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Accurate estimation of the coefficient of compressibility (C.) is essential for predicting
foundation settlement, yet odometer tests on undisturbed samples are often limited in
most site investigations. In contrast, standard penetration test (SPT) data are more
widely available. Existing SPT-Cc. correlations are extremely limited and often
inconsistent across soil types, and previous studies relied mainly on linear regression,
which cannot capture nonlinear or asymmetric dependence. This study addresses these
gaps by developing a probabilistic framework to model the dependency structure
between SPT—Neo and C. for clay soils in Thi-Qar, southern Iraq, using copula theory.
Several copula candidates were evaluated using AIC and BIC criteria, and their
performance was compared with the classical Nataf model. In addition, the Bootstrap
method was adopted as a robust resampling tool to quantify uncertainty in dependence
modeling under limited data conditions. The measured data exhibited a moderate
negative dependence (p = —0.56, T = —0.43), confirming that denser soils (higher Neo)
tend to have lower compressibility. Among the tested models, the Gaussian copula
provided the best statistical representation of the joint behavior of Neo and C.. Results
also showed that Pearson’s correlation (p) is not invariant under monotonic
transformations, whereas the Nataf model behaves similarly to the Gaussian copula
when dependence is approximately linear. The proposed framework enhances
reliability-based characterization of local soils and reduces reliance on extensive
laboratory testing by enabling accurate simulation of soil parameters.

1. INTRODUCTION

Understanding geotechnical properties such as the
coefficient of compressibility (C.) is essential to foundation
design. The calculation of the consolidation settlement
depends on the quality of information available from the site
and laboratory tests. The standard penetration test (SPT) is one
of the most widely used field tests in Iraq and around the world
to determine soil resistance. This is because it is simpler and
less expensive compared to laboratory tests like the uniaxial
compression test. The SPT test was developed in the United
States in 1927 [1]. Because of its antiquity and widespread use,
studies have presented numerous experimental equations
based on its results to evaluate soil properties, such as the
correlation of standard penetration number (SPT-N) with
relative density (Dr) of sand, undrained cohesion (cu) with
SPT-N for clay soil [2], the consistency index (CI), and SPT-
N [3]. In many studies, correlations between SPT-N values and
sand friction angle have been proposed; a study [4] provided a
critical review of these correlations, and a new correlation was
proposed based on data collected from the literature.
Correlation between SPT-N and the modulus of elasticity (E)
has been performed for granular soils [5]. In addition, several
studies have examined the correlations between shear wave
velocity and SPT-N [6], reviewing the most important of these
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relationships.

Similarly, the C. is a crucial metric for assessing the
settlement of foundations in clay soils subjected to stresses.
Precise and expensive tests in the lab are usually needed to
calculate it. Many researchers have taken numerous
approaches worldwide to create empirical correlations for
compressibility with easily obtainable index properties like
void ratio, liquid limit (LL), plasticity index (PI), and natural
moisture content [7]. A helpful study for Nasiriyah soil also
correlates the compressibility index with Aterberg limits (LL,
plastic limit (PL), and PI) [8].

When resources are limited for many projects, it is
important to have equations that can estimate soil properties
without complex laboratory tests. Empirical relationships
about the compressibility index of soil or SPT parameters are
thus essential. The compressibility factor has rarely been
estimated directly from field test data such as the SPT test.
However, some attempts have been made to estimate C. from
SPT data [9]. The researcher used linear regression analysis to
determine the relationship between the SPT and the clay soil
C.. The correlation between the soil compression index and
SPT-N value of stiff clay soil was linear, as the compression
index decreases with increasing SPT-N value, and an
unreliable correlation for soft clay. A contrary conclusion was
observed for samples included that were collected from
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different coastal areas, where higher SPT values were
associated with higher C. values [10].

In the domain of probabilistic modeling of geotechnical
variables, there exists a necessity to denote the
interdependence between parameters, particularly when these
variables are not entirely autonomous. Some traditional
methods have been applied to accomplish this purpose, such
as the Rosenblatt transform [11] and the Nataf transform [12].
However, both approaches face significant restrictions that
constrain their proficiency and adaptability. The Rosenblatt
transform, alternatively, demands exact foreknowledge of the
joint probability density function (PDF), a task that is often
extremely complex or impractical, particularly when
addressing incomplete data [11]. The Nataf method assumes
only a linear relationship between variables and can only be
applied to distributions belonging to the normal distribution
family, like the Gaussian distribution [13]. This renders it
ineffective when the relationship between variables is
nonlinear or asymmetrical, as is regularly the case in natural
soil properties.

In contrast, the copula theory is a more advanced and
flexible option, as it allows for the detachment of marginal
distributions from the dependency structure between variables,
permitting the precise representation of intricate statistical
relationships. The copula does not necessitate a linear
relationship and allows the joint cumulative distribution
function (CDF) to be constructed independently of marginal
distributions [14]. For this reason, the copula has become a
widely used instrument in the fields of risk examination,
reliability analysis, and geotechnical engineering, particularly
when addressing incomplete data. Numerous studies have
used copula theory to generate the joint probability
distribution of interrelated geotechnical parameters with
limited probability distribution information. Uzielli and
Mayne [15] used Copula theory to analyze and represent the
dependence of load-displacement model parameters to
generate samples that account for parametric uncertainties in
model inputs, which were then used in a Monte Carlo
Simulation (MCS) to assess the impact of these uncertainties
on settlement estimation. Wu and Xin [16] used a bivariate
copula to simulate the cement fly ash gravelly (CFG), in pile
load-settlement behavior regression curve parameter
dependence. When probability information is missing, the
copula function creates a joint distribution of rockfill material
nonlinear strength coefficients [17]. The vine copula was
employed in a previous study [18] to model the dependence
structure between consolidation parameters such as initial void
ratio, compressive index, and saturated density of soft clayey
soil, which contributed to providing a more realistic and
reliable analysis of consolidation settlement. The copula
theory was used in a previous study [19] to model the
dependency between uncertain  geotechnical  design
parameters in reliability-based shallow foundation design.

Although the SPT is a common in situ test employed
worldwide, and although the C. is a primary parameter needed
for settlement prediction, the literature reveals several critical
limitations that motivate the present study. First, SPT-C.
correlations are very scarce and tend to vary with soil type,
with some studies noting a decrease in C. with increasing SPT-
N values, and vice versa in other geological settings. Second,
past efforts mainly employed simple linear regression, which
is an inappropriate tool for modeling linear or asymmetric
dependence, which is often the dominant feature of natural soil
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behaviour, limiting the generalizability of such correlations.
Third, to the best of the authors’ knowledge, no prior research
has applied copula theory to model the SPT—C. relationship,
whether in Iraq or internationally for regionally representative
clay soils, leaving a methodological gap in probabilistic
geotechnical modeling. Fourth, in Thi-Qar Governorate, the
need for reliable C. estimation is especially pressing due to the
scarcity of undisturbed sampling and the high cost or limited
availability of laboratory consolidation tests. Therefore, a
probabilistic framework capable of leveraging inexpensive
field data such as SPT-Neo to characterize soil compressibility
is of practical importance for both routine geotechnical design
and reliability-based settlement assessment.

This research aims to develop a copula-based statistical
model to describe the relationship between SPT-N60 values
and the C. for clay soils in Thi-Qar Governorate, by integrating
real field data with copula dependence structures. The research
consists of three parts: the first is collecting the necessary data,
then the Copula approach is used to get the dependency, and
then simulating the SPT and C.. The research discussed the
marginal distributions of C. and SPT and the effect of value
on the Gaussian copula. Important comparisons with other
models are also stated in this research. This research
contributes to developing a framework to construct the
dependency of C. and SPT, then includes it in a simulation of
the probabilistic state of the two parameters. It is very helpful
in examining the reliability analysis and design of shallow
foundations and pile foundations.

2. METHODOLOGY

The research methodology is structured into two main
components. The first section focuses on the study area,
covering the project location and the site geology. The second
part deals with the most famous reliability measures, the
copula theory, and its most famous types. It also deals with
constructing and simulating the joint distribution of SPT-N60
values and the C, using the copula. Figure 1 shows a flow chart
of data simulation using copula functions used in this study.

2.1 Collection of data

The data used in this study were obtained from geotechnical
investigation reports of seven different projects located within
Thi-Qar Governorate, in southern Iraq, approximately 360 km
south of Baghdad, the capital. The studied samples are lean
clay collected from seven different projects: two in Nasiriyah,
four in Al-Shatra, and one in Al-Nasr, as shown in Figure 2.

At each site, disturbed samples and undisturbed samples
were collected using an SPT split spoon and a standard Shelby
tube sampler, respectively. One-dimensional consolidation
experiments were performed on 17 soil samples, as shown in
Table 1. To minimize variability caused by depth differences,
all undisturbed samples were taken from a consistent depth
range of 4 to 5 meters. The corresponding disturbed samples
were collected within 0.5 meters of the undisturbed sample
locations. Therefore, the soil characteristics may be assumed
to be the same. The sample size of n = 17 was deemed adequate,
given it falls within the range established by previous literature.
Wu [20] adopted the sample size of n = 15 in modeling soil
shear parameters by copula theory.
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Figure 1. Flow chart of data simulation using copula functions

Figure 2. Location of the studied region

Table 1. Properties of the soil used in the present study 2.2 Measures of correlation

No. Neo  Cc The dependence between soil parameters describes the
1 8 0.2 relationship between them mathematically or statistically, and
27 0229 means that if one variable changes, the type of change in the
312026 other variable will be identified. It shows how each one affects
4 13018 the other and how the other is influenced by this parameter.
5 12 0.23 . .

6 11 023 There are different types of dependence, such as linear,
7 4 034 nonlinear, functional, and statistical dependence. Dependence
8 13 0.4 is a critically examined and significant term in probabilistic
9 19  0.19 and statistical analysis, particularly in reliability studies.
100 5 0229 Stochastic dependency significantly influences not only the
117 018 development of a joint PDF, but also the assessment of failure
1211 0.196 probability [13]. Including the dependency between the
1313019 parameters of soil leads to an accurate analysis and design.
1470303 Ignoring the dependency may make the design unsafe or
15 18 0.17 . .

16 7 0.19 conservative, and both shall be avoided.

17 8  0.165 The joint behavior of the C. and SPT increases the
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understanding that will enhance the settlement estimation of
the foundation. This will reduce the redundancy in testing to
quantify this parameter.

2.2.1 Pearson coefficient (p)

Pearson’s p correlation coefficient measures the linear
dependence between two random variables [21]. It is the most
widely used measure of dependency due to its simplicity and
close association with the multivariate Gaussian PDF and is
expressed as follows:

Cov(X1,X3)

p= Jvar(X ) var(Xy)

(D
where, p € [-1;+1]. When the value is -1 or +1, this indicates
a perfectly linear correlation between the two random
variables and no linear relationship when the value equals 0;
this does not mean that these two variables are independent,
but rather that there is another type of relationship between
them [22]. Pearson's correlation coefficient can be expressed
in accordance with the notion of covariance:

p =110 1 [ 22 £ G k)i,

01

2

where, 1; and u» represent the means of each of the variables
X; and X>, respectively, o and o are the standard deviations
of Xi and X5, and f(x,,x,) is the bivariate distribution
function (PDF) of X, and X» which is given by:

f(x1,%2) = D(Fy(x1), F>(x3); 0)f1(x1)f2(x2) 3)

By inserting Eq. (3) into Eq. (2), we obtain the relationship
between rho Pearson (p) and the copula parameter (6):

p= 100 1 ] 2] 0 (R () Fax)i ©)
f1(x) f2(xz)dx, dx,

“4)

It is evident from Eq. (4) that Pearson's correlation
coefficient is influenced by both marginal distributions and
joint distributions of random variables. However, this
contrasts with the copula theorem, which is characterized by
separating the dependence structure from the marginal
distributions. In addition, the Pearson correlation coefficient is
only unchanging in strictly linear monotonic transformations.
Suppose non-linear transformations are applied, or the random
variables do not follow a joint Gaussian distribution. In that
case, it will not be an effective measure of reliability and may
lead to incorrect results [23].

2.2.2 Kendall’s 1 coefficient

Kendall’s T measures the degree of concordance between
random variables. Mathematically, Kendall’s t is described as
the probability of concordance minus the probability of
discordance [24].

T=PKX11?D@§—2§)>O] )
—P[(X; — X)Xz — X;) < 0]

The first part on the right side represents the concordance
probability, and the second part represents the discordance
probability. Kendall’s t is symmetric and takes values within
[-1,1]. In contrast to the linear correlation, Kendall's T is
unaffected by strictly increasing transformations. Furthermore,

4446

it is less sensitive to outliers, so these features have made it the
most suitable for representing dependence in copulas [25].
Kendall’s T can be articulated in relation to a copula function
when the copula (C) is entirely continuous [24, 26].

T =4 [ [ Cluy ttz; 0)dC(uy 53 8) — 1 (©)
where, u; is the CDF of U; and U; = F;(X;) represents a
standard uniform random variable limited within the interval
[0,1]. It is evident from Eq. (6) that Kendall’s t is unaffected
by the marginal distributions but only by the adopted copula.
When the coefficient of correlation (7) between X; and X> is
determined, the value of 8 can be found by repeatedly solving
the previous integral equation. The empirical form of
Kendall's T is expressed as follows:

I = Ticjsign|(x1i—x1;)(x2i=%2)]
- 0.5N(N—-1)

(7

where, N represents the number of samples, and the sign(.) is
calculated from:

P {_1 (xu- - xlj)(xzi - xzj) < 0 (discordant)
s 1 (xy = xlj)(xzi - xzj) > 0 (concordant)
ij=12...,N

®)

In this expression, the numerator indicates the difference
between the count of concordant and discordant pairs.

2.3 Joint distribution of SPT-Ne and C. parameters based
on copulas

2.3.1 Copulas

Copulas are functions that join several marginal CDFs,
intending to construct multivariate CDFs where the
dimensional marginal distributions are uniformly distributed
throughout the interval [0,1] [24]. The concept of copula
theory was originally proposed by Sklar [27]; Sklar’s theorem
serves as the cornerstone of copula theory, indicating that a
continuous multivariate distribution can be expressed by
combining its marginal distributions with a copula describing
their dependence structure. Sklar's theory states that the joint
distribution can be written as a function based on its marginal
distributions, and the copula function is written as in Eq. (9):

F(x1,%) = C(Fy (e Fa (33), -+ Fy () )
where, C is a copula function, Fi(x1), Fa(x2) are marginal
distributions.

Since this paper focuses on the relationship between only
two variables, SPT and C, the bivariate copula function will
be introduced. Based on Sklar's theorem, the bivariate CDF,
F(x1, x2), of random variables (X}, X>) is given by:

F(xy,x,) = C(F1(x1)'F2(x2)) = C(uyuz; 0) (10)

By deriving Eq. (10), the PDF of the copula function, which

can be determined as:

fxx2) = D(F (1), F>(x2); 0) f1 () 2 () = (11)

D (uy,uz; 0) f1(x1)f2(x2)
where, D(u;,u;;0) denotes the density function of a bivariate
copula, defined by:



D(uq,uy; 0) = 02C(uy, uy; 0)/0u,0u, (12)

In this expression, @ is a vector of copula parameters that
quantify the dependence between the random variables, and u;
=F; (X1), u> = F> (X) are uniformly distributed on the interval
[0,1].

There are various copulas in the scientific literature; each
type has its own properties and dependence structure,
including tail dependence, symmetry, and a range of
correlation coefficients. These copulas are also classified
under families, considering how they are constructed and their
similar properties, such as elliptic copulas, Archimedean
copulas, and Plackett copulas. In addition, other families of
copulas have been used in several fields, such as the Farlie-
Gumbel-Morgenstern, Marshall-Olkin, or Ali-Mikhail-Haq
copulas; however, these families have limited use in
geotechnical applications due to the limited range of
accreditation levels they can handle [13]. In this paper, the
Gaussian, Plackett, and Archimedean Copulas will be briefly
discussed. For a more in-depth explanation, refer to these
studies [19, 22].

Gaussian copula
A Gaussian copula is classified as an elliptic copula. It is

symmetrical, so it cannot capture asymmetric dependency. In
addition, the Gaussian copula has no tail function. Generally,
in the case of a bivariate Gaussian distribution, the copula
function C(ui, uz; 0) and copula density function c(ui, u; 0)
are given [24]:

C(uyuy;0) = cbe(q)_l(uﬂ'q)_l(uz)). 0

€[-1,1] (13)

1

ez P

[_ 51292—Zef1fz+52292]

C(ulvuz ; e) = 2(1-62)

(14)

where, @4 denotes the bivariate standard normal distribution
function, and ®~! the inverse of the standard normal
distribution function, & = ® !(u;) and &, = ®~(u,) are
standard normal variables. It is worth noting that the standard
univariate normal distribution has a dependence structure
uniquely determined by the Gaussian connection [28].
Regarding the copula parameter 0, two common ways exist to
estimate this parameter. The first method depends on the
Pearson linear correlation coefficient (p), by solving Eq. (4).
The second method is to calculate the copula parameter 6 by
the Kendall correlation coefficient, and the relationship
between the rho Gaussian (8) and 7 can be given by:

0 = sin (g)

The Gaussian copula method, using 7 is more accurate than
the method when using the Pearson correlation coefficient.
This is because Kendall's T does not change under incremental
transformations, while Pearson’s correlation coefficient does
not remain unchanged when nonlinear transformations are
applied [29].

(15)

Plackett copula
Plackett's copula belongs to the Plackett copula family, and

it is an example of copula functions that are built using
algebraic methods [24]. The Plackett copula is radially
symmetric and has no tail dependence. Moreover, it is a
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comprehensive copula, which makes it useful for modeling
dependence. However, extending the Plackett bivariate copula
to include more than two variables is complicated, which is
one of its weaknesses. In addition, the relationship between the
copula parameter 6 and rank coefficients (such as Kendall's t)
cannot be expressed in a simple mathematical formula, which
requires resorting to numerical methods, making the analysis
more labor-intensive. The CDF and PDF of the Plackett copula
with 8 € (0, ©) \ {1} are, respectively:

S—/S2—4u,u,0(0-1)

€ (5 8) = 2(6-1) (16)
where, S =1+ (8 — 1)(u; + uy,).
c(uy, uy; 6) = i B[1+(6-1)(us +uz —2usup)] (17)

14+(6-1)(uqg +uz)]2—4u,u,0(60-1)}(3/2)

The parameter 0 of the Plackett copula is obtained by
solving Eq. (6), which defines the relationship between t and
0 as a double integral.

Archimedean copulas

Archimedean copulas are widely used in geotechnical
dependence modeling due to their flexibility, simple
construction, efficient sampling, and their ability to represent
a broad range of dependence structures. Unlike the Gaussian
(normal) copula, Archimedean copulas are built using an
explicit generator function that defines the dependence
pattern. A general bivariate Archimedean copula can be
expressed in closed form as:

Clupuz;8) = 9o oo () + @o(ur)] (18)

Nelsen [24] specified conditions that the generator function
@ must satisfy the Archimedean copula. These conditions
include that the generator function ¢¢ must be a continuous
function, strictly decreasing, and convex from [0,1] to [0, o)
so that @e(0) = o, @e(1) = 0. The scientific literature features
numerous generator functions, enabling the construction of
various Archimedean copulas.

In geotechnical engineering, four copulas are commonly
used for dependence modeling, including the Frank, Gumbel,
Clayton, and No.16 copulas. The definitions of the generator
function @s, copula function C, copula density function c, and
range of 6 for this family of copulas are given in Table 2.

Frank copula [24] can model both positive and negative
dependence, making it a versatile choice for applications, as
highlighted by Joe [30]. Frank's copula is symmetrical, and
therefore, it may not accurately represent asymmetric
relationships. Moreover, it does not exhibit tail dependence
[24], which allows it to model dependence at the edges to a
certain degree. However, dependence at the extreme edges
may not be fully represented, as discussed by Ashkar and
Aucoin [31]. Clayton's copula and Gumbel's copula model
positive dependency and are asymmetric copulas, with
Clayton's copula showing greater dependency in the lower tail,
i.e., at low values. In comparison, Gumbel's copula shows
greater dependency in the upper tail than in the lower tail. On
the contrary, the No.16 copula is characterized by its ability to
model negative and weak positive dependencies [13]. Copula
16 is asymmetric, showing a dependency in the lower tail at a
low negative correlation coefficient, but as the negative
correlation increases, the effect of this dependency becomes
less, and the No.16 copula approaches radial symmetry [24].



Table 2. Summary of bivariate Archimedean copulas functions and their dependence parameters [14]

Type of Range of
Copula CDF PDF Generator @y 0
1l 1
0 n _e(e—e _ 1)ee‘9(u1+u2) e 0t _ 1 (—oo,oo)
Frank (e_eul - 1)(e_9“2 - 1) -6 —6u —6u 2 —In—— \{o0}
n [(e7? — 1) + (e7 0% — 1) (e~ 0% — 1)] e d-1
e ®—1
- (1+0)(ugu,)~ O+ 1
1
Clayton [0 +up@ — 1] 72 JEST) GRS (0, )
(U]_e + U2_9 - 1) 0
1 Tl
exp [—((— Inu,)® exp <—S§) (lnullnuz)e 1(se+e+1)
Gumbel y o1 (—=Int)® [1,00)
+(—1nu2)9) 9] u;u,S°e
S=(=Inuy)® + (—Inuy)®
1 (14 05) (14 ) s s [ +u, -1
E(S+\/SZ +4e),- 2 0,2 u,? 21 2
1 1 1 0
No.16 S=u1+u2—1—9<—+— —e(—+——1)] +1}; <—+1)(1—t) [0, )
U, U, U, U, t
_ 1) 1 1 2
S= [u1+uz —1—9(—+——1)]
U U
For Archimedean copulas, the parameter 6 is determined The BIC is defined as:
based on Kendall’s T between the variables X: and X. by
solving Eq. (6), which, in the case of Archimedean copulas BIC = =2 ¥N Inf(xi;p,q)+ k;InN (21)

such as Frank and No.16 copulas, reduces from a double to a
single integral [24].

T=1+4f)

wgg)(dt) (19)

¢

Here, p6(t) refers to the generator function associated with
an Archimedean copula, while ¢'6(¢) indicates its first
derivative with respect to the variable (t).

2.3.2 Selection of the best-fit marginal distributions and
copulas

Certainly, selecting appropriate probability distributions
and copulas is fundamental for uncertainty modeling and
reliability analysis in geotechnical engineering projects. A
wide variety of univariate PDFs have been presented in
literature, including continuous and discrete distributions [32],
commonly used such as normal, uniform, and logarithmic
distributions [13]. Early studies, such as Lumb [33], showed
that the normal distribution suitably represents soil strength
properties, a view supported by subsequent research [34, 35].
However, more recent work argues that soil properties are
inherently non-negative, making the lognormal distribution
more suitable in some cases due to the truncation at zero [36,
37]. Generally, the appropriate distribution is chosen through
goodness-of-fit tests. Here, the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) [38] are
utilized to determine the optimal distribution from among four
candidate continuous distributions: Truncated Normal,
Truncated Gumbel, Lognormal, and Weibull, as shown in
Table 2. These ensure that simulated values remain strictly
positive, in accordance with recommendations [14].

Generally, identifying suitable marginal distributions with
AIC and BIC entails evaluating several candidates using
standard fitting methods (e.g., maximum likelihood or method
of moments), with the distribution that attains the lowest AIC
and BIC considered the best fit. The AIC is given by:

AIC = =¥N Inf(xi; p,q) + 2k, (20)
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where, In f(xi; p,q) denotes the log-likelihood function, p
and ¢ are the distribution parameters, and k; indicates how
many parameters define the distribution. The merits of these
two criteria were considered in a previous study [39].

Similarly, selecting an appropriate copula function—used
to model the dependency structure between random
variables—is equally critical in probabilistic analysis. The
characteristics of copulas differ, particularly with respect to
symmetry, the extent of tail dependence, and the types of
correlation structures they can model. Although AIC and BIC
are commonly applied to identify the best-fitting copula [13],
these criteria alone do not ensure correct model selection,
especially if all candidate copulas poorly represent the data.
Therefore, candidate copulas must be chosen carefully based
on their statistical properties.

The AIC and BIC criteria are described as follows,
respectively:

AIC = =23, InD (uy;, up;,0) + 2k, (22)

BIC = -2%N InD(uy; ,uz,0) + ky In N (23)
where, D(u,;, u,;.0) represents the copula density function,
and k» denotes the number of copula parameters, and (uy;, u2i)
represent realizations of standard uniform random variables (
the empirical distribution), which define as:

rank(xq;)

hi = =g
i=12...N (24)

rank(xy;)

Uzi = N+121

where, rank(x;;) represents the rank of x;; among the values y;
when arranged in ascending order. This transformation allows
the separation of marginal distributions from the dependence
structure, enabling the copula to be modeled independently of
the original data distributions.



3. RESULTS AND DISCUSSION
3.1 Marginal distribution of the Neo and C.

Initially, it is essential to identify the appropriate marginal
distributions. Table 3 includes the candidate marginal
distributions. The lowest values of BIC and AIC indicate the
best probability distribution that simulates the data [40]. As
shown in Table 4, based on the lowest AIC and BIC values,
the marginal distributions are estimated to be a Weibull

distribution for Ngo and a TruncGumbel distribution for Ce.
The value of AIC for all the probability distributions is
approximately similar to each other. It ranges from 100.9926
to about 103.2645. The narrow range of AIC and BIC may
refer to the fact that all the probability distributions fit the data
well. However, the lowest value, even with slightly different
forms, serves as a basis for comparison between them. The
BIC for the second parameter (C.) was very low values, which
refer to a very good fit of the data.

Table 3. Probability density functions and domains of distribution parameters for candidate marginal distributions [14]

Marginal . . . Range of  Range of
Distribution Density Function f(x; p, q) Remarks » q
oot e |5 (7Y |/[1- o (-F) = (o) O
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vz P72\ g q H=p 1
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Note: @ is the CDF of the standard normal distribution; I" denotes the gamma function
Table 4. Values of AIC and BIC for different marginal distributions of data
Parameter TruncNormal LogNormal TruncGumbel Weibull
ete AIC BIC AIC BIC AIC BIC AIC BIC
Neo 101.5981 103.2645 102.0425 103.7089 101.7746 103.4410 100.9926 102.6591
Ce —50.0954 —48.4289 —53.0087 —51.3423 —53.9799 -52.3134 —47.7764 —46.1100
Note: The AIC and BIC values are bold if the corresponding distribution is preferred
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01+ [ IHistogram ] [___JHistogram
®- - TruncNormal — @—--TruncMNormal
® — Lognommal 10 - ®—Lognormal 7
0.08 - —&— TruncGumbel | | —&— TruncGumbel

Weibull

pd

10

NGO

pdf

Welbull

Ly,

0.196 0.264 0.332

Cc

0.06

0.128

Figure 3. Histograms and PDFs of the best-fitting marginal distributions of the measured dataset

The PDFs of the four candidate marginal distributions are
plotted together with the histograms of the measured data in
Figure 3. It may visually evaluate the fitting of the probability
distribution to the data. This strengthens the capability of the
probability distribution to simulate the data.

3.2 General correlation between SPT and C.

Before modeling the correlation between SPT-Ngo and C,
the measured data are transformed from the original space to a
uniform space to facilitate understanding of the relationship
and to provide an idea of the appropriate copula. Figure 4
contains the scatter plot in the uniform space obtained after
applying Eq. (24), where the effect of the bounded distribution
is isolated. The scatter plot in Figure 4 shows a negative
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correlation between SPT-Ngo and C.. The negative correlation
is also verified by Pearson's rho and Kendall's t coefficients,
which are calculated using Egs. (1) and (7).

The results showed a negative correlation between SPT-Ngo
and C. Pearson’s rho coefficients, and Kendall’s t are obtained
as —0.5591 and —0.4280, respectively. These findings are
consistent with the results reported by Alam et al. [9]. This
study showed that an increase in SPT-N values is accompanied
by a decrease in C, values.

The reason for this difference is that Pearson's rho measures
linear dependence influenced by the actual values of the data;
thus, it is more sensitive to contrarian behavior and outlier
values. By contrast, Kendall's t captures dependence based on
ranks, providing an indication of the general monotonic trend,
as opposed to strict linearity.
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Figure 4. Scatter plots of the measured dataset

Due to the observed negative correlation, the Gaussian,
Plackett, Frank, and No.16 copulas are suitable for describing
the dependence between SPTe and C.. Thereafter, the copula
parameters 0 associated with the four prospective copulas,
utilizing Egs. (4) or (15) for the Gaussian copula and Eq. (19)
for the Archimedean Copulas are listed in Table 5. After
obtaining the copula parameters, the AIC and BIC values are
computed for each copula by using Eqgs. (22) and (23). Table
5 summarizes the calculated results, where the Gaussian
copula is the most suitable because it has the smallest AIC and
BIC values.

Table 5. Correlation coefficients of data, copula parameters,
AIC, and BIC values of fitted copulas

Gaussian  Plackett Frank No.16
p T [0, AIC, [0, AIC, [0,AIC, [6,AIC,
BIC] BIC] BIC] BIC]
—0.6228, 0.1306, —4.5607, 0.0215,
—0.5591 —0.4280 —6.2054, —4.6227, —5.5567, —3.3708,
—5.3722 —3.7895 —4.7235 —2.5376

Note: Bold AIC and BIC values indicate favoured copulas

Given that the available dataset for the variable pair Nso—C.
consists of only 17 samples, relying solely on the original
sample to estimate probabilistic model parameters or to select
the appropriate copula may be unreliable. Small samples are
highly sensitive to data fluctuations, as highlighted by Tang et
al. [41]. Their study demonstrated that sample size is the most
influential factor in identifying the correct copula or marginal
distribution, more so than the COV or the distributional shape.
Small datasets tend to produce large variability in AIC values,
increasing the likelihood of selecting an incorrect model,
particularly when the sample size is less than 30. The study
also showed that a stronger true dependence reduces the
amount of data required for reliable model identification.

To address uncertainty due to a small sample size, Tang et
al. [41] recommended using the bootstrap resampling method.
The bootstrap method is based on the idea of random sampling
with replacement from the original dataset. For the N new
samples we created from sample n. This may cause some of
the values to appear in more than one row, but also some not
to appear on any row. Then we compute the respective
statistics for each of the resampled datasets, e.g., mean,
standard deviation, copula dependence parameter, and AIC
values. By repeating this process many times, every metric
gets a sampling distribution that quantifies the uncertainty
associated with it and allows for more robust evaluation of
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probabilistic models. Bootstrap sampling and coupling fit
evaluation procedures are a methodology that can be
generalized to various probabilistic relationships between
geotechnical variables when data is limited [13].

Based on the recommendations of Sepulveda-Garcia and
Alvarez [13], a total of N = 10,000 bootstrap samples were
adopted to evaluate the uncertainty in the dependence
parameter of each copula. For every resampled dataset, the
dependence parameter is computed using the method of
moments based on Kendall’s t for each copula type. After
completing all iterations, a set of 10,000 estimated values of
the dependence parameter is obtained, forming a sampling
distribution that characterizes the uncertainty associated with
each copula.

Table 6 shows bootstrap results from 10,000 resampled
datasets, indicating unambiguous best-fit results for the
Gaussian copula relative to other models. It had the lowest
mean AIC value (—6.07) and was selected as the best-fitting
model in about 75% of all iterations. This further implies its
objectivity and reliability to map the dependency between Neo
and C,, regardless of the limited amount of data points used in
the proposed model (17 samples). On the other hand, the Frank
and No.16 copulas provided fair performance (selection rates
of 11.5% and 12%, respectively), indicating that they are
capturing some of the dependence structure, but with less
stability than the Gaussian copula. Among them, the Plackett
copula demonstrated the poorest performance since it was only
selected in 1.57% of cases, having the highest values of AIC,
which mirrors its reduced capacity to fit the data.

Table 6. Bootstrap AIC statistics and selection frequencies
for candidate copulas

Number of Selection
Copula Mean Std. o
Best Probability
Model AIC AIC Selections (%)
Gaussian  —6.0704  7.5667 7493 74.93
Plackett  —3.8529  3.8959 157 1.57
Frank =5.1533  4.8474 1150 11.5
No.16 —2.3162 4.6179 1200 12
0.07 v
Gaussian
0.06 F Plackett
Frank
0.05 L No.16
- 0.04 |
a
*~0.03 }
0.02 1
0.01 |
0 , , )
-30 =20 -10 0 10 20 30
AIC score

Figure 5. Bootstrap PDFs of AIC scores for fitted copulas

Figure 5 shows the AIC distributions for four candidate
copulas based on the bootstrap analysis. The Gaussian copula
has the lowest AIC values, for most of its distribution tilted to
the negative zone, thus confirming its clear temporal
superiority as a goodness-of-fit over other models. In
comparison, the Frank and No.16 copulas have distributions



that are more Gaussian-like; however, they lean toward higher
AIC values, indicating reasonable but less stable performance.
In contrast, the AIC values for the Plackett copula are
consistently lower and more tightly concentrated, indicating a
more limited capacity of the Plackett copula to accommodate
the dependence between Neo and Ce.

3.3 Generation of data based on a copula

Figure 6 compares the scatter plots of 1000 simulated
samples from 17 measured samples using a Gaussian copula
with the appropriate marginal distributions. It is worth noting
that these simulations were performed using the algorithms
presented by Li et al. [23].

Measured: Cc =-0.006 N(,u +0.283
Simulated: Cc =-0.007 Nsu +0.288
o T .

0.4

o O Simulated (R? =0.36) | |
®  NMeasured (R>=10.31)
| [e)Ke} o 8 Simulated regression | |
0.35 o = = = Measured regression

0.15

Figure 6. Scatter diagrams showing both measured and
simulated data using a fitted copula with regression analysis

The scatterplot shows a clear negative, monotonic
relationship between Ngy and C.. Linear regression on the
measured data yields R2 = 0.31, whereas the copula-based
simulated samples reproduce a very similar slope and intercept
C.= —0.007 Ngo + 0.288 with a slightly higher explanatory
power R2 = 0.36. Since R2 only evaluates how well a straight
line fits the data, it can under- or over-state dependence when
the true relationship is only partially linear—An effect also
reflected by the gap between Pearson’s p and Kendall’s t.
Most of the data points are clustered in the mid-range of Neo
(8-15) and C. (0.20-0.30); this clustering increases the scatter
around the regression line and explains the relatively low
coefficient of determination (R2). Nevertheless, the Gaussian
copula was able to successfully reproduce this mid-range
concentration, confirming its suitability for capturing the
dependence structure between the measured data.

3.4 Comparison of copula shapes with the optimal
Gaussian copula

The probability density curves of the proposed copulas were
plotted and compared to the optimal copula (Gaussian) with
the same margins (Weibull distribution for C. and
Truncgumbel for Nso) with T =—0.4280, as shown in Figure 7.
The results indicate that the Plackett and the Frank fit the
Gaussian very closely in the middle of the data, while copula
No.16 shows a clear departure from the other copulas, with
noticeable variation at the upper and lower ends of the
relationship, reflecting its nonlinear nature and asymmetric
end dependence when the negative correlation is not strong.
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This suggests that cupula 16 highlights nonlinear dependence
effects that the Gaussian cupula cannot accurately represent.

— (Gaussian
Plackett
Frank
No.16

035

015F

Figure 7. Iso-density contours for copula models (Gaussian,
Plackett, Frank, No.16)

3.5 Effect of 1 value on the Gaussin copula

Figure 8 demonstrates the variation in the dependence
structure of the Gaussian copula for different values of
Kendall’s t, ranging from strong positive to strong negative
correlation. Each surface represents the bivariate PDF of the
copula in the uniform domain (u;, uz) given the observed data.

The upper row shows when 7 is positive (T = 0.90, 0.428,
and 0.016) and the corresponding Gaussian p = 0.988, 0.623
and 0.025, respectively. When 7 increases, the joint PDF is
more peaked along the main diagonal (u: = u2), with the
implication of strong positive dependency: Large (or small)
values of the one variable tend to occur at the same time that
large (or small) values of the other variable occur. As t tends
to zero, the surface becomes flatter, which suggests a near
independence between the two uniform variables; conversely,
in the bottom row, where the correlation is negative.

3.6 Nataf versus Gaussian and No.16 copulas

For the purpose of comparison between the Nataf
distribution and both the Gaussian copula and Copula No.16,
1,000 samples were simulated based on the dependence
structure inferred from the measured data and the best-fitting
marginal distributions, as shown in Figure 9. Modeling results
indicate that the Nataf transformation exhibits behavior very
similar to that of the Gaussian copula when the dependence
between the variables is linear or quasi-linear.

When comparing the Nataf transform with copula No.16,
which exhibits asymmetry when the negative correlation is
weak, the difference becomes clear, while Nataf maintains a
symmetric elliptic dependence, copula No.16 exhibits an
asymmetric tail behavior, and highlights the nonlinearity
between the two variables. Therefore, the Nataf transform is
equivalent to the Gaussian copula when the relationship is
approximately linear, but it loses accuracy when modeling
nonlinear or tail-dependent variables.

The comparison shows that the Nataf transformation cannot
describe other nonlinear or tail-dependent behavior between
soil parameters since it inherently imposes a symmetric,
Gaussian-type dependence structure. On the other hand,
copula models like those based on Gaussian and No.16 have a
parametric shape of dependence, but this can be learned from



data. For the current Ngo-C, dataset, it is nearly monotonic and may misrepresent the joint variability, whereas copula-based
symmetric, so Nataf and the Gaussian copula behave similarly. approaches provide a more reliable characterization of the
However, in datasets where soils exhibit stronger underlying dependence.

nonlinearities or asymmetric tail dependence, the Nataf model

(7= 0.428,rhoGaussian p = 0.623)

(7= 0.900,rhoGaussian p = 0.988)

(7= 0.016,rhoGaussian p = 0.025)
60 -
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Figure 8. 3D surface plot of bivariate density for the Gaussian copula with different values of t
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Figure 9. Simulation of measured data from Nataf distribution, Gaussian, and No.16 copulas

Table 7. Comparison of simulation outcomes related to different dependence models

Dependence T (measured) p (measured) T (simulated) p (simulated) T (simulated) p (simulated)
Model Neo-Ce Neo-Ce Ui-Uz Ui-Uz Xi1-Xz Xi1-X2
Nataf —-0.3935 —0.5628 —-0.3935 —-0.5545

Gaussian —0.4280 —-0.5590 -0.4315 —-0.6078 -0.4315 —-0.6047
No.16 —0.4413 —0.6250 —0.4413 —0.6266
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Both the Pearson correlation coefficient (p) and the Kendall
correlation coefficient (t) were calculated for the simulated
correlated samples in the uniform (U) space to assess the
dependency structure in the copula space. These coefficients
were then recalculated in the physical space of variables (X)
defined by marginal distributions. The results are summarized
in Table 7, which also includes the correlation coefficients
measured from the data (Neo, Cc).

It is noted that the Kendall coefficient (1) values between X
and X, remained almost constant compared to those calculated
between U; and U, for all the reliability models studied. This
is attributed to the stability of the Kendall coefficient against
the monotonic transformations used to move from the uniform
distribution space U to the physical space X. In contrast, the p
shows significant variation between the two spaces due to the
nonlinear nature of the inverse cumulative distribution
transformations used to generate the values of X. In
comparison, the Nataf model produced correlation values
close to the Gaussian correlation, demonstrating similar linear
dependence.

In general, these results validate that t is invariant under
monotonic transformation, but p is influenced by the shape of
the marginal distributions. The Nataf model also exhibits
similar behavior to the Gaussian copula in representing linear
dependence, but differs from copula (16) when describing
nonlinear relationships, pointing to the significance of model
choice in this case concerning some types of geotechnical data
in the non-Gaussian case.

4. CONCLUSION

This study demonstrated that copula theory provides a
reliable framework for modeling the dependence between
SPT—Ngo and the compression index C. in the clay soils of Thi-

Qar, where laboratory consolidation data are often unavailable.

The Gaussian copula was identified as the most appropriate
dependence model, offering a stable representation of the
observed negative association and enabling realistic
generation of synthetic (Ngo, C.) pairs for probabilistic
settlement assessment.

The practical significance of the model lies in its ability to
provide credible compressibility estimates directly from field
test data, thereby supporting reliability-based design and
reducing the reliance on extensive laboratory testing.
Nevertheless, the approach is sensitive to the limited sample
size. Future research should therefore focus on expanding the
database, evaluating additional copula families for more
complex soil behaviors, and integrating the dependence model
into full reliability analyses for settlement prediction.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support provided

by University of Thi-Qar for facilitating data collection
required for this study.

REFERENCES
(1]
(2]

Bowles, J.E., Guo, Y. (1996). Foundation Analysis and
Design. New York: McGraw-Hill.
Terzaghi, K., Peck, R. (1967). Soil Mechanics in

4453

(3]
(4]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Engineering Practice. New York: John Wiley.

Peck, R.B., Hanson, W.E., Thornburn, T.H. (1974).
Foundation Engineering. Wiley.

Duque, J., Acosta, C., Canales, F.A., Cardenas, J. (2025).
On the lookout for a general relationship between the
friction angle of sandy soils and SPT. Indian
Geotechnical Journal, 1-8.
https://doi.org/10.1007/s40098-025-01201-x

Wagh, J.D., Bambole, A.N. (2024). Improved correlation
of soil modulus with SPT N values. Open Engineering,
14(1): 20240046. https://doi.org/10.1515/eng-2024-0046
Abbas, H.A., Al-Jeznawi, D., Al-Janabi, M.A.Q.,
Bernardo, L.F.A., Jacinto, M.A.S.C. (2024). Exploring
shear wave  velocity—NSPT  correlations  for
geotechnical site characterization: A review. CivilEng,
5(1): 119-135. https://doi.org/10.3390/civileng5010006
Huang, F., Fu, B., Qin, H., Du, Y., Zhu, L., Zhuo, L.
(2024). Correlations between physical properties and
compression index of fine-grained soils based on a large
dataset. IOP  Conference Series: Earth and
Environmental Science, 1330(1): 012007.
https://doi.org/10.1088/1755-1315/1330/1/012007
Mandhour, E.A. (2020). Prediction of compression index
of the soil of Al-Nasiriya City using simple linear
regression model. Geotechnical and Geological
Engineering, 38(5): 4969-4980.
https://doi.org/10.1007/s10706-020-01339-w

Alam, M.J., Shaha, N.R., Shohug, M.K. (2015).
Relationship between standard penetration resistance and
strength-compressibility parameters of clay. Journal of
Civil Engineering (IEB), 43(2): 115-131.

Urmi, Z.A., Ansary, M.A. (2019). Interpretation of
compressibility characteristics for coastal soil of
Bangladesh. In Proceedings on International Conference
on Disaster Risk Management, Dhaka, Bangladesh, pp.
129-134.

Cui, X.Y., Hu, X.B., Zeng, Y. (2017). A Copula-based
perturbation stochastic method for fiber-reinforced
composite structures with correlations. Computer
Methods in Applied Mechanics and Engineering, 322:
351-372. https://doi.org/10.1016/j.cma.2017.05.001
Lebrun, R., Dutfoy, A. (2009). An innovating analysis of
the Nataf transformation from the copula viewpoint.
Probabilistic Engineering Mechanics, 24(3): 312-320.
https://doi.org/10.1016/j.probengmech.2008.08.001
Sepulveda-Garcia, J.J., Alvarez, D.A. (2022). On the use
of copulas in geotechnical engineering: A tutorial and
state-of-the-art-review. Archives of Computational
Methods in  Engineering, 29(7): 4683-4733.
https://doi.org/10.1007/s11831-022-09760-5

Phoon, K.K., Ching, J. (Eds.). (2015). Risk and
Reliability in Geotechnical Engineering. CRC Press.
Uzielli, M., Mayne, P.W. (2012). Load-displacement
uncertainty of vertically loaded shallow footings on
sands and effects on probabilistic settlement estimation.
Georisk: Assessment and Management of Risk for
Engineered Systems and Geohazards, 6(1): 50-69.
https://doi.org/10.1080/17499518.2011.626333

Wu, X.Z., Xin, J.X. (2019). Probabilistic analysis of site-
specific load-displacement behaviour of cement-fly ash-
gravel piles. Soils and Foundations, 59(5): 1613-1630.
https://doi.org/10.1016/j.sandf.2019.07.003

Song, L.F., Xu, B., Kong, X.J., Zou, D.G., Yu, X., Pang,
R. (2021). Reliability analysis of 3D rockfill dam slope



[18]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

stability based on the copula function. International
Journal of  Geomechanics, 21(3): 04021001.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001932
Senapati, S., Dey, A.K., Dutta, S. (2025). Reliability
analysis for consolidation settlement of a shallow footing
based on copula model. International Journal of Civil
Engineering, 23: 815-830.
https://doi.org/10.1007/s40999-025-01075-3

Liu, X.F., Tang, X.S., Li, D.Q. (2019). Impact of copula
selection on reliability-based design of shallow
foundations. In the 7th International Symposium on
Geotechnical Safety and Risk (ISGSR 2019), Taipei,
Taiwan, China. https://doi.org/10.3850/978-981-11-
2725-0-1S14-9-cd

Wu, X.Z. (2015). Modelling dependence structures of
soil shear strength data with bivariate copulas and
applications to geotechnical reliability analysis. Soils and
Foundations, 55(5): 1243-1258.
https://doi.org/10.1016/j.sandf.2015.09.023

Mari, D.D., Kotz, S. (2001). Correlation and
Dependence. World Scientific.
https://doi.org/10.1142/p226

Ang, A.H.S., Tang, W.H. (2007). Probability Concepts
in Engineering Planning and Design: Emphasis on
Application to Civil and Environmental Engineering.
Wiley.

Li, D.Q., Tang, X.S., Phoon, K.K., Chen, Y.F., Zhou,
C.B. (2013). Bivariate simulation using copula and its
application to probabilistic pile settlement analysis.
International Journal for Numerical and Analytical
Methods in  Geomechanics, 37(6): 597-617.
https://doi.org/10.1002/nag.1112

Nelsen, R.B. (2006). An Introduction to Copulas. New
York, NY: Springer.
McNeil, A.J., Frey, R., Embrechts, P. (2015).

Quantitative Risk Management: Concepts, Techniques
and Tools-Revised Edition. Princeton University Press.
Schweizer, B., Wolff, E.F. (1981). On nonparametric
measures of dependence for random variables. The
Annals of Statistics, 9(4): 879-885.
https://doi.org/10.1214/a0s/1176345528

Sklar, M. (1959). Fonctions de répartition a n dimensions
et leurs marges [in French]. Annales de 'ISUP, 8(3): 229-
231. https://hal.science/hal-04094463v1.

Lebrun, R., Dutfoy, A. (2009). A generalization of the
Nataf transformation to distributions with elliptical
copula. Probabilistic Engineering Mechanics, 24(2):
172-178.
https://doi.org/10.1016/j.probengmech.2008.05.001

Li, D., Tang, X., Zhou, C., Phoon, K.K. (2012).
Uncertainty analysis of correlated non-normal

4454

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

geotechnical parameters using Gaussian copula. Science
China Technological Sciences, 55(11): 3081-3089.
https://doi.org/10.1007/s11431-012-4937-z

Joe, H. (1997). Multivariate Models and Multivariate
Dependence Concepts. CRC Press.
https://doi.org/10.1201/9780367803896

Ashkar, F., Aucoin, F. (2011). A broader look at bivariate
distributions applicable in hydrology. Journal of
Hydrology, 405(3-4): 451-461.
https://doi.org/10.1016/j.jhydrol.2011.05.043

Kottegoda, N.T., Rosso, R. (2008). Applied Statistics for
Civil and Environmental Engineers. Blackwell
Publishing.

Lumb, P. (1970). Safety factors and the probability
distribution of soil strength. Canadian Geotechnical
Journal, 7(3): 225-242. https://doi.org/10.1139/t70-032
Liang, R.Y., Nusier, B.O., Malkawi, A.H. (1999). A
reliability based approach for evaluating the slope
stability of embankment dams. Engineering Geology,
54(3-4):  271-285.  https://doi.org/10.1016/S0013-
7952(99)00017-4

Baecher, G.B., Christian, J.T. (2005). Reliability and
Statistics in Geotechnical Engineering. John Wiley &
Sons.

Brejda, J.J., Moorman, T.B., Smith, J.L., Karlen, D.L.,
Allan, D.L., Dao, T.H. (2000). Distribution and
variability of surface soil properties at a regional scale.
Soil Science Society of America Journal, 64(3): 974-982.
https://doi.org/10.2136/sss2j2000.643974x

Fenton, G.A., Griffiths, D.V. (2003). Bearing-capacity
prediction of spatially random c-¢ soils. Canadian
Geotechnical Journal, 40(1): 54-65.
https://doi.org/10.1139/t02-086

Schwarz, G. (1978). Estimating the dimension of a model.
The  Annals of  Statistics, 6(2): 461-464.
https://doi.org/10.1214/a0s/1176344136

Burnham, K.P., Anderson, D.R. (2004). Multimodel
inference: Understanding AIC and BIC in model
selection. Sociological Methods & Research, 33(2): 261-
304. https://doi.org/10.1177/0049124104268644

Shakir, R.R. (2019). Selecting the probability
distribution of cone tip resistance using moment ratio
diagram for soil in Nasiriyah. Geotechnical and
Geological Engineering, 37(3): 1703-1728.
https://doi.org/10.1007/s10706-018-0716-3

Tang, X.S., Li, D.Q., Cao, Z.J., Phoon, K.K. (2017).
Impact of sample size on geotechnical probabilistic
model identification. Computers and Geotechnics, 87:
229-240.
https://doi.org/10.1016/j.compgeo0.2017.02.019





