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Accurate estimation of the coefficient of compressibility (Cc) is essential for predicting 

foundation settlement, yet odometer tests on undisturbed samples are often limited in 

most site investigations. In contrast, standard penetration test (SPT) data are more 

widely available. Existing SPT–Cc correlations are extremely limited and often 

inconsistent across soil types, and previous studies relied mainly on linear regression, 

which cannot capture nonlinear or asymmetric dependence. This study addresses these 

gaps by developing a probabilistic framework to model the dependency structure 

between SPT–N₆₀ and Cc for clay soils in Thi-Qar, southern Iraq, using copula theory. 

Several copula candidates were evaluated using AIC and BIC criteria, and their 

performance was compared with the classical Nataf model. In addition, the Bootstrap 

method was adopted as a robust resampling tool to quantify uncertainty in dependence 

modeling under limited data conditions. The measured data exhibited a moderate 

negative dependence (ρ = −0.56, τ = −0.43), confirming that denser soils (higher N₆₀) 

tend to have lower compressibility. Among the tested models, the Gaussian copula 

provided the best statistical representation of the joint behavior of N₆₀ and Cc. Results 

also showed that Pearson’s correlation (ρ) is not invariant under monotonic 

transformations, whereas the Nataf model behaves similarly to the Gaussian copula 

when dependence is approximately linear. The proposed framework enhances 

reliability-based characterization of local soils and reduces reliance on extensive 

laboratory testing by enabling accurate simulation of soil parameters. 
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1. INTRODUCTION

Understanding geotechnical properties such as the 

coefficient of compressibility (Cc) is essential to foundation 

design. The calculation of the consolidation settlement 

depends on the quality of information available from the site 

and laboratory tests. The standard penetration test (SPT) is one 

of the most widely used field tests in Iraq and around the world 

to determine soil resistance. This is because it is simpler and 

less expensive compared to laboratory tests like the uniaxial 

compression test. The SPT test was developed in the United 

States in 1927 [1]. Because of its antiquity and widespread use, 

studies have presented numerous experimental equations 

based on its results to evaluate soil properties, such as the 

correlation of standard penetration number (SPT-N) with 

relative density (Dr) of sand, undrained cohesion (cu) with 

SPT-N for clay soil [2], the consistency index (CI), and SPT-

N [3]. In many studies, correlations between SPT-N values and 

sand friction angle have been proposed; a study [4] provided a 

critical review of these correlations, and a new correlation was 

proposed based on data collected from the literature. 

Correlation between SPT-N and the modulus of elasticity (E) 

has been performed for granular soils [5]. In addition, several 

studies have examined the correlations between shear wave 

velocity and SPT-N [6], reviewing the most important of these 

relationships. 

Similarly, the Cc is a crucial metric for assessing the 

settlement of foundations in clay soils subjected to stresses. 

Precise and expensive tests in the lab are usually needed to 

calculate it. Many researchers have taken numerous 

approaches worldwide to create empirical correlations for 

compressibility with easily obtainable index properties like 

void ratio, liquid limit (LL), plasticity index (PI), and natural 

moisture content [7]. A helpful study for Nasiriyah soil also 

correlates the compressibility index with Aterberg limits (LL, 

plastic limit (PL), and PI) [8]. 

When resources are limited for many projects, it is 

important to have equations that can estimate soil properties 

without complex laboratory tests. Empirical relationships 

about the compressibility index of soil or SPT parameters are 

thus essential. The compressibility factor has rarely been 

estimated directly from field test data such as the SPT test. 

However, some attempts have been made to estimate Cc from 

SPT data [9]. The researcher used linear regression analysis to 

determine the relationship between the SPT and the clay soil 

Cc. The correlation between the soil compression index and 

SPT-N value of stiff clay soil was linear, as the compression 

index decreases with increasing SPT-N value, and an 

unreliable correlation for soft clay. A contrary conclusion was 

observed for samples included that were collected from 
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different coastal areas, where higher SPT values were 

associated with higher Cc values [10].  

In the domain of probabilistic modeling of geotechnical 

variables, there exists a necessity to denote the 

interdependence between parameters, particularly when these 

variables are not entirely autonomous. Some traditional 

methods have been applied to accomplish this purpose, such 

as the Rosenblatt transform [11] and the Nataf transform [12]. 

However, both approaches face significant restrictions that 

constrain their proficiency and adaptability. The Rosenblatt 

transform, alternatively, demands exact foreknowledge of the 

joint probability density function (PDF), a task that is often 

extremely complex or impractical, particularly when 

addressing incomplete data [11]. The Nataf method assumes 

only a linear relationship between variables and can only be 

applied to distributions belonging to the normal distribution 

family, like the Gaussian distribution [13]. This renders it 

ineffective when the relationship between variables is 

nonlinear or asymmetrical, as is regularly the case in natural 

soil properties. 

In contrast, the copula theory is a more advanced and 

flexible option, as it allows for the detachment of marginal 

distributions from the dependency structure between variables, 

permitting the precise representation of intricate statistical 

relationships. The copula does not necessitate a linear 

relationship and allows the joint cumulative distribution 

function (CDF) to be constructed independently of marginal 

distributions [14]. For this reason, the copula has become a 

widely used instrument in the fields of risk examination, 

reliability analysis, and geotechnical engineering, particularly 

when addressing incomplete data. Numerous studies have 

used copula theory to generate the joint probability 

distribution of interrelated geotechnical parameters with 

limited probability distribution information. Uzielli and 

Mayne [15] used Copula theory to analyze and represent the 

dependence of load-displacement model parameters to 

generate samples that account for parametric uncertainties in 

model inputs, which were then used in a Monte Carlo 

Simulation (MCS) to assess the impact of these uncertainties 

on settlement estimation. Wu and Xin [16] used a bivariate 

copula to simulate the cement fly ash gravelly (CFG), in pile 

load-settlement behavior regression curve parameter 

dependence. When probability information is missing, the 

copula function creates a joint distribution of rockfill material 

nonlinear strength coefficients [17]. The vine copula was 

employed in a previous study [18] to model the dependence 

structure between consolidation parameters such as initial void 

ratio, compressive index, and saturated density of soft clayey 

soil, which contributed to providing a more realistic and 

reliable analysis of consolidation settlement. The copula 

theory was used in a previous study [19] to model the 

dependency between uncertain geotechnical design 

parameters in reliability-based shallow foundation design. 

Although the SPT is a common in situ test employed 

worldwide, and although the Cc is a primary parameter needed 

for settlement prediction, the literature reveals several critical 

limitations that motivate the present study. First, SPT–Cc 

correlations are very scarce and tend to vary with soil type, 

with some studies noting a decrease in Cc with increasing SPT-

N values, and vice versa in other geological settings. Second, 

past efforts mainly employed simple linear regression, which 

is an inappropriate tool for modeling linear or asymmetric 

dependence, which is often the dominant feature of natural soil 

behaviour, limiting the generalizability of such correlations. 

Third, to the best of the authors’ knowledge, no prior research 

has applied copula theory to model the SPT–Cc relationship, 

whether in Iraq or internationally for regionally representative 

clay soils, leaving a methodological gap in probabilistic 

geotechnical modeling. Fourth, in Thi-Qar Governorate, the 

need for reliable Cc estimation is especially pressing due to the 

scarcity of undisturbed sampling and the high cost or limited 

availability of laboratory consolidation tests. Therefore, a 

probabilistic framework capable of leveraging inexpensive 

field data such as SPT-N₆₀ to characterize soil compressibility 

is of practical importance for both routine geotechnical design 

and reliability-based settlement assessment. 

This research aims to develop a copula-based statistical 

model to describe the relationship between SPT-N60 values 

and the Cc for clay soils in Thi-Qar Governorate, by integrating 

real field data with copula dependence structures. The research 

consists of three parts: the first is collecting the necessary data, 

then the Copula approach is used to get the dependency, and 

then simulating the SPT and Cc. The research discussed the 

marginal distributions of Cc and SPT and the effect of value 

on the Gaussian copula. Important comparisons with other 

models are also stated in this research. This research 

contributes to developing a framework to construct the 

dependency of Cc and SPT, then includes it in a simulation of 

the probabilistic state of the two parameters. It is very helpful 

in examining the reliability analysis and design of shallow 

foundations and pile foundations. 

2. METHODOLOGY

The research methodology is structured into two main 

components. The first section focuses on the study area, 

covering the project location and the site geology. The second 

part deals with the most famous reliability measures, the 

copula theory, and its most famous types. It also deals with 

constructing and simulating the joint distribution of SPT-N60 

values and the Cc using the copula. Figure 1 shows a flow chart 

of data simulation using copula functions used in this study.  

2.1 Collection of data 

The data used in this study were obtained from geotechnical 

investigation reports of seven different projects located within 

Thi-Qar Governorate, in southern Iraq, approximately 360 km 

south of Baghdad, the capital. The studied samples are lean 

clay collected from seven different projects: two in Nasiriyah, 

four in Al-Shatra, and one in Al-Nasr, as shown in Figure 2.  

At each site, disturbed samples and undisturbed samples 

were collected using an SPT split spoon and a standard Shelby 

tube sampler, respectively. One-dimensional consolidation 

experiments were performed on 17 soil samples, as shown in 

Table 1. To minimize variability caused by depth differences, 

all undisturbed samples were taken from a consistent depth 

range of 4 to 5 meters. The corresponding disturbed samples 

were collected within ±0.5 meters of the undisturbed sample 

locations. Therefore, the soil characteristics may be assumed 

to be the same. The sample size of n = 17 was deemed adequate, 

given it falls within the range established by previous literature. 

Wu [20] adopted the sample size of n = 15 in modeling soil 

shear parameters by copula theory. 
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Figure 1. Flow chart of data simulation using copula functions 

(a)  (b) 

Figure 2. Location of the studied region 

Table 1. Properties of the soil used in the present study 

No. N60 Cc 

1 8 0.2 

2 7 0.229 

3 12 0.26 

4 13 0.18 

5 12 0.23 

6 11 0.23 

7 4 0.34 

8 13 0.14 

9 19 0.19 

10 5 0.229 

11 17 0.18 

12 11 0.196 

13 13 0.19 

14 7 0.303 

15 18 0.17 

16 7 0.19 

17 8 0.165 

2.2 Measures of correlation 

The dependence between soil parameters describes the 

relationship between them mathematically or statistically, and 

means that if one variable changes, the type of change in the 

other variable will be identified. It shows how each one affects 

the other and how the other is influenced by this parameter. 

There are different types of dependence, such as linear, 

nonlinear, functional, and statistical dependence. Dependence 

is a critically examined and significant term in probabilistic 

and statistical analysis, particularly in reliability studies. 

Stochastic dependency significantly influences not only the 

development of a joint PDF, but also the assessment of failure 

probability [13]. Including the dependency between the 

parameters of soil leads to an accurate analysis and design. 

Ignoring the dependency may make the design unsafe or 

conservative, and both shall be avoided. 

The joint behavior of the Cc and SPT increases the 
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understanding that will enhance the settlement estimation of 

the foundation. This will reduce the redundancy in testing to 

quantify this parameter. 

2.2.1 Pearson coefficient (ρ) 

Pearson’s ρ correlation coefficient measures the linear 

dependence between two random variables [21].  It is the most 

widely used measure of dependency due to its simplicity and 

close association with the multivariate Gaussian PDF and is 

expressed as follows: 

𝜌 =
𝐶𝑜𝑣(𝑋1‚𝑋2)

√𝑣𝑎𝑟(𝑋1)√𝑣𝑎𝑟(𝑋2)
(1) 

where, ρ ∈ [-1;+1]. When the value is -1 or +1, this indicates 

a perfectly linear correlation between the two random 

variables and no linear relationship when the value equals 0; 

this does not mean that these two variables are independent, 

but rather that there is another type of relationship between 

them [22]. Pearson's correlation coefficient can be expressed 

in accordance with the notion of covariance: 

ρ = ∫ ∫ [
𝑥1−𝜇1

𝜎1
]

+∞

−∞

+∞

−∞
[

𝑥2−𝜇2

𝜎2
] 𝑓(𝑥1‚ 𝑥2)𝑑𝑥1𝑑𝑥2 (2) 

where,  μ1 and μ2 represent the means of each of the variables 

X1 and X2, respectively, σ1 and σ2 are the standard deviations 

of X1 and X2, and 𝑓(𝑥1‚ 𝑥2) is the bivariate distribution

function (PDF) of X1 and X2, which is given by: 

𝑓(𝑥1‚𝑥2) = 𝐷(𝐹1(𝑥1)‚ 𝐹2(𝑥2);  θ)𝑓1(𝑥1)𝑓2(𝑥2) (3) 

By inserting Eq. (3) into Eq. (2), we obtain the relationship 

between rho Pearson (ρ) and the copula parameter (θ):   

𝜌 = ∫ ∫ [
𝑥1−𝜇1

𝜎1
]

+∞

−∞

+∞

−∞
[

𝑥2−𝜇2

𝜎2
] 𝐷(𝐹1 (𝑥1)’𝐹2(𝑥2); θ)

𝑓1(𝑥1)𝑓2(𝑥2)𝑑𝑥1𝑑𝑥2

(4) 

It is evident from  Eq. (4) that Pearson's correlation 

coefficient is influenced by both marginal distributions and 

joint distributions of random variables. However, this 

contrasts with the copula theorem, which is characterized by 

separating the dependence structure from the marginal 

distributions. In addition, the Pearson correlation coefficient is 

only unchanging in strictly linear monotonic transformations. 

Suppose non-linear transformations are applied, or the random 

variables do not follow a joint Gaussian distribution. In that 

case, it will not be an effective measure of reliability and may 

lead to incorrect results [23]. 

2.2.2 Kendall’s τ coefficient 

Kendall’s τ measures the degree of concordance between 

random variables. Mathematically, Kendall’s τ is described as 

the probability of concordance minus the probability of 

discordance [24]. 

𝜏 = 𝑃[(𝑋1  −  𝑋1̃)(𝑋2  −  𝑋2̃ ) >  0]

− 𝑃[(𝑋1  − 𝑋2̃ )(𝑋2  −  𝑋2̃ )  <  0]
(5) 

The first part on the right side represents the concordance 

probability, and the second part represents the discordance 

probability. Kendall’s τ is symmetric and takes values within 

[-1,1]. In contrast to the linear correlation, Kendall's τ is 

unaffected by strictly increasing transformations. Furthermore, 

it is less sensitive to outliers, so these features have made it the 

most suitable for representing dependence in copulas [25]. 

Kendall’s τ can be articulated in relation to a copula function 

when the copula (C) is entirely continuous [24, 26] . 

𝜏 = 4 ∫ ∫ C(𝑢1
1

0

1

0
‚𝑢2; θ)dC(𝑢1‚𝑢2; θ) − 1 (6) 

where, 𝑢𝑖  is the CDF of 𝑈𝑖  and 𝑈𝑖 = 𝐹𝑖(𝑋𝑖)  represents a

standard uniform random variable limited within the interval 

[0,1]. It is evident from Eq. (6) that Kendall’s τ is unaffected 

by the marginal distributions but only by the adopted copula. 

When the coefficient of correlation (τ) between X1 and X2 is 

determined, the value of θ can be found by repeatedly solving 

the previous integral equation. The empirical form of 

Kendall's τ is expressed as follows: 

𝜏 =  
∑ 𝑠𝑖𝑔𝑛[(𝑥1𝑖−𝑥1𝑗)(𝑥2𝑖−𝑥2𝑗)]𝑖<𝑗

0.5𝑁(𝑁−1)
(7) 

where, N represents the number of samples, and the sign(.) is 

calculated from: 

𝑠𝑖𝑔𝑛 =  {
−1 (𝑥1𝑖 − 𝑥1𝑗)(𝑥2𝑖 − 𝑥2𝑗)  < 0 (𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡)

1 (𝑥1𝑖 − 𝑥1𝑗)(𝑥2𝑖 − 𝑥2𝑗)  ≥ 0 (𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡)

i,j = 1,2…,N 

(8) 

In this expression, the numerator indicates the difference 

between the count of concordant and discordant pairs.  

2.3 Joint distribution of SPT-N60 and Cc parameters based 

on copulas 

2.3.1 Copulas 

Copulas are  functions that join several marginal CDFs, 

intending to construct multivariate CDFs where the 

dimensional marginal distributions are uniformly distributed 

throughout the interval [0,1] [24]. The concept of copula 

theory was originally proposed by Sklar [27];  Sklar’s theorem 

serves as the cornerstone of copula theory, indicating that a 

continuous multivariate distribution can be expressed by 

combining its marginal distributions with a copula describing 

their dependence structure. Sklar's theory states that the joint 

distribution can be written as a function based on its marginal 

distributions, and the copula function is written as in Eq. (9): 

𝐹(𝑥1‚𝑥2) = C(𝐹1(𝑥1)‚𝐹2(𝑥2)‚ ⋯ ‚𝐹𝑛(𝑥𝑛)) (9) 

where, C is a copula function, F1(x1), F2(x2) are marginal 

distributions.  
Since this paper focuses on the relationship between only 

two variables, SPT and Cc, the bivariate copula function will 

be introduced. Based on Sklar's theorem, the bivariate CDF, 

F)x1, x2(, of random variables (X1, X2) is given by: 

𝐹(𝑥1‚𝑥2) = 𝐶(𝐹1(𝑥1)‚𝐹2(𝑥2)) = 𝐶(𝑢1‚𝑢2; θ) (10) 

By deriving Eq. (10 (, the PDF of the copula function, which 

can be determined as: 

𝑓(𝑥1‚𝑥2) = 𝐷(𝐹1(𝑥1)‚𝐹2(𝑥2); θ)𝑓1(𝑥1)𝑓2(𝑥2) =
𝐷(𝑢1‚𝑢2; θ)𝑓1(𝑥1)𝑓2(𝑥2)

(11) 

where, D(u1,u2;θ) denotes the density function of a bivariate 

copula, defined by: 
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𝐷(𝑢1‚𝑢2; 𝜃) = 𝜕2𝐶(𝑢1‚ 𝑢2;  θ)/𝜕𝑢1𝜕𝑢2 (12) 

In this expression, θ is a vector of copula parameters that 

quantify the dependence between the random variables, and u1 

= F1 (X1), u2 = F2 (X2) are uniformly distributed on the interval 

[0,1]. 

There are various copulas in the scientific literature; each 

type has its own properties and dependence structure, 

including tail dependence, symmetry, and a range of 

correlation coefficients. These copulas are also classified 

under families, considering how they are constructed and their 

similar properties, such as elliptic copulas, Archimedean 

copulas, and Plackett copulas.  In addition, other families of 

copulas have been used in several fields, such as the Farlie-

Gumbel-Morgenstern, Marshall-Olkin, or Ali-Mikhail-Haq 

copulas; however, these families have limited use in 

geotechnical applications due to the limited range of 

accreditation levels they can handle [13].  In this paper, the 

Gaussian, Plackett,  and Archimedean Copulas will be briefly 

discussed. For a more in-depth explanation, refer to these 

studies [19, 22]. 

Gaussian copula 

A Gaussian copula is classified as an elliptic copula. It is 

symmetrical, so it cannot capture asymmetric dependency. In 

addition, the Gaussian copula has no tail function. Generally, 

in the case of a bivariate Gaussian distribution, the copula 

function C(u1, u2; θ) and copula density function c(u1, u2; θ) 

are given [24]: 

𝐶(𝑢1‚𝑢2 ; θ) = Ф𝜃(Ф−1(𝑢1)‚Ф−1(𝑢2))‚ 𝜃

∈ [−1‚ 1] 
(13) 

𝑐(𝑢1‚𝑢2 ; θ) =
1

√1−θ2
𝑒𝑥𝑝 [−

𝜉1
2θ2−2θ𝜉1𝜉2+𝜉2

2θ2

2(1−θ2)
] (14) 

where, Ф𝜃 denotes the bivariate standard normal distribution

function, and Ф−1  the inverse of the standard normal

distribution function, 𝜉1 = Ф−1(𝑢1)  and 𝜉2 = Ф−1(𝑢2)  are

standard normal variables. It is worth noting  that the standard 

univariate normal distribution has a dependence structure 

uniquely determined by the Gaussian connection [28]. 

Regarding the copula parameter θ, two common ways exist to 

estimate this parameter. The first method depends on  the 

Pearson linear correlation coefficient (𝜌), by solving Eq. (4). 

The second method is to calculate the copula parameter  θ by  

the Kendall correlation coefficient, and the relationship 

between the rho Gaussian (θ) and 𝜏 can be given by: 

θ = sin (
𝜋𝜏

2
) (15) 

The Gaussian copula method, using 𝜏 is more accurate  than 

the method when using the Pearson correlation coefficient. 

This is because Kendall's τ does not change under incremental 

transformations, while Pearson’s correlation coefficient does 

not remain unchanged when nonlinear transformations are 

applied [29]. 

Plackett copula 

Plackett's copula belongs to the Plackett copula family, and 

it is an example of copula functions that are built using 

algebraic methods [24]. The Plackett copula is radially 

symmetric and has no tail dependence. Moreover, it is a 

comprehensive copula, which makes it useful for modeling 

dependence. However, extending the Plackett bivariate copula 

to include more than two variables is complicated, which is 

one of its weaknesses. In addition, the relationship between the 

copula parameter θ and rank coefficients (such as Kendall's τ) 

cannot be expressed in a simple mathematical formula, which 

requires resorting to numerical methods, making the analysis 

more labor-intensive. The CDF and PDF of the Plackett copula 

with θ ∈ (0‚ ∞) ∖ {1} are, respectively: 

𝐶 (𝑢1‚ 𝑢2;  θ)  =
Ѕ−√Ѕ2−4𝑢1𝑢2θ(θ−1)

2(θ−1)
(16) 

where, Ѕ = 1 + (θ − 1)(𝑢1 + 𝑢2).

𝑐 (𝑢1‚ 𝑢2;  𝜃) =
θ[1+(θ−1)(u1+u2−2u1u2)]

{[1+(θ−1)(u1+u2)]2−4u1u2θ(θ−1)}(3/2) (17) 

The parameter θ of the Plackett copula is obtained by 

solving Eq. (6), which defines the relationship between τ and 

θ as a double integral. 

Archimedean copulas 

Archimedean copulas are widely used in geotechnical 

dependence modeling due to their flexibility, simple 

construction, efficient sampling, and their ability to represent 

a broad range of dependence structures. Unlike the Gaussian 

(normal) copula, Archimedean copulas are built using an 

explicit generator function that defines the dependence 

pattern. A general bivariate Archimedean copula can be 

expressed in closed form as: 

C(𝑢1‚𝑢2 ; θ) =  𝜑θ
−1[𝜑θ(𝑢1) + 𝜑θ(𝑢2)] (18) 

Nelsen [24] specified conditions that the generator function 

𝜑𝜃  must satisfy the Archimedean copula. These conditions

include that the generator function  𝜑𝜃  must be a continuous

function, strictly decreasing, and convex  from [0,1] to [0, ∞) 
so that φθ(0) = ∞, φθ(1) = 0. The scientific literature features 

numerous generator functions, enabling the construction of 

various Archimedean copulas. 

In geotechnical engineering, four copulas are commonly 

used for dependence modeling, including the Frank, Gumbel, 

Clayton, and No.16 copulas. The definitions of the generator 

function φθ, copula function C, copula density function c, and 

range of θ for this family of copulas are given in Table 2. 

Frank copula [24] can model both positive and negative 

dependence, making it a versatile choice for applications, as 

highlighted by Joe [30].  Frank's copula is symmetrical, and 

therefore, it may not accurately represent asymmetric 

relationships. Moreover,  it does not exhibit tail dependence 

[24], which allows it to model dependence at the edges to a 

certain degree. However, dependence at the extreme edges 

may not be fully represented, as discussed  by Ashkar and 

Aucoin [31]. Clayton's copula and Gumbel's copula model 

positive dependency and are asymmetric copulas, with 

Clayton's copula showing greater dependency in the lower tail, 

i.e., at low values. In comparison, Gumbel's copula shows

greater dependency in the upper tail than in the lower tail. On

the contrary, the  No.16 copula is characterized by its ability to

model negative and weak positive dependencies [13].  Copula

16 is asymmetric, showing a dependency in the lower tail at a

low negative correlation coefficient, but as the negative

correlation increases, the effect of this dependency becomes

less, and the No.16 copula approaches radial symmetry [24].
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Table 2. Summary of bivariate Archimedean copulas functions and their dependence parameters [14] 

Type of 

Copula 
CDF PDF Generator 𝛗𝛉(𝐭)

Range of 

θ 

Frank 

−
1

θ
ln [1

+
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1
] 

−θ(e−θ − 1)𝑒e−θ(𝑢1+𝑢2)

[(𝑒−𝜃 − 1) + (𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)]2
− ln

e−θt − 1

e−θ − 1

(−∞‚∞)
\{0} 

Clayton [𝑢1
−𝜃 + 𝑢2

−𝜃 − 1]
−1

2⁄
(1 + θ)(u1u2)−(θ+1)

(u1
−θ + u2

−θ − 1)
1+2θ

θ

1

θ
(t−θ − t) (0‚ ∞) 

Gumbel 
exp [−((− ln u1)θ

+ (− ln u2)θ)
1

θ⁄
]

exp (−S
1
θ) (lnu1lnu2)

θ−1(S
1
θ+θ+1)

u1u2S
2−

1
θ

Ѕ = (− ln u1)θ + (− ln u2)θ

(− ln t)θ [1‚∞) 

No.16 

1

2
(Ѕ + √Ѕ2 + 4θ) ; 

Ѕ = u1 + u2 − 1 − θ (
1

u1
+

1

u2

− 1)

1

2
(1 +

θ

u1
2) (1 +

θ

u2
2) Ѕ−(1

2⁄ ) {−Ѕ−1 [u1 + u2 − 1

− θ (
1

u1
+

1

u2
− 1)]

2

+ 1} ;

Ѕ =  [u1 + u2 − 1 − θ (
1

u1
+

1

u2
− 1)]

2

(
θ

t
+ 1) (1 − t) [0‚ ∞) 

For Archimedean copulas, the parameter θ is determined 

based on Kendall’s τ between the variables X₁ and X₂ by 

solving Eq. (6), which, in the case of Archimedean copulas 

such as Frank and No.16 copulas, reduces from a double to a 

single integral [24]. 

𝜏 = 1 + 4 ∫
𝜑𝜃(𝑡)

𝜑𝜃
′

1

0
(𝑑𝑡) (19) 

Here, φθ(t) refers to the generator function associated with 

an Archimedean copula, while φ′θ(t) indicates its first 

derivative with respect to the variable (t). 

2.3.2 Selection of the best-fit marginal distributions and 

copulas 

Certainly, selecting appropriate probability distributions 

and copulas is fundamental for uncertainty modeling and 

reliability analysis in geotechnical engineering projects. A 

wide variety of univariate PDFs have been presented in 

literature, including continuous and discrete distributions [32], 

commonly used such as normal, uniform, and logarithmic 

distributions [13]. Early studies, such as Lumb [33], showed 

that the normal distribution suitably represents soil strength 

properties, a view supported by subsequent research [34, 35]. 

However, more recent work argues that soil properties are 

inherently non-negative, making the lognormal distribution 

more suitable in some cases due to the truncation at zero [36, 

37]. Generally, the appropriate distribution is chosen through 

goodness-of-fit tests. Here, the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) [38] are 

utilized to determine the optimal distribution from among four 

candidate continuous distributions: Truncated Normal, 

Truncated Gumbel, Lognormal, and Weibull, as shown in 

Table 2. These ensure that simulated values remain strictly 

positive, in accordance with recommendations [14]. 

Generally, identifying suitable marginal distributions with 

AIC and BIC entails evaluating several candidates using 

standard fitting methods (e.g., maximum likelihood or method 

of moments), with the distribution that attains the lowest AIC 

and BIC considered the best fit. The AIC is given by: 

𝐴𝐼𝐶 =  − ∑ ln 𝑓(𝑥𝑖 ;  𝑝‚ 𝑞) + 2𝑘1
𝑁
𝑖=1 (20) 

The BIC is defined as: 

𝐵𝐼𝐶 =  −2 ∑ ln 𝑓( 𝑥𝑖 ;  𝑝‚ 𝑞) +  𝑘1 𝑙𝑛 𝑁𝑁
𝑖=1 (21) 

where, ln 𝑓(𝑥𝑖;  𝑝‚𝑞)  denotes the log-likelihood function, p 

and q are the distribution parameters, and k1 indicates how 

many parameters define the distribution.  The merits of these 

two criteria were considered in a previous study [39]. 

Similarly, selecting an appropriate copula function—used 

to model the dependency structure between random 

variables—is equally critical in probabilistic analysis. The 

characteristics of copulas differ, particularly with respect to 

symmetry, the extent of tail dependence, and the types of 

correlation structures they can model. Although AIC and BIC 

are commonly applied to identify the best-fitting copula [13], 

these criteria alone do not ensure correct model selection, 

especially if all candidate copulas poorly represent the data. 

Therefore, candidate copulas must be chosen carefully based 

on their statistical properties. 

The AIC and BIC criteria are described as follows, 

respectively: 

𝐴𝐼𝐶 = −2 ∑ 𝑙𝑛𝐷(𝑢1𝑖
𝑁
𝑖=1 ‚ 𝑢2𝑖;𝜃) +  2𝑘2 (22) 

𝐵𝐼𝐶 = −2 ∑ 𝑙𝑛 𝐷(𝑢1𝑖
𝑁
𝑖=1 ‚ 𝑢2𝑖;𝜃) +  𝑘2 𝑙𝑛 𝑁 (23) 

where, D(𝑢2𝑖 , 𝑢2𝑖;𝜃) represents the copula density function,

and k2 denotes the number of copula parameters, and (u1i, u2i) 

represent realizations of standard uniform random variables )

the empirical distribution(, which define as: 

{

𝑢1𝑖 =
𝑟𝑎𝑛𝑘(𝑥1𝑖)

𝑁+1

      𝑖 = 1‚2 … . 𝑁

𝑢2𝑖 =
𝑟𝑎𝑛𝑘(𝑥2𝑖)

𝑁+1

 (24) 

where, rank(x1i) represents the rank of x1i among the values  x1 

when arranged in ascending order. This transformation allows 

the separation of marginal distributions from the dependence 

structure, enabling the copula to be modeled independently of 

the original data distributions. 
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3. RESULTS AND DISCUSSION

3.1 Marginal distribution of the N60 and Cc 

Initially, it is essential to identify the appropriate marginal 

distributions. Table 3 includes the candidate marginal 

distributions. The lowest values of BIC and AIC indicate the 

best probability distribution that simulates the data [40]. As 

shown in Table 4, based on the lowest AIC and BIC values, 

the marginal distributions are estimated to be a Weibull 

distribution for N60 and a TruncGumbel distribution for Cc. 

The value of AIC for all the probability distributions is 

approximately similar to each other. It ranges from 100.9926 

to about 103.2645. The narrow range of AIC and BIC may 

refer to the fact that all the probability distributions fit the data 

well. However, the lowest value, even with slightly different 

forms, serves as a basis for comparison between them. The 

BIC for the second parameter (Cc) was very low values, which 

refer to a very good fit of the data. 

Table 3. Probability density functions and domains of distribution parameters for candidate marginal distributions [14] 

Marginal 

Distribution 
Density Function f(x; p, q) Remarks 

Range of 

p 

Range of 

q 

TruncNormal 
1

𝑞√2𝜋
𝑒𝑥𝑝 [−

1

2
(

𝑥 − 𝑝

𝑞
)

2

] [1 − Ф (−
𝑝

𝑞
)]⁄  𝜇 = 𝑝, 𝜎2 = 𝑞2 (−∞‚ ∞) (0‚ ∞) 

LogNormal 
1

𝑞𝑥√2𝜋
𝑒𝑥𝑝 [−

1

2
(

ln 𝑥 − 𝑝

𝑞
)

2

] 
𝜇 = 𝑒𝑥𝑝(𝑝 + 0.5𝑞2),

𝜎2 = [𝑒𝑥𝑝(𝑞2 − 1)]𝑒𝑥𝑝(2𝑞 + 𝑞2)
(−∞‚ ∞) (0‚ ∞) 

TruncGumbel 
𝑞 𝑒𝑥𝑝{−𝑞(𝑥 − 𝑝) − 𝑒𝑥𝑝[−𝑞(𝑥 − 𝑝)]}

{1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝑝𝑞)]}
𝜇 = 𝑝 + 0.5772/𝑞, 

𝜎2 = 𝜋2/(6𝑞2)
(−∞‚ ∞) (0‚ ∞) 

Weibull 
𝑞

𝑝
(

𝑥

𝑝
)

𝑞−1

𝑒𝑥𝑝 [− (
𝑥

𝑝
)

𝑞

] 
𝜇 = 𝑝Г(1 + 1/𝑞), 

𝜎2 = 𝑝2[Г(1 + 2/𝑞) − Г2(1 + 1/𝑞)]
(0‚ ∞) (0‚ ∞) 

Note: Ф is the CDF of the standard normal distribution; Г denotes the gamma function 

Table 4. Values of AIC and BIC for different marginal distributions of data 

Parameter 
TruncNormal LogNormal TruncGumbel Weibull 

AIC BIC AIC BIC AIC BIC AIC BIC 

N60 101.5981 103.2645 102.0425 103.7089 101.7746 103.4410 100.9926 102.6591 

Cc −50.0954 −48.4289 −53.0087 −51.3423 −53.9799 −52.3134 −47.7764 −46.1100
Note: The AIC and BIC values are bold if the corresponding distribution is preferred 

Figure 3. Histograms and PDFs of the best-fitting marginal distributions of the measured dataset 

The PDFs of the four candidate marginal distributions are 

plotted together with the histograms of the measured data in 

Figure 3. It may visually evaluate the fitting of the probability 

distribution to the data. This strengthens the capability of the 

probability distribution to simulate the data. 

3.2 General correlation between SPT and Cc 

Before modeling the correlation between SPT-N60 and Cc, 

the measured data are transformed from the original space to a 

uniform space to facilitate understanding of the relationship 

and to provide an idea of the appropriate copula. Figure 4 

contains the scatter plot in the uniform space obtained after 

applying Eq. (24), where the effect of the bounded distribution 

is isolated. The scatter plot in Figure 4 shows a negative 

correlation between SPT-N60 and Cc. The negative correlation 

is also verified by Pearson's rho and Kendall's τ coefficients, 

which are calculated using Eqs. (1) and (7). 

The results showed a negative correlation between SPT-N60 

and Cc Pearson’s rho coefficients, and Kendall’s τ are obtained 

as −0.5591 and −0.4280, respectively. These findings are 

consistent with the results reported by Alam et al. [9]. This 

study showed that an increase in SPT-N values is accompanied 

by a decrease in Cc values. 

The reason for this difference is that Pearson's rho measures 

linear dependence influenced by the actual values of the data; 

thus, it is more sensitive to contrarian behavior and outlier 

values. By contrast, Kendall's τ captures dependence based on 

ranks, providing an indication of the general monotonic trend, 

as opposed to strict linearity. 
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Figure 4. Scatter plots of the measured dataset 

Due to the observed negative correlation, the Gaussian, 

Plackett, Frank, and No.16 copulas are suitable for describing 

the dependence between SPT60 and Cc. Thereafter, the copula 

parameters θ associated with the four prospective copulas, 

utilizing Eqs. (4) or (15) for the Gaussian copula and Eq. (19) 

for the Archimedean Copulas are listed in Table 5. After 

obtaining the copula parameters, the AIC and BIC values are 

computed for each copula by using Eqs. (22) and (23). Table 

5 summarizes the calculated results, where the Gaussian 

copula is the most suitable because it has the smallest AIC and 

BIC values.  

Table 5. Correlation coefficients of data, copula parameters, 

AIC, and BIC values of fitted copulas 

ρ τ 

Gaussian 

[θ, AIC, 

BIC] 

Plackett 

[θ, AIC, 

BIC] 

Frank 

[θ, AIC, 

BIC] 

No.16 

[θ, AIC, 

BIC] 

−0.5591 −0.4280 

−0.6228, 

−6.2054, 

−5.3722 

0.1306, 

−4.6227, 

−3.7895 

−4.5607,

−5.5567,

−4.7235 

0.0215, 

−3.3708, 

−2.5376 

Note: Bold AIC and BIC values indicate favoured copulas 

Given that the available dataset for the variable pair N60–Cc 

consists of only 17 samples, relying solely on the original 

sample to estimate probabilistic model parameters or to select 

the appropriate copula may be unreliable. Small samples are 

highly sensitive to data fluctuations, as highlighted by Tang et 

al. [41]. Their study demonstrated that sample size is the most 

influential factor in identifying the correct copula or marginal 

distribution, more so than the COV or the distributional shape. 

Small datasets tend to produce large variability in AIC values, 

increasing the likelihood of selecting an incorrect model, 

particularly when the sample size is less than 30. The study 

also showed that a stronger true dependence reduces the 

amount of data required for reliable model identification. 

To address uncertainty due to a small sample size, Tang et 

al. [41] recommended using the bootstrap resampling method. 

The bootstrap method is based on the idea of random sampling 

with replacement from the original dataset. For the N new 

samples we created from sample n. This may cause some of 

the values to appear in more than one row, but also some not 

to appear on any row. Then we compute the respective 

statistics for each of the resampled datasets, e.g., mean, 

standard deviation, copula dependence parameter, and AIC 

values. By repeating this process many times, every metric 

gets a sampling distribution that quantifies the uncertainty 

associated with it and allows for more robust evaluation of 

probabilistic models. Bootstrap sampling and coupling fit 

evaluation procedures are a methodology that can be 

generalized to various probabilistic relationships between 

geotechnical variables when data is limited [13]. 

Based on the recommendations of Sepulveda-Garcia and 

Alvarez [13], a total of N = 10,000 bootstrap samples were 

adopted to evaluate the uncertainty in the dependence 

parameter of each copula. For every resampled dataset, the 

dependence parameter is computed using the method of 

moments based on Kendall’s τ for each copula type. After 

completing all iterations, a set of 10,000 estimated values of 

the dependence parameter is obtained, forming a sampling 

distribution that characterizes the uncertainty associated with 

each copula. 

Table 6 shows bootstrap results from 10,000 resampled 

datasets, indicating unambiguous best-fit results for the 

Gaussian copula relative to other models. It had the lowest 

mean AIC value (−6.07) and was selected as the best-fitting 

model in about 75% of all iterations. This further implies its 

objectivity and reliability to map the dependency between N60 

and Cc, regardless of the limited amount of data points used in 

the proposed model (17 samples). On the other hand, the Frank 

and No.16 copulas provided fair performance (selection rates 

of 11.5% and 12%, respectively), indicating that they are 

capturing some of the dependence structure, but with less 

stability than the Gaussian copula. Among them, the Plackett 

copula demonstrated the poorest performance since it was only 

selected in 1.57% of cases, having the highest values of AIC, 

which mirrors its reduced capacity to fit the data. 

Table 6. Bootstrap AIC statistics and selection frequencies 

for candidate copulas 

Copula 

Model 

Mean 

AIC 

Std. 

AIC 

Number of 

Best 

Selections 

Selection 

Probability 

(%) 

Gaussian −6.0704 7.5667 7493 74.93 

Plackett −3.8529 3.8959 157 1.57 

Frank −5.1533 4.8474 1150 11.5 

No.16 −2.3162 4.6179 1200 12 

Figure 5. Bootstrap PDFs of AIC scores for fitted copulas 

Figure  5 shows the AIC distributions for four candidate 

copulas based on the bootstrap analysis. The Gaussian copula 

has the lowest AIC values, for most of its distribution tilted to 

the negative zone, thus confirming its clear temporal 

superiority as a goodness-of-fit over other models. In 

comparison, the Frank and No.16 copulas have distributions 
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that are more Gaussian-like; however, they lean toward higher 

AIC values, indicating reasonable but less stable performance. 

In contrast, the AIC values for the Plackett copula are 

consistently lower and more tightly concentrated, indicating a 

more limited capacity of the Plackett copula to accommodate 

the dependence between N60 and Cc. 

3.3 Generation of data based on a copula 

Figure 6 compares the scatter plots of 1000 simulated 

samples from 17 measured samples using a Gaussian copula 

with the appropriate marginal distributions. It is worth noting 

that these simulations were performed using the algorithms 

presented by Li et al. [23]. 

Figure 6. Scatter diagrams showing both measured and 

simulated data using a fitted copula with regression analysis 

The scatterplot shows a clear negative, monotonic 

relationship between  N60 and Cc. Linear regression on the 

measured data yields R2 ≈ 0.31, whereas the copula-based 

simulated samples reproduce a very similar slope and intercept 

Cc = −0.007 N60 + 0.288 with a slightly higher explanatory 

power R2 ≈ 0.36. Since R2 only evaluates how well a straight 

line fits the data, it can under- or over-state dependence when 

the true relationship is only partially linear—An effect also 

reflected by the gap between Pearson’s ρ and Kendall’s τ. 

Most of the data points are clustered in the mid-range of N60 

(8–15) and Cc (0.20–0.30); this clustering increases the scatter 

around the regression line and explains the relatively low 

coefficient of determination (R2). Nevertheless, the Gaussian 

copula was able to successfully reproduce this mid-range 

concentration, confirming its suitability for capturing the 

dependence structure between the measured data. 

3.4 Comparison of copula shapes with the optimal 

Gaussian copula 

The probability density curves of the proposed copulas were 

plotted and compared to the optimal copula (Gaussian) with 

the same margins (Weibull distribution for Cc and 

Truncgumbel for N60) with τ = −0.4280, as shown in Figure 7. 

The results indicate that the Plackett and the Frank fit the 

Gaussian very closely in the middle of the data, while copula 

No.16 shows a clear departure from the other copulas, with 

noticeable variation at the upper and lower ends of the 

relationship, reflecting its nonlinear nature and asymmetric 

end dependence when the negative correlation is not strong. 

This suggests that cupula 16 highlights nonlinear dependence 

effects that the Gaussian cupula cannot accurately represent. 

Figure 7. Iso-density contours for copula models (Gaussian, 

Plackett, Frank, No.16) 

3.5 Effect of  value on the Gaussin copula 

Figure 8 demonstrates the variation in the dependence 

structure of the Gaussian copula for different values of 

Kendall’s τ, ranging from strong positive to strong negative 

correlation. Each surface represents the bivariate PDF of the 

copula in the uniform domain (u1, u2) given the observed data. 

The upper row shows when τ is positive (τ = 0.90, 0.428, 

and  0.016)  and the corresponding Gaussian ρ = 0.988, 0.623 

and 0.025, respectively. When τ increases, the joint PDF is 

more peaked along the main diagonal (u₁ ≈ u₂), with the 

implication of strong positive dependency: Large (or small) 

values of the one variable tend to occur at the same time that 

large (or small) values of the other variable occur. As τ tends 

to zero, the surface becomes flatter, which suggests a near 

independence between the two uniform variables; conversely, 

in the bottom row, where the correlation is negative. 

3.6 Nataf versus Gaussian and No.16 copulas 

For the purpose of comparison between the Nataf 

distribution and both the Gaussian copula and Copula No.16, 

1,000 samples were simulated based on the dependence 

structure inferred from the measured data and the best-fitting 

marginal distributions, as shown in Figure 9. Modeling results 

indicate that the Nataf transformation exhibits behavior very 

similar to that of the Gaussian copula when the dependence 

between the variables is linear or quasi-linear. 

When comparing the Nataf transform with copula No.16, 

which exhibits asymmetry when the negative correlation is 

weak, the difference becomes clear, while Nataf maintains a 

symmetric elliptic dependence, copula No.16 exhibits an 

asymmetric tail behavior, and highlights the nonlinearity 

between the two variables. Therefore, the Nataf transform is 

equivalent to the Gaussian copula when the relationship is 

approximately linear, but it loses accuracy when modeling 

nonlinear or tail-dependent variables. 

The comparison shows that the Nataf transformation cannot 

describe other nonlinear or tail-dependent behavior between 

soil parameters since it inherently imposes a symmetric, 

Gaussian-type dependence structure. On the other hand, 

copula models like those based on Gaussian and No.16 have a 

parametric shape of dependence, but this can be learned from 
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data. For the current N60-Cc dataset, it is nearly monotonic and 

symmetric, so Nataf and the Gaussian copula behave similarly. 

However, in datasets where soils exhibit stronger 

nonlinearities or asymmetric tail dependence, the Nataf model 

may misrepresent the joint variability, whereas copula-based 

approaches provide a more reliable characterization of the 

underlying dependence. 

Figure 8. 3D surface plot of bivariate density for the Gaussian copula with different values of τ 

Figure 9. Simulation of measured data from Nataf distribution, Gaussian, and No.16 copulas 

Table 7. Comparison of simulation outcomes related to different dependence models 

Dependence 

Model 

τ (measured) 

N60-Cc 

ρ (measured) 

N60-Cc 

τ (simulated) 

U1-U2 

ρ (simulated) 

U1-U2 

τ (simulated) 

X1-X2 

ρ (simulated) 

X1-X2 

Nataf 

−0.4280 −0.5590

−0.3935 −0.5628 −0.3935 −0.5545

Gaussian −0.4315 −0.6078 −0.4315 −0.6047

No.16 −0.4413 −0.6250 −0.4413 −0.6266
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Both the Pearson correlation coefficient (ρ) and the Kendall 

correlation coefficient (τ) were calculated for the simulated 

correlated samples in the uniform (U) space to assess the 

dependency structure in the copula space. These coefficients 

were then recalculated in the physical space of variables (X) 

defined by marginal distributions. The results are summarized 

in Table 7, which also includes the correlation coefficients 

measured from the data (N60, Cc). 

It is noted that the Kendall coefficient (τ) values between X1 

and X2 remained almost constant compared to those calculated 

between UI and U2 for all the reliability models studied. This 

is attributed to the stability of the Kendall coefficient against 

the monotonic transformations used to move from the uniform 

distribution space U to the physical space X. In contrast, the ρ 

shows significant variation between the two spaces due to the 

nonlinear nature of the inverse cumulative distribution 

transformations used to generate the values of X. In 

comparison, the Nataf model produced correlation values 

close to the Gaussian correlation, demonstrating similar linear 

dependence. 

In general, these results validate that τ is invariant under 

monotonic transformation, but ρ is influenced by the shape of 

the marginal distributions. The Nataf model also exhibits 

similar behavior to the Gaussian copula in representing linear 

dependence, but differs from copula (16) when describing 

nonlinear relationships, pointing to the significance of model 

choice in this case concerning some types of geotechnical data 

in the non-Gaussian case. 

4. CONCLUSION

This study demonstrated that copula theory provides a 

reliable framework for modeling the dependence between 

SPT–N60 and the compression index Cc in the clay soils of Thi-

Qar, where laboratory consolidation data are often unavailable. 

The Gaussian copula was identified as the most appropriate 

dependence model, offering a stable representation of the 

observed negative association and enabling realistic 

generation of synthetic (N60, Cc) pairs for probabilistic 

settlement assessment. 

The practical significance of the model lies in its ability to 

provide credible compressibility estimates directly from field 

test data, thereby supporting reliability-based design and 

reducing the reliance on extensive laboratory testing. 

Nevertheless, the approach is sensitive to the limited sample 

size. Future research should therefore focus on expanding the 

database, evaluating additional copula families for more 

complex soil behaviors, and integrating the dependence model 

into full reliability analyses for settlement prediction . 
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