., Boers, N. (2025). Fast, scale-

adaptive and uncertainty-aware downscaling of Earth 

system model fields with generative machine learning. 

Nature Machine Intelligence, 7(3): 363-373. 

https://doi.org/10.1038/s42256-025-00980-5 

[7] Le Bras, P., Sévellec, F., Tandeo, P., Ruiz, J., Ailliot, P. 

(2024). Selecting and weighting dynamical models using 

data-driven approaches. Nonlinear Processes in 

Geophysics, 31(3): 303-317. 

https://doi.org/10.5194/npg-31-303-2024 

[8] Jung, M., Schwalm, C., Migliavacca, M., Walther, S., 

Camps-Valls, G., Koirala, S., Reichstein, M. (2020). 

Scaling carbon fluxes from eddy covariance sites to 

globe: synthesis and evaluation of the FLUXCOM 

approach. Biogeosciences, 17(5): 1343-1365. 

https://doi.org/10.5194/bg-17-1343-2020 

[9] Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., 

Raymond, C., Horton, R.M., Vignotto, E. (2020). A 

typology of compound weather and climate events. 

Nature Reviews Earth & Environment, 1(7): 333-347. 

https://doi.org/10.1038/s43017-020-0060-z 

[10] Manikkan, S., Srinivasan, B. (2023). Transfer physics 

informed neural network: A new framework for 

distributed physics informed neural networks via 

parameter sharing. Engineering with Computers, 39(4): 

2961-2988. https://doi.org/10.1007/s00366-022-01703-9 

[11] Fast, J.D., Berg, L.K., Feng, Z., Mei, F., Newsom, R., 

Sakaguchi, K., Xiao, H. (2019). The impact of variable 

land-atmosphere coupling on convective cloud 

populations observed during the 2016 HI-SCALE field 

campaign. Journal of Advances in Modeling Earth 

Systems, 11(8): 2629-2654. 

https://doi.org/10.1029/2019MS001727 

[12] Behrens, G., Beucler, T., Iglesias-Suarez, F., Yu, S., 

Gentine, P., Pritchard, M., Eyring, V. (2025). Simulating 

atmospheric processes in Earth system models and 

quantifying uncertainties with deep learning multi-

member and stochastic parameterizations. Journal of 

Advances in Modeling Earth Systems, 17(4): 

e2024MS004272. 

https://doi.org/10.1029/2024MS004272 

[13] Schneider, T., Lan, S., Stuart, A., Teixeira, J. (2017). 

Earth system modeling 2.0: A blueprint for models that 

learn from observations and targeted high-resolution 

simulations. Geophysical Research Letters, 44(24): 12-

396. https://doi.org/10.1002/2017GL076101 

[14] Han, Y., Zhang, G.J., Huang, X., Wang, Y. (2020). A 

moist physics parameterization based on deep learning. 

Journal of Advances in Modeling Earth Systems, 12(9): 

e2020MS002076. 

2145



https://doi.org/10.1029/2020MS002076 

[15] Hassanzadeh, P., Kuang, Z. (2016). The linear response

function of an idealized atmosphere. Part I: Construction

using Green’s functions and applications. Journal of the

Atmospheric Sciences, 73(9): 3423-3439.

https://doi.org/10.1175/JAS-D-15-0338.1

[16] Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G.,

Yacalis, G. (2018). Could machine learning break the

convection parameterization deadlock? Geophysical

Research Letters, 45(11): 5742-5751.

https://doi.org/10.1029/2018GL078202

[17] Cheruy, F., Campoy, A., Dupont, J.C., Ducharne, A.,

Hourdin, F., Haeffelin, M., Idelkadi, A. (2013).

Combined influence of atmospheric physics and soil

hydrology on the simulated meteorology at the SIRTA

atmospheric observatory. Climate Dynamics, 40(9):

2251-2269. https://doi.org/10.1007/s00382-012-1469-y

[18] Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M.,

Denzler, J., Carvalhais, N., Prabhat, F. (2019). Deep

learning and process understanding for data-driven Earth 

system science. Nature, 566(7743): 195-204. 

https://doi.org/10.1038/s41586-019-0912-1 

[19] Schulz, J., Albert, P., Behr, H.D., Caprion, D., Deneke,

H., Dewitte, S., Zelenka, A. (2009). Operational climate

monitoring from space: The EUMETSAT Satellite

Application Facility on Climate Monitoring (CM-SAF).

Atmospheric Chemistry and Physics, 9(5): 1687-1709.

https://doi.org/10.5194/acp-9-1687-2009

[20] Wu, S., Zhang, X., Bao, S., Dong, W., Wang, S., Li, X.

(2023). Predicting ocean temperature in high-frequency

internal wave area with physics-guided deep learning: A

case study from the South China Sea. Journal of Marine

Science and Engineering, 11(9): 1728.

https://doi.org/10.3390/jmse11091728

[21] Bauer, P., Thorpe, A., Brunet, G. (2015). The quiet

revolution of numerical weather prediction. Nature,

525(7567): 47-55. https://doi.org/10.1038/nature14956

2146




